
Installing and Running
on Unix

Ve r s i o n 4 . 0

Borland International, Inc., 100 Borland Way
P.O. Box 660001, Scotts Valley, CA 95067-0001

Borland InterBase
Workgroup Server

Borland may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

Copyright © 1992, 1993, 1994, 1995 Borland International. All rights reserved. All Borland products are trademarks
or registered trademarks of Borland International, Inc. Other brand and product names are trademarks or registered
trademarks of their respective holders.

Printed in the U.S.A.

1E0R795
9596979899-9 8 7 6 5 4 3 2 1
C1

i

Table of Contents

Preface. . 1

Chapter 1: What is InterBase for Unix? 7

Chapter 2: Unix Installation and
Licensing . 9

Before You Install 9
Preparing Your System 9
Upgrading From a Previous InterBase

Version 10
Backing Up Previous Version

Databases 11
Changing Lock Header files and

Semaphore Values 11
Saving Previous Version Files 11

Installing InterBase on Unix 12
Licensing InterBase 13

Upgrading From a Previous Version
of InterBase 13

First Time Installation of
InterBase. 13

iscinstall Messages 16
After You Install. 17

General Information for All
Systems 17

Information for System Upgrades . . . 18
Testing the Installation 18

Chapter 3: Migrating to InterBase 4.0 19

Migration Topics 19
System Configuration Changes 19

Unix System Settings 19
Linking 20
Library Calls 20

InterBase System Changes 20
Keywords 20
Error Codes 21
gpre . 21

New Features for Version 4.0 21
SQL Descriptors. 21
gbak Switches 21
gbak, gfix, and gsec Switches 22
Shadowing. 22

Version 3.x GDML Features Unsupported
in Version 4.0 22

GDML Features 22
SQL Select Statement 22
Access Privileges 23

Components Not Supported in
Version 4.0 23

qli . 23
pyxis and fred 23
Journaling 23

User Response 23

Chapter 4: Using InterBase on Unix 25

Database Administration 25
Working With Databases 25

Forced and Buffered Writes 26
Shutdown and Logoff 26

Building Applications 26
Using the gpre Precompiler with

C++ . 27
Creating User-defined Functions and

BLOB Filters 27

Chapter 5: Using Command-line isql 29

Invoking isql 29
Command-line Options 30

Examples 31
Exiting isql. 31
Connecting to a Database 32

Transaction Behavior in isql 32
Extracting Metadata 33

Order of Extraction 34
isql Commands. 35

SHOW Commands 35
SET Commands 37

ii

Other isql Commands 37
BLOBDUMP. 38
Comments 38
EDIT 39
SHELL 39
INPUT 39
Exiting isql. 40

Error Handling 40

Chapter 6: Using the Command-line DBA
Utilities . 41

Using the Security Utility 41
The Security Database 41
Security Utility Commands 42

Displaying the Security
Database 42

Adding Entries to the Security
Database 43

Modifying the Security
Database 44

Deleting Entries from the Security
Database 44

Using the Security Utility from the
Unix Command Line. 44

Using the Database Maintenance
Utility . 45

Sweeping a Database 45
Overview of Sweeping 45
Options for Database Sweeping. . . 46
Changing the Sweep Interval 46
Disabling Automatic Sweeping . . . 47
Sweeping a Database at a Specified

Time 47
Repairing a Database 47

Options for Database Repair 48
Validating a Database 48
Mending a Corrupt Database 49
Handling Checksum Errors 51

Recovering Limbo Transactions 51
The Two-phase Commit

Process 51

Automated Transaction
Recovery 52

Options for Transaction
Recovery 52

Shutting Down a Database 53
Shutdown Options 54
Preventing Further

Attachments 54
Preventing Further

Transactions 55
Forcing Shutdown. 56

Restarting a Database 56
Controlling Performance of Forced

Writes. 57
Using the Backup and Restore

Utilities 57
General Syntax 58
Performing a Simple Backup 58

Backing Up Remote Databases. . . . 59
Backing Up to a Storage Device . . . 59

Performing a Simple Restoration 60
Restoring from a Storage

Device 60
Monitoring the Status of Backup and

Restore 61
Making a Transportable Backup 61
Backup Options 62

Backing Up Metadata 62
Preventing Garbage Collection . . . 63
Ignoring Checksums 63
Ignoring Limbo Transactions 63

Restoration Options 64
Splitting a Database into Several

Files 64
Making Indexes Inactive 65
Disabling Validity Checking 65
Changing the Database Page

Size 66
Restoring a Database Without Its

Shadow 67
Restoring Data Incrementally 67

iii

Upgrading to a New On-disk
Structure. 67

Chapter 7: Shadowing a Database. 69

Overview of Shadowing 69
Tasks for Shadowing 69
Advantages of Shadowing 70
Limitations of Shadowing. 70

Creating a Shadow 71
Creating a Single-file Shadow 72
Creating a Multi-file Shadow 72
Creating a Shadow in Auto Mode or

Manual Mode 73
Auto Mode 73
Manual Mode 74

Creating a Conditional Shadow 74
Activating a Shadow 74
Dropping a Shadow. 75
Adding a Shadow File 75

Appendix A: Error Messages. 77

Error Messages for Backup and
Restore 77

Error Messages for Database
Maintenance 81

Error Messages for Security
Utility . 82

Appendix B: isql Command Reference . . . 83

BLOBDUMP 83
EDIT . 84
EXIT . 85
HELP . 85
INPUT . 86
OUTPUT 87

QUIT . 88
SET . 88
SET AUTODDL 89
SET BLOBDISPLAY 90
SET COUNT 92
SET ECHO 93
SET LIST 94
SET NAMES 95
SET PLAN 95
SET STATS 96
SET TERM 98
SET TIME 99
SHELL. . 99
SHOW CHECK. 100
SHOW DATABASE 101
SHOW DOMAINS 101
SHOW EXCEPTIONS 102
SHOW FILTERS 103
SHOW FUNCTIONS 103
SHOW GENERATORS 104
SHOW GRANT 105
SHOW INDEX 105
SHOW PROCEDURES 106
SHOW SYSTEM 107
SHOW TABLES 108
SHOW TRIGGERS 109
SHOW VERSION 110
SHOW VIEWS 110

Appendix C: Command-line DBA Utilities
Reference. 111

gbak . 111
gfix. . 114
gsec . 116

Index . 119

iv

v

List of Tables

Table 1: InterBase Core
Documentation 1

Table 2: Text Conventions 2
Table 3: Syntax Conventions 2
Table 1-1: InterBase Features 7
Table 2-1: License Options. 14
Table 2-2: iscinstall Messages 16
Table 5-1: isql Command-line

Options 30
Table 5-2: Order of Extraction. 34
Table 5-3: isql SHOW Commands 36
Table 5-4: isql SET Commands 37
Table 5-5: isql Miscellaneous

Commands 37
Table 5-6: SQLCODE and Message

Summary 40
Table 6-1: Format of the isc4.gdb Security

Database 42
Table 6-2: Summary of gsec

Commands 42
Table 6-3: gsec Options 43

Table 6-4: Sweeping Options. 46
Table 6-5: Database Repair Options 48
Table 6-6: Transaction Recovery

Options 52
Table 6-7: Shutdown Options 54
Table 6-8: Backup Options 64
Table 7-1: Auto vs. Manual

Shadows 73
Table A-1: Error Messages for Backup and

Restore. 77
Table A-2: Messages for Database

Maintenance 81
Table A-3: Error Messages for Security

Utility . 82
Table B-1: isql Commands 83
Table B-2: SET Commands 89
Table C-1: gbak Argument

Descriptions. 111
Table C-2: gbak Backup Options 112
Table C-3: gbak Restore Options 112
Table C-4: gfix Options 114
Table C-5: gsec Options. 116
Table C-6: gsec Argument

Descriptions. 117

vi

Preface 1

0Preface

This preface describes the documentation set, the printing conventions used to
display information in text and in code examples, and the conventions a user
should employ when specifying database objects and files by name in applica-
tions.

The InterBase Documentation Set

The InterBase documentation set is an integrated package designed for all levels
of users. The InterBase server documentation consists of a five-book core set and
a platform-specific installation guide.

The InterBase core documentation set consists of the following books:

Table 1: InterBase Core Documentation

Book Description

Getting Started Provides a basic introduction to InterBase and roadmap for using the
documentation and a tutorial for learning basic SQL through isql .
Introduces more advanced topics such as creating stored procedures
and triggers.

Data Definition Guide Explains how to create, alter, and delete database objects through
isql .

Language Reference Describes SQL and DSQL syntax and usage.

Programmer’s Guide Describes how to write embedded SQL and DSQL database applica-
tions in a host language, precompiled through gpre .

API Guide Explains how to write database applications using the InterBase API.

Installing and Running on . . . Platform-specific information on installing and running InterBase.

InterBase Windows Client User’s
Guide

Installing and using the InterBase PC client. Using Windows ISQL and
the InterBase Server Manager.

2 Installing and Running on Unix

Printing Conventions

The InterBase documentation set uses different fonts to distinguish various
kinds of text and syntax.

Text Conventions
The following table describes font conventions used in text, and provides exam-
ples of their use:

Syntax Conventions
The following table describes the conventions used in syntax statements and
sample code, and offers examples of their use:

Table 2: Text Conventions

Convention Purpose Example

UPPERCASE SQL keywords, names of all
database objects such as
tables, columns, indexes,
stored procedures, and SQL
functions.

The following SELECT statement
retrieves data from the CITY column in
the CITIES table.

italic Introduces new terms, and
emphasizes words. Also
used for file names and host-
language variables.

The isc4.gdb security database is not
accessible without a valid username and
password.

bold Utility names, user-defined
and host-language function
names. Function names are
always followed by paren-
theses to distinguish them
from utility names.

To back up and restore a database, use
gbak or the server manager.
The datediff() function can be used to
calculate the number of days between two
dates.

Table 3: Syntax Conventions

Convention Purpose Example

UPPERCASE Keywords that must be
typed exactly as they appear
when used.

SET TERM !!;

Preface 3

Database Object-naming Conventions

InterBase database objects, such as tables, views, and column names, appear in
text and code in uppercase in the InterBase documentation set because this is the
way such information is stored in a database’s system tables.

When an applications programmer or end user creates a database object or refers
to it by name, case is unimportant. The following limitations on naming data-
base objects must be observed:

• Start each name with an alphabetic character (A-Z or a-z).

italic Parameters that cannot be
broken into smaller units.
For example, a table name
cannot be subdivided.

CREATE TABLE name
(<col> [, <col> ...]);

<italic> Parameters in angle brack-
ets that can be broken into
smaller syntactic units.
For example, column defini-
tions (<col>) can be subdi-
vided into a name, data type
and constraint definition.

CREATE TABLE name
(<col> [, <col> ...]);

<col> = name <datatype>
[CONSTRAINT name <type>]

[] Square brackets enclose
optional syntax.

<col> [, <col> ...]

... Closely spaced ellipses indi-
cate that a clause within
brackets can be repeated as
many times as necessary.

 (<col> [, <col> ...]);

| The pipe symbol indicates
that either of two syntax
clauses that it separates
may be used, but not both.
Inside curly braces, the pipe
symbol separates multiple
choices, one of which must
be used.

SET TRANSACTION
{SNAPSHOT [TABLE STABILITY]
| READ COMMITTED};

{ } Curly braces indicate that
one of the enclosed options
must be included in actual
statement use.

SET TRANSACTION
{SNAPSHOT [TABLE STABILITY]
| READ COMMITTED};

Table 3: Syntax Conventions (Continued)

Convention Purpose Example

4 Installing and Running on Unix

• Restrict object names to 31 characters, including dollar signs ($), under-
scores (_), 0 to 9, A to Z, and a to z. Some objects, such as constraint
names, are restricted to 27 bytes in length.

• Keep object names unique. In all cases, objects of the same type, for
example, tables and views, must be unique. In most cases, object names
must also be unique within the database.

For more information about naming database objects with CREATE or
DECLARE statements, see the Language Reference.

File-naming Conventions

InterBase is available on a wide variety of platforms. In most cases users in a het-
erogenous networking environment can access their InterBase database files
regardless of platform differences between client and server machines if they
know the target platform’s file naming conventions.

Because file-naming conventions differ widely from platform to platform, and
because the core InterBase documentation set is the same for each of these plat-
forms, all file names in text and in examples are restricted to a base name with a
maximum of eight characters, with a maximum extension length of three charac-
ters. For example, the example database on all servers is referred to as
employee.gdb.

Generally, InterBase fully supports each platform’s file-naming conventions,
including the use of node and path names. InterBase, however, recognizes two
categories of file specification in commands and statements that accept more
than one file name. The first file specification is called the primary file specification.
Subsequent file specifications are called secondary file specifications. Some com-
mands and statements place restrictions on using node names with secondary
file specifications.

In syntax, file specification is denoted as follows:

" <filespec> "

Primary File Specifications
InterBase syntax always supports a full file specification, including optional
node name and full path, for primary file specifications. For example, the syntax
notation for CREATE DATABASE appears as follows:

CREATE {DATABASE | SCHEMA} " <filespec> "
[USER " username " [PASSWORD " password "]]

Preface 5

[PAGE_SIZE [=] int]
[LENGTH [=] int [PAGE[S]]]
[DEFAULT CHARACTER SET charset]
. . .

In this syntax, the <filespec> that follows CREATE DATABASE supports a node
name and path specification, including a platform-specific drive or volume spec-
ification.

Secondary File Specifications
For InterBase syntax that supports multiple file specification, such as CREATE
DATABASE, all file specifications after the first are secondary. Secondary file
specifications generally cannot include a node name, but may specify a full path
name. For example, the syntax notation for CREATE DATABASE appears as fol-
lows:

CREATE {DATABASE | SCHEMA} " <filespec> "
[USER " username " [PASSWORD " password "]]
[PAGE_SIZE [=] int]
[LENGTH [=] int [PAGE[S]]]
[DEFAULT CHARACTER SET charset]
[<secondary_file>]

<secondary_file> = FILE " <filespec> " [<fileinfo>] [<secondary_file>]

<fileinfo> = LENGTH [=] int [PAGE[S]] | STARTING [AT [PAGE]] int
[<fileinfo>]

In the secondary file specification, <filespec> does not support specification of a
node name.

6 Installing and Running on Unix

What is InterBase for Unix? 7

CHAPTER 1

1What is InterBase for Unix?

InterBase for Unix is an integrated software package containing both a server
and a client.

InterBase servers on Unix work with InterBase clients on Unix and on all other
platforms and have the following features:

Databases on Unix systems can be accessed through an InterBase client of a PC
running Windows. For complete information, see the Windows Client User’s
Guide.

Table 1-1: InterBase Features

Feature Description

SQL Enhancements Declarative referential integrity, triggers, stored procedures,
BLOB data types, arrays of data types, updatable views, user-
defined functions, and BLOB filters.

Command-line isql Command-line version of InterBase Interactive SQL Tool.

Command-line DBA
Utilities

Command-line version of InterBase database administration
tools.

gpre pre-processor Preprocessor for embedded SQL programs.

Header files Files included at the beginning of application programs that
define InterBase data types and function calls.

Example programs C programs, ready to compile and link, which may be used to
query the standard InterBase example database on the server.

Message file interbase.msg, containing messages presented to the user.

8 Installing and Running on Unix

Unix Installation and Licensing 9

CHAPTER 2

2Unix Installation and Licensing

This chapter provides general information about installing and licensing
InterBase on Unix platforms. For detailed information on configuration require-
ments on your Unix platform, refer to the Borland World Wide Web site at:
HTTP://WWW.BORLAND.COM/. If you are unable to access this information,
call InterBase customer support.

Before You Install

This section describes what to do before installing InterBase on your system.
InterBase requires certain minimum Unix options and configurations, described
below in “Preparing Your System.” In addition, if you are upgrading to Inter-
Base Version 4.0 from an earlier version, see “Upgrading From a Previous Ver-
sion of InterBase,” in this chapter. For platform-specific system requirements,
refer to the Borland WWW page.

Preparing Your System
Before you install InterBase, you should verify that the following options exist
and are properly configured on your system:

• Kernel facility requirements:

• IPCSHMEM, the shared memory facility

• IPCSEMAPHORE, the semaphore facility

To add these options to the kernel, edit the kernel configuration file and
rebuild the kernel. See your Unix system administrator for information.

• SEM_UNDO structures

On platforms that require SEM_UNDO structures, you must verify that
you have approximately one per process running or expect to run on a
single machine.

10 Installing and Running on Unix

• Free semaphore requirements:

To determine the total number of semaphores available in your kernel
consult your system administrator.

To determine the number of semaphores currently in use, use the follow-
ing command:

% ipcs -a

The total number of semaphores in use is the total of the NSEMS column.
InterBase uses three sets of semaphore clusters. If you do not see these
sets of semaphores listed in NSEMS or you have other semaphores
installed, you may not have enough semaphores to run InterBase. You
can drop some of the existing semaphores using:

% ipcrm -s <semaphore ID from ipcs display>

If the maximum number of semaphores for your system has not already
been reached, you can also edit the kernel configuration file to specify
more semaphores. However, you then must rebuild the kernel before
installing InterBase.

• Kilobyte requirements:

Verify that you have the required number of kilobytes on the partition
where you want to install the InterBase directory tree.

Caution The InterBase directory tree should be located on a disk local to the server
on which you are installing InterBase. If the directory is located on a disk of
a remote machine, you may not be able to use the InterBase help and exam-
ple databases.

• /tmp directory

Important InterBase places files in the /tmp directory during data processing (e.g.,
queries, building indexes, sorting data). If you plan on issuing queries that
retrieve a large number of records or if you will be using indexes or sorting
on large relations, you must increase the amount of temporary space avail-
able to InterBase. You can change the temporary working location from /
tmp to another directory by setting the environment variable, TMP, to point
to the desired directory.

Upgrading From a Previous InterBase Version
If you have a previous InterBase version installed, you must back up databases
created with the previous version, save certain files, and reconfigure your sys-
tem.

Unix Installation and Licensing 11

Backing Up Previous Version Databases

To access databases created using a previous 4.0 version, you must back them up
before installing this new 4.0 version. The on-disk structure (ODS) 8.0 has been
updated to a new version in InterBase Version 4.0. To access databases created
using earlier versions of InterBase, back them up using that version of gbak
before you install Version 4.0. After you install the product, restore the databases
using the Version 4.0 gbak. For information on upgrading the on disk structure,
see “Upgrading to a New On-disk Structure” in Chapter 6: “Using the Com-
mand-line DBA Utilities.”

Changing Lock Header files and Semaphore Values

Before installing InterBase 4.0 on your system, you must change or reconfigure
certain files.

Use the #gds_drop -a command to remove the associated lock manager and
semaphores before installing a new version of InterBase. Use the #ipcs -a com-
mand to verify that the semaphores have been removed.

Note InterBase 4.0 does not use lock_header.

The platform-specific installation instructions contain more information for
changing configuration files, lock header files, and semaphore values.

Saving Previous Version Files

If you have a previous InterBase version installed, you should save certain files
before installing a new version:

• /usr/interbase/isc_license.dat

• /usr/interbase/isc_config

• /usr/interbase/isc.gdb

If you intent to use this file with InterBase V4.0 databases, you must
back it up using the previous version gbak and restore it using the
V4.0 gbak to isc4.gdb.

Note If you used Pictor in previous InterBase versions and intend to use it in
version 4.0, you will need to save the Pictor files. However, Pictor is unsup-
ported in version 4.0.

12 Installing and Running on Unix

Installing InterBase on Unix

The following example is ageneric Unix installation. Since most platforms vary
slightly, you will need the platform-specific installation instructions provided on
to the Borland WWW page.

1. Log in as superuser or root and insert the distribution medium into the
drive.

2. To install InterBase in /usr/interbase, change your directory as follows:

% cd /usr

You can install InterBase in any other directory, but after the installation
is complete, define the link /usr/interbase which points to the installed
product files.

3. Use the tar utility to read the files from the media. The tape contains the
/interbase directory, which has the files and subdirectories that are used
during the installation procedure.

If you are not using the default device, use the f option of tar and specify
the name of the device you are using. The following example uses the
default device:

% tar -xv

4. When the tar finishes restoring the files, run the installation script:

% sh install

The installation script moves files from the tape to directories in /inter-
base. It creates links to this directory from /usr/lib and /usr/include.

Note If you do not have enough semaphores configured on your machine, you
will see this message:

% semget failed

For information about resetting the number of semaphores, see “Before You
Install,” in this chapter. If you do not reinstall InterBase files after resetting the
semaphores, you must manually install the sample databases and the help data-
base using gbak:

5. When your system prompt is displayed, the installation is complete.

6. If you have a network connection and want to use the network immedi-
ately, kill the inetd process and restart it.

7. Logout as superuser or root.

Unix Installation and Licensing 13

Licensing InterBase

Upgrading From a Previous Version of InterBase
If you upgraded from a previous version of InterBase, then the license ID you
were given for the previous version is still valid. Copy your backed up version
of isc_license.dat to /usr/interbase/isc_license.dat. InterBase is now licensed for use.

First Time Installation of InterBase
You must license your copy of InterBase before you can use it. Licensing is per-
formed directly through your sales engineer. When you are ready to license
InterBase, call your sales engineer and follow the instructions below.

To license your installation:

1. Log in as superuser or root.

2. Run the iscinstall utility from the client that you want to license. You
will need to have a license file on each client:

% /usr/interbase/bin/iscinstall

Note To cancel the iscinstall utility, type exit or quit at any of the prompts.

3. Answer each prompt with the information provided by your sales engi-
neer. In some cases, you will use default information and press Return to
use the default value. The default value for each iscinstall prompt is in
parentheses. The prompts are described below:

Do you need instructions (N)?

Type Y if you want instructions for using the iscinstall utility. If you exit
before completing the instructions by typing exit or quit, you must
restart iscinstall. If you complete the instructions, you remain within the
utility and the next prompt is displayed.

License file (/usr/interbase/isc_license.dat):

Press Return to use the default path name (/usr/interbase/isc_license.dat), or
type the file name you want to use to store the licensing information. (If
you do not use the default file, you must append the licensing informa-
tion to the isc_license.dat file after the licensing procedure is complete.)

Check for duplicate licenses (N)?

14 Installing and Running on Unix

Press Return if you do not want to check for duplicates, which may result
in duplicate licenses being registered.

Type Y to check for duplicates, which will assure that no duplicate
licenses are registered.

Enter PRODUCT:

Type interbase

Note If you are licensing the international InterBase version, type international.

Enter VERSION:

Press Return unless otherwise instructed by your sales engineer.

Enter OPTIONS:

Type the options that apply to your license, as instructed by your sales
engineer. Do not type commas or spaces between each option.

Enter ETHER:
Enter NODE:

Accept the ethernet ID or node ID depending on your platform require-
ments. The default ID for the node you are licensing appears during the
procedure. Press Return to accept the ID. For remote installations, you
will need to determine the ID of the node before you run the installation
script. Ask your system administrator how to determine a node ID.

Table 2-1: License Options

Character License Option

 I Internal relation access

E External relation access

R Remote interface

D Data definition utilities

S Remote server

Q qli

L gpre for all languages, except ADA

A gpre for ADA

3 gpre for C++

C Chinese

K Korean

N Japanese

Unix Installation and Licensing 15

Enter UNTIL:

Press Return unless you purchased a temporary license for product eval-
uation. If you have a temporary license, type the expiration date, using
the format, DD-MMM-YYYY.

Enter COMMENT:

Type an optional comment (80 character limit), or press Return if you do
not want to enter a comment.

Enter ID:

Type the license ID provided by your sales engineer.

Enter KEY:

Type the license key provided by your sales engineer.

4. When you finish entering the licensing information, iscinstall displays
the information you entered. For example:

Entered: PRODUCT interbase, NODE 1700u98a, ID ISC-76, KEY 93-1-2-2

• If the record is not valid, iscinstall prints an error message and does
not create the license file entry. Verify that the information you
entered matches the above instructions and information provided by
InterBase.

• If the record is valid, it is placed in the isc_license.dat license file on
your system. If you specified a different authorization file in which to
place the license record, you must append the licensing information
from that file to isc_license.dat.

5. iscinstall then begins another licensing routine and prompts you for the
next InterBase product:

Enter PRODUCT:

If you are not installing another InterBase product, type quit or exit.

6. To exit from the iscinstall utility, type N at the following prompts:

License another node (Y)?: n
Another license file (Y)?: n

7. Verify that the isc_license.dat file has “read” permission for all InterBase
users.

8. Log out as superuser or root.

16 Installing and Running on Unix

iscinstall Messages

The following table lists iscinstall messages and the reasons for their occur-
rences. Where appropriate, corrective actions are suggested.

Table 2-2: iscinstall Messages

Message Probable Cause

Cannot open help file. The help file either does not exist or does not
have read permission.

Duplicate licenses will be registered. You typed N in response to the "Check for dupli-
cate licenses" prompt.

Duplicate licenses will NOT be regis-
tered.

You typed Y in response to the "Check for dupli-
cate licenses" prompt.

File <filename> cannot be read or cre-
ated. Check the file’s permissions.

The license file you want to use cannot be
opened. (The most likely cause is that the file
does not have read/write permission or you do
not have write access to the directory.) After you
correct the file permissions, rerun iscinstall.

File <filename> does not seem to
exist. Create it (Y)?

The file in which license information will be
stored does not exist. If you type Y, the file will be
created.

File <filename> doesn’t appear to be
an InterBase License File...
Continue (N)?

The file you specified to use as the license file
already exists but cannot be used as an
InterBase Authorization File. Type Y to continue
and enter a different file name.

ID is mandatory, please re-enter. You did not enter a required license ID at the
"Enter ID" prompt.

Invalid character in key. You entered one or more incorrect characters in
the key value. Re-enter the key, correcting the
invalid character(s) shown in the message.

Invalid character in node ID. You entered one or more incorrect characters in
the node value. Re-enter the node, correcting the
invalid character(s) shown in the message.

Invalid date. You entered an incorrect date or did not enter the
date in a valid format. Use the date format,
DD-MMM-YYYY. For example, January 21, 1991
should be entered as 21-JAN-1991.

Invalid format for key. You entered the key value using an incorrect for-
mat. Re-enter the key using the format shown in
the message.

Unix Installation and Licensing 17

After You Install

After you install and license InterBase, you may need to make additional modifi-
cations to your system to use InterBase most effectively. You should also test
your installation to make sure InterBase runs correctly. This section describes
general changes you might need to make. For platform-specific information,
refer to the Borland WWW site. For any late-breaking information, you should
refer to the readme file located on the product.

General Information for All Systems

• All users who intend to use InterBase must add /usr/interbase/bin to their
paths.

• Any user who accesses a database must have read/write access to that
database. To lessen the security risk, you can associate a security class

Invalid key value, check entries for
accuracy. Please retry.

You entered an incorrect key value. Rerun
iscinstall and enter the correct key value. If you
see this message again, contact InterBase Cus-
tomer Support.

Invalid license option. Valid options
are: <options list>

You entered a letter that does not correspond to
an option. Re-enter using one or more of the
options listed in the message.

Invalid PRODUCT ID. You entered an incorrect product ID. Re-enter
the product ID using one of the product IDs listed
in the message.

Key is mandatory. Please re-enter. You did not enter a key value. Enter the key
value provided by InterBase Customer Support.

Node is limited to a maximum of 8
characters. Please re-enter.

You entered a node ID that is longer than 8 char-
acters. Re-enter the correct node ID.

Product is mandatory! Valid entries
are: <entry list>

You did not enter a product ID. Enter a product ID
using one of the entries from the list in the mes-
sage.

Re-try licensing node (Y)? You exited iscinstall before completing the
license by typing exit or quit. To rerun iscinstall ,
press Return . If you do not want to install Inter-
Base at this time, type N.

Table 2-2: iscinstall Messages (Continued)

Message Probable Cause

18 Installing and Running on Unix

with the database. For information about security schemes, see the Data
Definition Guide.

• InterBase 4.0 uses a file called isc.config to configure the lock manager.
The lock table is managed either by Unix System V shared memory or by
mapped fields which can be dynamically expanded as needed. Depend-
ing on the operating system and the applications you run, isc_config may
need to be edited to increase maximum shared memory used for the lock
table and the number of semaphores used. See the Borland WWW site
for information about configuring your system.

Information for System Upgrades
• Restore any previous version databases using the version 4.0 gbak. You

must have saved them using the previous version gbak before you
installed.

Testing the Installation

1. Make sure you added /usr/interbase/bin to your path.

2. Start command-line isql, the interactive data definition and manipula-
tion facility and open the sample database, employee.gdb. For example:

%isql

isql> connect /usr/interbase/examples/v4/employee.gdb;

isql> show tables;
. . .

isql> select * from country;
. . .

isql> quit;

3. For more information about using isql commands, see Chapter 5: “Using
Command-line isql.” For information on executing SQL statements, see
the Language Reference.

Note Users may elect to use Windows isql from a PC. For complete information
about using Windows isql, see the Windows Client User’s Guide. For a com-
plete SQL tutorial using Windows isql, see Getting Started.

Migrating to InterBase 4.0 19

CHAPTER 3

3Migrating to InterBase 4.0

This chapter lists considerations for customers of earlier versions of InterBase
who are moving to InterBase Version 4.0. New users and users who are not
migrating existing applications programs to the new version will not require this
information.

There are several differences in the ways that Version 3.3 and Version 4.0 man-
age data. Application programs that accessed InterBase Version 3.x databases
will require some modifications to access InterBase Version 4.0 databases.

Important Back up Version 3.x databases using the Version 3.x gbak utility and restore
them using the Version 4.0 gbak utility.

Backup files made by Version 3.x gbak should use the -t option so that the
backup file is transportable to other platforms. The Version 4.0 gbak creates
transportable backup files by default.

Migration Topics

Each of the following issues will require some level of consideration by
InterBase users that are migrating from earlier versions. The relative importance
of these issues depends on the types of application programs that the customer
has written. For example, if an application did not make use of the journaling
function in Version 3.3, then journaling will not be a migration concern.

System Configuration Changes

Unix System Settings
The allowed numbers of Unix system lock headers and semaphores have
increased. Semaphores have increased from 32 in Version 3.2 to 128 in Version
3.3, to 64K in Version 4.0. Because the numbers have increased, there will not be

20 Installing and Running on Unix

an adverse impact on application programs. A given system can run more pro-
cesses connecting to the database(s) on the server. For complete information on
Unix system settings, see the Borland World Wide Web page.

Linking
Full backend libraries (-lgds_b) are no longer supported. All programs will need
to be run through gpre and relinked. That linking process will be different from
Version 3.x. Compiling and linking are system-specific tasks and complete infor-
mation is provided as part of your operating system’s documentation. For issues
specific to InterBase, see the Programmer’s Guide.

Library Calls
For applications to be portable across platforms, all the gds_$ calls need to be
replaced with isc_ calls. This requires changes in how some arguments are
passed to the InterBase functions. A list of the possible valid gds_$ calls can be
provided, specifically the DSQL calls documented for the Windows Client SDK.
All applications written to use the InterBase V3.3 API should be rewritten to use
the isc_ calls. For complete information on the isc_ calls, see the API Guide.

InterBase System Changes

Keywords
Keywords, also called reserved words, are words that are used as part of the
InterBase SQL language. Keywords are reserved by SQL and cannot be used in
any way by application programs.

InterBase 4.0 includes more reserved words than earlier versions. It is possible
that an application program used with Version 3.x contains words that have now
become keywords. All occurrences of keywords must be found and changed in
order for the application program to work. A program is provided that gener-
ates an ISQL script that would locate all the occurrences of reserved words used
in application programs.

For a complete list of the reserved words, see the Language Reference.

Migrating to InterBase 4.0 21

Error Codes
The InterBase Error Codes have been made more specific. Earlier versions of
InterBase used one numerical value to reflect several different errors. Version 4.0
uses a unique numerical code to identify each of these previously grouped
errors. For example, SQLCODE -804 (wrong number of arguments) is still the
same. But, previously, multiple rows in a singleton select would also return -804.
In Version 4.0 it will return -811.

Applications that depend on specific error code values (for example, detecting
and branching on error code values) may need a change to take the new values
into account. For complete lists of the InterBase and SQLCODE error codes for
Version 4.0, see the Language Reference.

gpre
The Embedded SQL preprocessor (gpre) for Version 4.0 supports the use of
GDML code, though no additional enhancements were made for Version 4.0. It
is recommended that any GDML statements be changed to SQL.

New Features for Version 4.0

SQL Descriptors
The XSQLDA is a host-language data structure that DSQL uses to transport data
to or from a database when processing an SQL statement string. All DSQL appli-
cations must declare one or more extended SQL descriptor areas (XSQLDAs).
The XSQLDA structure definition can be found in the ibase.h header file in the
InterBase include directory.

Use of the Extended SQL descriptor areas (XSQLDAs) is the default in Version
4.0. C++ will not be able to compile existing programs that use the SQLDA struc-
tures. Those programs will have to be rewritten to call XSQLDA structures.

gbak Switches
The meaning of the -u switch to gbak restore has changed. In Version 3.x, the -u
switch meant (u)se_all_space. In Version 4.0, the -u switch means (u)sername
and is used with either backup or restore to force InterBase to check that the user
has sufficient privileges to perform the operation.

22 Installing and Running on Unix

gbak restore now allows the use of multiple-character switches. Automatic cron
jobs running gbak restore must be changed to use the multiple-character switch.

gbak -y has changed. When specifying that the gbak status messages be sent to
a file, that file must not already exist. If you specify a file that already exists you
will get an error message and the gbak will not complete.

gbak, gfix, and gsec Switches
gbak, gfix, and gsec now employ several multiple-character switches. Previ-
ously, all the switches for gbak, gfix, and gsec could be stated as a single charac-
ter (for example, gbak -k -n -o). In Version 4.0 some switches require more than
one character (for example, gbak -c -pa). Application programs written for Ver-
sion 3.x that include gbak, gfix, and gsec should be checked and possibly rewrit-
ten to make sure that they work correctly with multiple-character switches.

Shadowing
The operation of shadows in InterBase Version 4.0 on Unix is similar to the oper-
ation in Version 3.3. There have been several bug fixes that will improve the
operation of shadows.

Version 3.x GDML Features Unsupported in Version 4.0

GDML Features
The triggers, COMPUTED BY fields, views, and validation check constraints
were implemented in GDML in Version 3.x. Applications that use triggers,
views, and validation should be rewritten for any Version 4.0 applications.

SQL Select Statement
Version 3.x used GDML Record Selection Expressions (RSEs) which are equiva-
lent to the SELECT statement in SQL. It is a quick way to access a record that has
already been selected. Applications that use GDML RSEs must be rewritten to
use SELECT.

Migrating to InterBase 4.0 23

Access Privileges
In Version 3.x, triggers use the RDB$USER field from the RDB$USER_PRIVI-
LEGES system table to stamp a record with the user name of the user changing
the record, or to check to see if this user is allowed to perform insert, modify, or
erase operations on a specific table. These security functions in Version 4.0 are
performed using the SQL GRANT statement. All the RDB$USER stamps must
be recast as GRANT statements. For complete information on the GRANT state-
ment, see the Programmer’s Guide.

Components Not Supported in Version 4.0

qli
The Query Language Interpreter (qli) is not supported in InterBase V4.0. Appli-
cations that use qli should be rewritten in a 3GL language (C, C++, Pascal, etc.)
or find another 4GL front-end. All qli procedures or scripts will have to be
rewritten as Interactive, Dynamic, or embedded SQL programs.

pyxis and fred
The pyxis and fred libraries are supplied with Version 4.0 but are no longer sup-
ported. Programs that make calls to these libraries should be re-written, prepro-
cessed and linked.

Journaling
The Version 3.x journaling function is no longer supported.

User Response

The development of the list of migration issues is an ongoing process. We
encourage feedback. If any application programmer encounters an issue that
affects migration, we would appreciate being informed.

24 Installing and Running on Unix

Using InterBase on Unix 25

CHAPTER 4

4Using InterBase on Unix

This chapter provides special notes on using InterBase on Unix.

InterBase for Unix enables you to issue interactive SQL (isql) commands from
the Unix command line. For information on using command-line isql, see Chap-
ter 5: “Using Command-line isql.”

Database Administration

You can perform database administration (DBA) for InterBase using the com-
mand-line DBA utilities on the server or using the Server Manager on the remote
client. For information on using the command-line DBA utilities, see Chapter 6:
“Using the Command-line DBA Utilities.” For information on using the Server
Manager, see the Windows Client User’s Guide.

Working With Databases

When working in networked client/server environments, keeping the server’s
and client’s versions of InterBase synchronized is crucial. Remember that, even
though you are working on the client, the server’s version of the software is the
one that is running. Make sure you check both versions.

InterBase does not place any restrictions on the names of files beyond those
placed by Unix itself. Because InterBase will often be used in environments
which include DOS machines, whenever possible use names that meet the DOS
file name restrictions: an eight letter name with a maximum three letter exten-
sion.

26 Installing and Running on Unix

Forced and Buffered Writes
By default, InterBase performs buffered writes (also referred to as asynchronous
writes). Unlike a forced write, when InterBase performs buffered writes, it does
not physically write data to disk until a pre-specified event occurs. That event
can be when a certain amount of information has been collected for a write, an
associated event has occurred, or a certain time interval has elapsed.

If forced writes are not enabled, then even though InterBase performs an inter-
nal write, the data may not be physically written to disk, because the operating
system buffers disk writes. If there is a system failure before the data is written
to disk, then information can be lost.

Performing forced writes ensures data integrity and safety, but will slow perfor-
mance. In particular, operations which involve data modification will be slower.

You can also enable and disable forced writes with the gfix command-line DBA
utility. For more information on gfix, see Chapter 6: “Using the Command-line
DBA Utilities.”

Shutdown and Logoff
If the Unix server is shut down or if a user logs off while there is an InterBase
application running, data can be lost. If you shut down or log off during data-
base activity, then the active database can get orphan pages.

You can mend orphan pages with the gfix command-line DBA utility. For more-
information on gfix, see Chapter 6: “Using the Command-line DBA Utilities.”

Building Applications

You can create Unix applications for InterBase using the gpre precompiler to cre-
ate C programs from programs containing embedded SQL commands. You can
also build applications using the InterBase API.

For general information on creating embedded applications, see the Program-
mer’s Guide. For information on creating applications with the InterBase API, see
the API Guide.

Using InterBase on Unix 27

Using the gpre Precompiler with C++
The precompiler, gpre, will append the file name extension, .cxx, when it creates
C++ output files. For example, if an embedded C++ source file is called:

foo.exx

then gpre creates an output file called:

foo.exx.cxx

Creating User-defined Functions and BLOB Filters
User-defined functions (UDFs) and BLOB filters are Unix shared libraries. These
libraries must always reside on the server.

There are two ways you can run such functions:

• Locally, when you are building and running an application on the server.

• Remotely, when you are building and running an application on an NT
client that will use InterBase on a remote server.

To run a function locally, you must state a fully-qualified path in the declaration
to the database.

28 Installing and Running on Unix

Using Command-line isql 29

CHAPTER 5

5Using Command-line isql

This chapter describes the command-line isql utility (interactive SQL) available
with Unix servers.

Command-line isql is a utility for processing SQL data definition (DDL) and
data manipulation (DML) statements from interactive input or from a source
file. It enables you to create and view metadata, add and modify data, grant user
permissions, test queries, and perform database administration tasks.

This chapter provides an introduction to using isql. For a description of the stan-
dard SQL commands available in isql, see the Language Reference. For a descrip-
tion of special isql commands, see Appendix B: “isql Command Reference.”

Invoking isql

You can use isql:

• Interactively to process SQL statements, by entering statements at the
isql prompt.

• Non-interactively to process SQL statements in a file.

To start the isql utility, type the following at a Unix Prompt:

isql [options] [database_name]

where options are command-line options and database_name is the name of the
database to connect to, including disk and directory path.

If no options are specified, isql starts an interactive session. If no database is
specified, you must connect to an existing database or create a new one. If a
database was specified, isql starts the interactive session by connecting to the
named database.

If options are specified, isql will start interactively or non-interactively, depend-
ing on the options. For example, reading an input file or writing to an output file
are non-interactive tasks, so the -input or -output options do not start an interac-

30 Installing and Running on Unix

tive session. Additional non-interactive options include -a, -database, -extract,
and -x, which are used when extracting DDL statements.

When using isql interactively, the following prompt will appear:

SQL>

You must then end each command with a terminator character. The default ter-
minator is a semicolon (;). You can change the terminator to any character, or
group of characters with the SET TERMINATOR command or the
-terminator command-line option. If you omit the terminator, a continuation
prompt appears (CON>).

Note For clarity, all of the commands and examples in this chapter end with the
default semicolon terminator.

Command-line Options
Only the initial characters in an option are required. You can also type any por-
tion of the text enclosed in brackets, including the full option name. For exam-
ple, specifying -n, -no, or -noauto has the same effect.

Table 5-1: isql Command-line Options

Option Description

-a Extracts all DDL for the named database.

-d[atabase] name Used with -x. Changes the CREATE DATABASE statement that is
extracted to a file. Without -d, CREATE DATABASE appears as a
C comment and uses the database name specified on the isql
command line. With -d, isql extracts an uncommented CREATE
DATABASE and substitutes name as its database argument.

-e[cho] Displays (echoes) each statement before executing it.

-ex[tract] Same as -x.

-i[nput] file Reads commands from an input file instead of from standard
input. Input files can contain -input commands that call other files,
enabling execution to branch and then return. isql exits (with a
commit) when it reaches the end of the first file. In interactive ses-
sions, use -input to read commands from a file.

-n[oauto] Turns off automatic commitment of DDL statements. By default,
DDL statements are committed automatically in a separate trans-
action.

-o[utput] file Writes results to an output file instead of to standard output. In
interactive sessions, use -output to write results to a file.

Using Command-line isql 31

Examples

Suppose createdb.sql contains DDL statements to create a database. To execute
the statements, enter:

isql -input createdb.sql

The following example starts an interactive connection to a remote database.
The remote server, hera, accepts the specified user and password combination:

isql -user sales -password mycode hera:/usr/customer.gdb

The next example starts an interactive session but does not attach to a database.
isql commands are displayed, and query results print column headers every 30
lines:

isql -echo -page 30

Exiting isql
To exit isql and roll back all uncommitted work, enter:

QUIT;

To exit isql and commit all work, enter:

EXIT;

-p[assword]
password

Used with -user . Specifies a password when connecting to a
remote server. For access, both password and user must repre-
sent a valid entry in the security database.

-pag [elength] n Prints column headers every n lines instead of the default 20.

-t[erminator] x Change the end-of-statement symbol from the default semicolon
(;) to x, where x is a single character or any sequence of
characters.

-u[ser] user Used with -password . Specifies a user name when connecting to
a remote server. For access, both password and user must repre-
sent a valid entry in the security database.

-x Extracts DDL for the named database. Displays DDL to the
screen unless redirected to a file.

-z Displays the software version of isql .

Table 5-1: isql Command-line Options (Continued)

Option Description

32 Installing and Running on Unix

Connecting to a Database
If you do not specify a database on the command-line when invoking isql, you
must either connect to an existing database or create a new one. Use the
CONNECT command to connect to a database and CREATE DATABASE to cre-
ate a database. For the full syntax of CONNECT and CREATE DATABASE, see
the Language Reference.

You can connect to a database in two ways. You can connect to:

• A local database on Unix. Use the connect command with the full path of
the database as the argument. For example:

connect /usr/interbase/examples/v4/employee.gdb;

• A remote database on an NT, Unix, or NetWare server using TCP/IP. Use
the CONNECT command with the full node name and path of the data-
base as the argument. Separate the node name from the database path
with a colon. On a Unix platform, precede each directory or file name
with a slash (/). On an NT platform, precede each directory or file name
with a slash (/) or a backslash (\).

To connect to a database on a Unix platform named node1:

connect node1:/usr/interbase/examples/v4/employee.gdb;

To connect to a database on an NT platform named node2:

connect node2:/users/interbase/examples/v4/employee.gdb;

Note Be careful not to confuse node names and shared disks, because both are
specified with a colon separator. If you specify a single letter that maps to a
disk drive, then it will be assumed to be a drive, not a node name.

Transaction Behavior in isql

When you start isql, InterBase begins a transaction. That transaction will be in
effect until you issue a COMMIT or ROLLBACK statement. You must issue a
COMMIT or ROLLBACK statement to end a transaction. Issuing one of these
statements will automatically start a new transaction, or you can start a transac-
tion with the SET TRANSACTION statement.

Note isql uses a separate transaction for DDL statements. When these state-
ments are issued at the SQL> prompt, they are committed automatically as
soon as they are completed. DDL scripts should issue a COMMIT after
every CREATE statement to ensure that new database objects are available

Using Command-line isql 33

to all subsequent statements that depend on them. For more information
on DDL statements, see the Data Definition Guide.

Extracting Metadata

You can extract the DDL statements that define the metadata for a database to an
output file with the isql -extract option. Adding the optional -output flag
reroutes output to a named file. Use this syntax:

isql [[-extract | -x][-a] [[-output | -o] outputfile]] database ;

The -x option is an abbreviation for -extract. The -a flag directs isql to extract all
database objects. Note that the output file specification, outputfile, must follow
the -output flag, while you can place the name of the database being extracted at
the end of the command.

You can use the resulting text file to:

• Examine the current state of a database’s system tables before you plan
alterations to it, or when a database has changed significantly since its
creation.

• Use your text editor to make changes to the database definition or create
a new database source file.

The -extract option does not extract:

• Generators.

• UDF code and BLOB filters, because they are not part of the database.
The declarations to the database (with DECLARE EXTERNAL
FUNCTION and DECLARE FILTER) are extracted.

• System tables, system views, and system triggers.

• Because DDL statements do not contain references to object ownership,
the extracted file does not show ownership. The output file includes the
name of the object and the owner if one is defined. There is no way to
assign an object to its original owner.

Option Description

database File specification of the database from which metadata is being
extracted.

outputfile File specification of the text file to receive the extracted statements. If
omitted, isql writes the information to the screen.

34 Installing and Running on Unix

Order of Extraction
The isql -extract option extracts all SQL-based metadata in the following order:

For example, the following statement extracts the system catalogs from the data-
base employee.gdb to a file called employeeout.gdb:

isql -extract -output employeeout employee.gdb;

The resulting output script is created with -commits following each set of com-
mands, so that tables can be referenced in subsequent definitions. This com-
mand extracts all keywords and object names in uppercase when possible (some
international metadata has no uppercase).

To extract DDL statements from database employee.gdb and store in the file
employee.sql, enter:

isql -a employee.gdb -output employee.sql

Table 5-2: Order of Extraction

Metadata Comments

database Extracts database with default character set and page_size .

domains

tables

BLOB data types and
known subtypes

NULL and default
values

PRIMARY KEY
constraints

CHECK constraints

FOREIGN KEY
constraints

Must be added after tables by ALTER TABLE to avoid tables
referenced before being created.

indexes Only for tables extracted, except triggers from referential or
unique constraints.

views WITH CHECK
OPTION

stored procedures In the extracted DDL, stored procedures are created with no
body and then ALTER PROCEDURE adds the text of the pro-
cedure body.

triggers Does not extract triggers from CHECK constraints.

GRANTs From RDB$USER_PRIVILEGES table.

Using Command-line isql 35

The following example extracts the DDL statements from the database dev.gdb:

isql -x dev.gdb

This example combines the -extract and -output options to extract the DDL
statements from the database dev.gdb into a file called dev.out. The output data-
base name must follow the -output flag.

isql -extract -output dev.out dev.gdb

isql Commands

At the SQL> prompt, you can enter any of three kinds of commands:

• SQL data definition (DDL) statements, such as CREATE, ALTER, DROP,
GRANT, and REVOKE. These statements create, modify, or remove
metadata and objects, and control user access (via privileges) to the data-
base. For more information about DDL, see the Data Definition Guide.

• SQL data manipulation (DML) statements such as SELECT, INSERT,
UPDATE, and DELETE. These four data manipulation operations affect
the data in a database. They retrieve, modify, add, or delete data. For
more information about DML statements, see the Language Reference.

• isql commands that fall into three main categories:

• SHOW commands (to display metadata or other database informa-
tion)

• SET commands (to modify the isql environment)

• Other commands (for example, commands to read an input file, write
to an output file, or end an isql session)

Some isql commands have many options. For a detailed description of each
command, see Appendix B: “isql Command Reference.”

SHOW Commands
SHOW commands are used to display metadata, including tables, indexes, pro-
cedures, and triggers.

SHOW commands list all of the specified objects or give information about a
particular object when used with name. For the full syntax of the SHOW com-
mands, see Appendix B: “isql Command Reference.”

36 Installing and Running on Unix

SHOW commands operate on a separate transaction from user statements. They
run as READ COMMITTED background statements and acknowledge all meta-
data changes immediately.

The following table lists isql SHOW commands:

Table 5-3: isql SHOW Commands

Command Description

SHOW CHECK Shows all CHECK constraints for the named object.

SHOW DATABASE Shows the name and files of the current database, and the
relevant statistics for the database.

SHOW DOMAINS Lists all domains defined in the database or displays informa-
tion about a named domain.

SHOW EXCEPTIONS Lists all exceptions defined in the database or displays infor-
mation about a named exception.

SHOW FILTERS Shows all filters defined in the database or displays informa-
tion about a named filter.

SHOW FUNCTIONS Lists all UDFs defined in the database or displays information
about a named UDF.

SHOW GENERATORS Lists all generators declared to the database or displays
information about a named generator.

SHOW GRANT Shows all permissions for the named object.

SHOW INDEX Lists all indexes in the tables in the database.

SHOW PROCEDURES Lists all procedures defined in the database or displays the
text and parameters of a specified procedure.

SHOW SYSTEM Shows a list of system tables (the metadata).

SHOW TABLES Lists the columns and types, constraints, and triggers defined
for a given table. Includes the view definition for views.

SHOW TRIGGERS Lists all triggers defined in the database or displays informa-
tion for the named trigger, including trigger text.

SHOW VERSION Displays the database and access method version.

SHOW VIEWS Lists all views defined in the database or displays information
about a specified view.

Using Command-line isql 37

SET Commands
SET commands enable you to view and change the isql environment. The fol-
lowing table lists the SET commands:

By default all settings are initially OFF except AUTODDL, and the terminator is
a semicolon (;). Each time you start an isql session, it begins with the default set-
tings.

Tip If you have a group of settings you commonly use, you can keep them in a
file to be input at the beginning of the isql session.

Other isql Commands
The remaining isql commands perform a variety of useful tasks, including read-
ing an SQL file, executing shell commands, and exiting isql. The following table
lists all other isql commands:

Table 5-4: isql SET Commands

Command Description

SET Lists which SET options are on.

SET AUTODDL Toggles the commit feature for DDL statements.

SET BLOBDISPLAY n Turns on the display of BLOB type n. n is required for the
BLOB types to be displayed.

SET COUNT Toggles the count of selected rows on or off.

SET ECHO Toggles the display of each command on or off.

SET LIST string Displays columns vertically or horizontally.

SET NAMES Specifies the active character set.

SET PLAN Determines whether or not to display the optimizer’s query
plan.

SET STATS Toggles the display of the performance statistics on or off.

SET TERM string Allows you to change to an alternate terminator character(s).

SET TIME Toggles display of time in DATE values.

Table 5-5: isql Miscellaneous Commands

Command Description

BLOBDUMP Places the contents of a BLOB column into a file.

/* Comment */ Used to comment isql script files.

EDIT Calls the system editor. Allows you to edit a file without exiting isql .

38 Installing and Running on Unix

BLOBDUMP

BLOBDUMP places the contents of a BLOB column in a named file for reading
or editing. The syntax is:

BLOBDUMPblob_id filename

The BLOB ID is always displayed in query output as the column value. Contents
of BLOB columns are displayed at the end of all columns if SET BLOBDISPLAY
is turned on.

All BLOB IDs are two hexadecimal numbers separated by a colon (:). The first
number is the table ID of the table containing the BLOB, and the second number
identifies the BLOB.

Because binary files cannot be displayed, BLOBDUMP is useful for viewing or
editing binary data. BLOBDUMP is also useful for saving blocks of text BLOB
data to a file.

Comments

isql script files can be commented exactly like C programs:

/* comment */

A comment can be of any length: less than one line or many lines, as long as it is
preceded by “/*” and followed by “*/”.

EXIT Commits the current transaction, closes the database, and ends the
isql session.

HELP Displays a brief help message on isql commands.

INPUT Reads and executes commands from the named file without prompt-
ing the user. The INPUT command can be nested.

OUTPUT Directs output to the named file or back to the standard output.

QUIT Issues the QUIT command to exit isql . All uncommitted work is rolled
back.

SHELL Enables you to enter Unix operating-system commands.

Table 5-5: isql Miscellaneous Commands (Continued)

Command Description

Using Command-line isql 39

EDIT

EDIT can be used to edit and execute commands in an SQL file or commands in
the current isql session. Make sure to set up a default Unix editor for your sys-
tem before issuing this command.

After exiting the editor, isql automatically executes the commands in the edited
buffer.

The EDIT command does not work in input files.

SHELL

The SHELL command provides temporary access to Unix operating system
commands. Use SHELL to execute an operating-system command without end-
ing the current isql session.

SHELL with no argument temporarily interrupts the isql session and returns
you to the Unix prompt. Type EXIT to return to isql. Follow SHELL with a Unix
command to execute the Unix command immediately. The isql prompt will
return.

SHELL does not commit transactions.

INPUT

INPUT reads the file given as its argument and executes SQL statements in the
file. In this way, INPUT enables execution of commands without prompting.
The file must contain legal isql statements. It is often advantageous to write
DDL statements in a file using a text editor, to make the authoring of the meta-
data objects easier. You can then use INPUT to read the file into isql and define
the objects.

The EDIT command does not work in input files.

INPUT is particularly useful when working with stored procedures and triggers.
It allows you to use a text editor to edit the file containing CREATE
PROCEDURE or TRIGGER statements, and then use INPUT to read the file
into isql, where you can test the procedure or trigger.

Tip If you are working with a database object that is updated frequently, put
DROP objectname as the first line of code to avoid error messages because
duplicate names are not allowed in a database.

40 Installing and Running on Unix

Exiting isql

To exit the isql utility and roll back all uncommitted work, enter:

QUIT;

To exit the isql utility and commit all work, enter:

EXIT;

Error Handling

InterBase handles errors in isql and DSQL in the same way. To indicate the
causes of an error, isql uses the SQLCODE variable and the InterBase status
array.

The following table lists values that are returned to SQLCODE:

For a detailed discussion of error handling, see the Programmer’s Guide. For a
complete listing of SQLCODE and InterBase status array codes, see the Language
Reference.

Table 5-6: SQLCODE and Message Summary

SQLCODE Message Meaning

< 0 SQLERROR Error occurred. Statement did not execute.

0 SUCCESS Successful execution.

+1-99 SQLWARNING System warning or informational message.

+100 NOT FOUND No qualifying rows found, or end of current active
set of rows reached.

Using the Command-line DBA Utilities 41

CHAPTER 6

6Using the Command-line DBA
Utilities

This chapter describes the command-line database administration utilities avail-
able with InterBase. These utilities provide a Unix command-line interface for
performing database administration tasks.

The command-line DBA utilities are:

• gsec: For administering security for InterBase servers.

• gfix: For maintaining databases, including sweeping, repairing, shutting
down, and restarting databases, and recovering “limbo” transactions.

• gbak: For backing up and restoring databases.

Using the Security Utility

The InterBase command-line security utility is gsec. This utility is used in con-
junction with the security database, isc4.gdb, to specify user names and pass-
words for an InterBase server.

The security database, isc4.gdb, is installed in the InterBase directory (by default,
/usr/interbase). To attach to a database on the server, users must specify a user
name and password. The user name and password are verified against informa-
tion stored in isc4.gdb. If a matching row is found, the attachment succeeds.

Important You must log in to Unix as root to use gsec.

The Security Database
Every user of an InterBase server requires an entry in the isc4.gdb security data-
base. The security utility, gsec, lets you display, add, modify, or delete informa-
tion in isc4.gdb.

42 Installing and Running on Unix

The following table describes the contents of isc4.gdb:

To use gsec interactively, type “gsec” at the Unix prompt. The prompt will then
change to GSEC>, indicating that you are in interactive mode. To quit an interac-
tive session, type “quit.”

Security Utility Commands
The following table summarizes gsec commands. The initial part of each com-
mand is required. The part in brackets is optional.

Displaying the Security Database

To see the contents of isc4.gdb, enter the display command at the GSEC> prompt.
All the rows in the security database are displayed:

GSEC> display
 user name uid gid

Table 6-1: Format of the isc4.gdb Security Database

Column Required? Description

User name Yes Name the user supplies when logging in

Password No (but highly
recommended)

User’s password

uid No An integer that specifies a user ID

gid No An integer that specifies a group ID

Full name No User’s real name (as opposed to login name)

Table 6-2: Summary of gsec Commands

Command Description

di [splay] Displays all rows of isc4.gdb.

di [splay] name Displays information only for user name.

a[dd] name <data> Adds user name to isc4.gdb. <data> specifies the col-
umns and their associated values. Supply <data> by
specifying various options. For information, see “Adding
Entries to the Security Database,” in this chapter.

mo [dify] name <data> Like add , except that name already exists in isc4.gdb.

de[lete] name Deletes user name from isc4.gdb.

h[elp] or ? Displays gsec commands and syntax.

q[uit] Quits the interactive session.

Using the Command-line DBA Utilities 43

------------ ----- -----
FRED 123
BARNEY 123
BETTY 123

Note that passwords are never displayed.

Adding Entries to the Security Database

To add users to the security database, use the add command and supply at least
a user name and password.

For example, to add user JONES and assign the password welcome, enter:

GSEC> add JONES -pw welcome

Use display to verify the entry. An unassigned uid or gid defaults to 0:

GSEC> display
 user name uid gid
------------ ----- -----
 JONES 0 0

In the previous example, the -pw option indicates that the next argument is the
password. You can supply additional options, with corresponding arguments
for other information in the security database. The following table summarizes
the gsec options. For each option, the initial letter or letters are required and
optional parts are enclosed in brackets.

For example, to add authorization for a user named Cindi Brown with user
name, CBROWN, and password, coffee2go, use the following gsec command:

GSEC> add CBROWN -pw coffee2go -fname CINDI -lname BROWN

To verify the new entry, display isc4.gdb:

GSEC> display
 user name uid gid full name

Table 6-3: gsec Options

gsec Option Description

-pw User’s password (string)

-u[id] User ID (integer)

-g[id] Group ID (integer)

-f[name] User’s first name (string)

-mn [ame] User’s middle name (string)

-l[name] User’s last name (string)

44 Installing and Running on Unix

------------ ----- ----- -------------------
 JONES 0 0
 CBROWN 0 0 CINDI BROWN

The user name entry in isc4.gdb is case insensitive, but gsec stores the user name
in uppercase regardless of how it is entered.

Modifying the Security Database

To change existing entries in the security database, use the modify command.
Supply the user name for the entry to change, followed by the option indicating
the items to change and the corresponding values to which to change them.

For example, to set the user ID of user CBROWN to 8 and change the first name
to CINDY, enter the following commands:

GSEC> modify CBROWN -uid 8 -fname CINDY

To verify the changed line, use display followed by the user name:

GSEC> display CBROWN
 user name uid gid full name
------------ ----- ----- -------------------
 CBROWN 8 0 CINDY BROWN

Note To modify a user name, first delete the entry in isc4.gdb, then enter the new
user name and re-enter the other information.

Deleting Entries from the Security Database

To delete a user’s entry in isc4.gdb, use delete and specify the user name:

GSEC> delete CBROWN

You can confirm the deletion with the display command.

Using the Security Utility from the Unix Command Line
To use gsec from the Unix command line, precede each command with gsec and
prefix each gsec command with a hyphen (-). For example, to assign password,
“sesame” to user, ALADDIN, enter the following at the command line:

> gsec -add ALADDIN -pw sesame

To display the contents of isc4.gdb, enter:

> gsec -display

Using the Command-line DBA Utilities 45

Using the Database Maintenance Utility

The database maintenance utility is gfix. You can use gfix to perform a variety of
database maintenance tasks, including sweeping, repairing, shutting down, and
restarting databases, and recovering “limbo” transactions.

The general syntax for gfix is:

gfix [options] db_name

Each database maintenance task has associated options, listed in the correspond-
ing sections that follow.

Sweeping a Database
Sweeping a database systematically removes outdated records from the database.
Periodic sweeping prevents a database from growing too large. Sweeping a
database too frequently can also slow system performance.

The gfix utility provides control over database sweeping. You can:

• Change the automatic sweep interval.

• Disable automatic sweeping.

• Sweep a database at specified times.

Note Sweeping a database does not require you to shut it down. This allows you
to schedule sweeping when it will least affect users (for example, by run-
ning it at a low priority or at off-peak hours).

Overview of Sweeping

InterBase uses a multi-generational architecture. This means that multiple ver-
sions of data records are stored directly on the database pages. When a record is
updated or deleted, InterBase keeps a copy of the old state of the record and cre-
ates a new record version. This process can increase the size of a database.

To limit the growth of the database, InterBase performs garbage collection, which
frees up space allocated to outdated versions of a record. Whenever a transac-
tion accesses a record, the server eliminates outdated versions (“garbage”).
Records that were rolled back are ignored by typical transactions and will not be
collected. To guarantee that all records are collected, including those that were
rolled back, InterBase periodically “sweeps” the database.

46 Installing and Running on Unix

When sweeping a database, InterBase reads every record in the database. This
forces garbage collection of outdated record versions as well as rolled back
records. InterBase automatically sweeps a database every 20,000 transactions by
default.

Because automatic sweeping is tied to a transaction, sweeping a database can
affect application performance. Because InterBase is a multi-threaded server, the
sweep can spawn a separate process so that it does not block other processes.

Note Sweeping a database is not the only way to perform systematic garbage
collection. Backing up a database achieves the same result because the
backup utility, gbak, must read every record, forcing garbage collection
throughout the database. As a result, regularly backing up and restoring a
database can reduce the need to sweep. You can maintain better applica-
tion performance this way.

Options for Database Sweeping

Use the following options to perform sweeping with gfix.

Changing the Sweep Interval

To change the automatic sweep interval, use the -housekeeping (-h) option. For
example, you can set the sweep interval to 10,000 transactions as follows:

gfix -h 10000 employee.gdb

As the DBA, you should determine the sweep interval that provides the best
database performance.

On one hand, sweeping more often can reduce the time for transaction startup.
Sweeping a database can affect transaction startup if rolled back transactions
exist in the database. As the time increases since the last sweep occurred, the
time for transaction startup may also increase.

On the other hand, frequent database sweeps may reduce application perfor-
mance. This might occasionally create a delay in transaction startup.

Table 6-4: Sweeping Options

Option Description

-s[weep] Force an immediate sweep of the database. Useful if automatic
sweeping is disabled. Exclusive access is not necessary.

-h[ousekeeping] n Change automatic sweep interval to n transactions, or disable
sweeping by setting n to 0. Default interval is 20,000 transactions.
Exclusive access is not needed.

Using the Command-line DBA Utilities 47

Note Unless the database contains many rolled back transactions, changing the
sweep interval has little effect on database size. As a result, it is more com-
mon for a DBA to fine-tune the database by disabling sweeping and sched-
uling it for specific times.

Disabling Automatic Sweeping

To disable automatic sweeping, use the -housekeeping option to set the sweep
interval to 0. For example,

gfix -h 0 employee.gdb

Disabling automatic sweeping is useful if:

• Maximum throughput is important. Transactions will never be delayed
by sweeping.

• You want to schedule sweeping at specific times. After automatic sweep-
ing is disabled, you can manually sweep the database at a specified time.

Sweeping a Database at a Specified Time

To sweep a database immediately, use the -sweep (-s) option. For example,

gfix -s employee.gdb

Because sweeping a database does not require shutting it down, you can sched-
ule sweeping when it will least affect users by running the process at a low pri-
ority or during off-peak hours. Use the cron command to schedule a sweep at a
specified time.

For example, the following command will run a sweep on myserver at 3:00 a.m.:

cron //myserver 03:00 "gfix -s employee.gdb"

Note You must log in as root to use the cron command.

Repairing a Database
In day-to-day operation, a database is sometimes subjected to events that pose
minor problems to database structures. These events include:

• Abnormal termination of a database application.

This does not affect the integrity of the database. When an application is
canceled (killed), committed data is preserved, and uncommitted
changes are rolled back. If InterBase has already assigned a database

48 Installing and Running on Unix

page for the uncommitted changes, the page might be considered an
orphan page. Orphan pages are unassigned disk space that should be
returned to free space.

• Write errors in the operating system or hardware.

These usually create a problem with database integrity. Write errors can
result in “broken” or “lost” data structures, such as a database page or
index. These corrupt data structures can prevent recovery of committed
data.

The gfix database maintenance utility provides several options for minor repair
of data structures, including:

• Validating a database.

• Mending the database if corruption is reported.

Options for Database Repair

Use the following options when performing database repair with gfix:

Validating a Database

Validating a database means verifying the integrity of data structures. Validate a
database:

• Whenever a database backup is unsuccessful.

• Whenever an application receives a “corrupt database” error.

• To periodically monitor for corrupt data structures or mis-allocated
space.

Table 6-5: Database Repair Options

Option Description

-v[alidate] Locate and release pages that are allocated but unassigned to any data
structures. Also reports corrupt structures.

-f[ull] Used with -validate to check record and page structures, releasing
unassigned record fragments.

-i[gnore] Ignore checksum errors when validating or sweeping.

-m[end] Mark corrupt records as unavailable, so they are skipped (for example,
during a subsequent back up).

-n[o_update] Used with -validate to report corrupt or mis-allocated structures. Struc-
tures are reported but not fixed.

Using the Command-line DBA Utilities 49

• When data corruption is suspected.

Validation is performed with the -validate (-v) gfix option. This will report cor-
rupt data structures and mis-allocated database pages, and return orphan pages
to free space.

In the following example, the first gfix command reports orphan pages. The sec-
ond command confirms that the orphan pages were freed, indicating that the
database structures were not “broken,” merely unallocated:

> gfix -validate -full emp.gdb
 Page 142 is an orphan
 Page 146 is an orphan
 Page 150 is an orphan
 Page 152 is an orphan
> gfix -validate -full emp.gdb

In this example, the -full option modifies -validate. By itself, -validate reports
and releases only page structures. When combined with -full, the
-validate option reports and releases record structures as well as page struc-
tures. Use -full when you want to verify all structures.

By default, validating a database updates it, if necessary. To prevent updating,
use the -no_update option after -validate. The following example reports struc-
tures but does not fix them:

gfix -validate -no_update emp.gdb

Mending a Corrupt Database

In addition to reporting mis-allocated structures, -validate reports broken struc-
tures caused by write errors in the operating system or hardware. The -validate
option does not fix write errors; it only reports them.

To fix write errors, use the -mend (-m) option. -mend fixes problems that cause
records to be corrupt, reports errors, and marks corrupt structures. In subse-
quent operations (such as backing up), InterBase ignores the marked records.

If you suspect you have a corrupt database, perform the following steps:

1. Make a copy of the database using an operating-system command. Do
not use the InterBase backup utility (gbak), because it cannot back up a
database containing corrupt data. For example, enter:

cp my.gdb my_copy.gdb

2. Run gfix -mend to mark corrupt structures in the database copy. If -full
is also specified, gfix marks both record and page structures (for exam-

50 Installing and Running on Unix

ple, damaged BLOB data is marked); if -full is not specified, gfix marks
only page structures. gfix reports the errors it finds:

gfix -mend -full my_copy.gdb
Chain for record 9 is broken in table JOB (16)
Page 32 is an orphan
Page 196 is used but marked free
Page 197 is used but marked free

If gfix -mend reports any checksum errors, reissue the command using
the -ignore option in addition to -mend:

gfix -mend -full -ignore my_copy.gdb

3. Run gfix -validate -full to see if the errors reported by gfix -mend are
actually fixed:

gfix -validate -full my_copy.gdb
Record 9 is marked as damaged in table JOB (16)
Page 32 is an orphan
Page 33 is an orphan

Note that the free pages are no longer reported, and the broken record is
marked as damaged. Any records marked by -mend are ignored when
the database is backed up.

4. Back up the mended database with gbak:

gbak -b my_copy.gdb my_copy.gbk

At this point, any damaged records are lost, because they were not
included during the backup.

5. Restore the database to rebuild indexes and other database structures:

gbak -c my_copy.gbk new_copy.gdb

The restored database should now be free of corruption.

6. Verify that restoring the database fixed the problem:

gfix -validate -full new_copy.gdb
<No messages reported >

In the previous example, gfix was able to mend the database. You can therefore
delete the original corrupt database, my.gdb.

Note Some corruptions are too serious for gfix to correct. These include corrup-
tions to certain strategic structures, such as space allocation pages. In addi-
tion, gfix cannot fix certain checksum errors that are random by nature and
not specifically associated with InterBase.

Using the Command-line DBA Utilities 51

Handling Checksum Errors

A checksum is a page-by-page analysis of data to verify its integrity. A bad check-
sum means that a database page has been randomly overwritten (for example,
due to a system crash).

Checksum errors indicate data corruption. To repair a database that reports
checksum errors, follow the procedure in the previous section but use the
-ignore option in addition to -mend. For example:

gfix -mend -full -ignore my_copy.gdb

The -ignore option enables the InterBase backup utility (gbak) to ignore check-
sums when backing up a database. Ignoring checksums allows successful
backup of a corrupt database, but the affected data may be lost.

Caution Even if you can restore a mended database that reported checksum errors,
the extent of data loss may be difficult to determine. If this is a concern, you
may want to locate an earlier backup copy and restore the database from it.

Recovering Limbo Transactions
The database maintenance utility enables you recover limbo transactions. A
limbo transaction can be caused by hardware failure, and recovering it means
the transaction is committed or rolled back. The DBA can decide whether to
commit or roll back a specific transaction, or you can let gfix decide. This process
of resolving limbo transactions to make them commit or roll back is called auto-
mated transaction recovery.

The Two-phase Commit Process

When committing a transaction that spans multiple databases, InterBase auto-
matically performs a two-phase commit. A two-phase commit guarantees that the
transaction updates either all of the databases involved or none of them—data is
never partially updated.

In the first phase of a two-phase commit, InterBase prepares each database for
the commit by writing the changes from each subtransaction to the database. A
subtransaction is the part of a multi-database transaction that involves only one
database. In the second phase, InterBase marks each subtransaction as commit-
ted, in the order that it was prepared.

If a two-phase commit fails during phase two, some subtransactions will be
committed and others will not be. A two-phase commit can fail if a network
interruption or disk crash makes one or more databases unavailable. Failure of a

52 Installing and Running on Unix

two-phase commit causes limbo transactions, transactions that do not know
whether to commit their changes or roll them back. You can resolve, or recover,
these limbo transactions using the database maintenance utility.

Automated Transaction Recovery

The database maintenance utility analyzes the state of subtransactions by deter-
mining when the two-phase commit failed. If the first transactions are in limbo
but later transactions are not, the maintenance utility assumes that the prepare
phase did not complete. In this case, gfix prompts you to roll back.

If the first transactions are missing and later transactions are in limbo, gfix
assumes that the prepare phase completed but the commit phase did not. In this
case, gfix prompts you to commit the transaction.

If all transactions are prepared, gfix assumes that the failure occurred between
phase one and phase two of the two-phase commit. In this case, you must decide
whether to commit or roll back the transaction.

Options for Transaction Recovery

gfix provides several options to use in automated transaction recovery:

Table 6-6: Transaction Recovery Options

Option Description

-list Lists the ID number of each transaction in limbo, including the part-
ner transaction if it is a multi-database transaction; also lists the
current state and the action that automated recovery would take for
a multi-database transaction.

-prompt Lists limbo transactions and prompts you for action. Must be used
with -list .

-commit id | all Commits a single transaction specified by id or commits all limbo
transactions. gfix advises against a commit if some of the transac-
tions were not prepared.

-rollback id | all Rolls back a single transaction specified by id or rolls back all limbo
transactions.

-two_phase id | all Performs automated transaction recovery on a single transaction id
or on all limbo transactions. Commits or rolls back the transaction,
depending on its state. If all transactions are prepared but you did
not specify a commit or rollback, gfix prompts you for action.

Using the Command-line DBA Utilities 53

To recover limbo transactions, use the following procedure:

1. List the transactions in limbo:

gfix -list database

2. Perform one of the following four actions:

• Commit a specified limbo transaction or all limbo transactions. For
example,

gfix -commit all database

• Roll back a specified limbo transaction or all limbo transactions. For
example, to roll back transaction 766 (as determined by -list), enter
the following:

gfix -rollback 766 database

• Perform automated two-phase recovery. Limbo transactions will be
committed or rolled back, depending on the state of the transaction. If
gfix cannot determine the state of the transaction (for example,
because failure occurred between phase 1 and phase 2), gfix prompts
you to commit, roll back, or ignore the transaction. For example,

gfix -two_phase all database

• Use -prompt so that gfix prompts you for action. This is useful when
you want to decide what to do, one transaction at a time. For
example,

gfix -list -prompt database

Shutting Down a Database
Maintaining a database often involves shutting it down. Shutting down a data-
base means that no process can attach to it except the SYSDBA user. When this
occurs, SYSDBA has exclusive access to the database. Only SYSDBA or the owner
of a database can shut it down.

When a database is shut down, the user who shut it down has exclusive access to
the database. Exclusive access to a database is required to:

• Validate the database

• Add a foreign key to a table in the database or drop a foreign key from a
table in the database.

• Add a secondary database file.

54 Installing and Running on Unix

Shutdown Options

To shut down a database, use the gfix -shut command as follows:

 gfix -shut method timeout database

Important gfix does not notify users of an impending database shutdown. The DBA is
responsible for notifying users in an appropriate way. Send mail or broad-
cast a message to all users of an impending shutdown.

Preventing Further Attachments

Use the -attach option to prevent any attachments to the database until it is shut
down.

Table 6-7: Shutdown Options

Option Description

method One of three additional gfix options:
-attach prevents any new attachments to the database. All existing data-
base attachments can complete their operations unaffected. The database
is shut down after all current attachments detach from the database.
-tran prevents any new transactions from starting but lets existing transac-
tions finish. After transaction processing is disabled, the database is shut
down.
-force shuts down the database when:
• There are no connections to the database or
• At the end of the timeout period
If the timeout period expires and there are still processes connected to the
database, gfix will roll back all current transactions and shut down the data-
base. This option forces shutdown of the database and should be used with
caution.

timeout Timeout period in seconds.
With -attach , the database will be shut down when there are no active con-
nections during the timeout period. If there are still processes connected at
the end of the timeout period, the shutdown is canceled.
With -tran , the database will be shut down when there are no active trans-
actions during the timeout period. If there are still active transactions at the
end of the timeout period, the shutdown is canceled.
With -force , the database will be shut down as soon as there are no pro-
cesses connected to the database or at the end of the timeout period.
Minimum timeout is 0 (immediate shutdown); maximum is 32,767 seconds
(about 9 hours).

database Name (and full directory path) of the database to shut down.

Using the Command-line DBA Utilities 55

For example, suppose you need to shut down the database, sales.gdb, at the end
of the day (five hours from now), but the marketing staff are using the database
to generate important sales reports. In this case, shut down sales.gdb by entering
the following command:

gfix -shut -attach 18000 sales.gdb

This command indicates a maximum five-hour wait (18,000 seconds) before
shutting down sales.gdb. Any users who are already attached to the database will
be able to finish processing their sales reports, but no further attachments will be
allowed. If all attachments are closed any time during the five hours, then the
database will be shut down immediately.

It would be inappropriate to use -tran as the method of shutdown in this case.
Generating a report could require several transactions, and if you use -tran, a
user might be disconnected from the database before completing all transactions
necessary to generate the report.

Preventing Further Transactions

Use the -tran option to prevent new transactions during the timeout period. If
any transactions are still active at the end of the timeout period, then the shut-
down is canceled.

For example, suppose you need to shut down the database, orders.gdb. This data-
base is used continuously by dozens of customer service representatives to enter
new orders and query existing orders.

To shut down orders.gdb in this case, using -attach would have no effect. The
-attach option prevents only new attachments; it does not affect current attach-
ments. If users plan to remain attached to a database for a long time, use the
-tran option to shut down the database. For example,

gfix -shut -tran 3600 orders.gdb

This command specifies to wait up to an hour wait (3,600 seconds) before shut-
down. During that time, users cannot start any new transactions. By using -tran,
you avoid waiting for users to detach. Instead, current users complete a logical
unit of work before losing database access.

Note The -tran option implies the use of -attach because attachments, like other
database activities, are started by a transaction. So when -tran prevents the
start of new transactions, -tran also prevents new attachments. As soon as
all current transactions have finished, the database is shut down.

56 Installing and Running on Unix

Forcing Shutdown

With the -tran or -attach options, the database will not be shut down if there are
active transactions or connections, respectively, at the end of the timeout period.
In some cases, it will be necessary to shut down the database anyway.

Use the -force option to force a shutdown of a database. Provide the timeout
period, in seconds, as the argument to the option. The -force option will shut
down the database:

• As soon as there are no active transactions or connections to the data-
base, or

• At the end of the timeout period, whichever comes first.

When one of these two condition occurs, all transactions will be rolled back and
all processes will be disconnected from the database.

Note As long as there are processes connected to the database, gfix will not shut
down the database until the timeout period expires. In this case, other pro-
cesses can initiate new transactions and connections to the database during
the timeout period.

For example, suppose an emergency requires the immediate shut down of
orders.gdb. To do this, use the following command:

gfix -shut -force 600 orders.gdb

This command indicates a ten-minute wait (600 seconds) before detaching all
processes from the database. Any transactions that are in progress at this time
will be rolled back. The -force option does not prevent new attachments or new
transactions.

Important Because the -force option will interfere with normal database operation,
use it only in emergencies, and be sure to provide appropriate notification
to users.

Restarting a Database
After a database is shut down, it must be restarted (brought back online) before
users can access it. If you shut down a database, use the following syntax to
restart it:

gfix -online database

where database is the name of the database that was previously shut down.

Using the Command-line DBA Utilities 57

Note The -online option can also be used to cancel a shutdown command that
was issued but has yet to take effect.

Controlling Performance of Forced Writes
By default, the InterBase Workgroup Server for Unix performs buffered writes
(also referred to as asynchronous writes). Unlike a forced write, when InterBase
performs buffered writes, it does not physically write data to disk until a pre-
specified event occurs. That event can be when a certain amount of information
has been collected for a write, an associated event has occurred, or a certain time
interval has elapsed.

If forced writes are not enabled, then even though InterBase performs an inter-
nal write, the data may not be physically written to disk, because the operating
system buffers disk writes. If there is a system failure before the data is written
to disk, then information can be lost.

Performing forced writes ensures data integrity and safety, but will slow perfor-
mance. In particular, operations which involve data modification will be slower.

You can also enable and disable forced writes with the gfix command-line DBA
utility. For more information on gfix, see Appendix C: “Command-line DBA
Utilities Reference.”

To enable or disable forced writes, use the following command:

gfix -w database

This command toggles the performance of forced writes. If forced writes are on,
it disables them. If forced writes are off, it enables them.

Using the Backup and Restore Utilities

To guard against disk crashes, power failure, or other potential data loss, data-
bases should be backed up regularly. When a database is restored from a backup
file, it will be re-created in its condition at the time of the backup. The command-
line utility for performing backup and restoration is gbak.

Using gbak provides these advantages:

• Database performance can be improved.

Backing up and restoring a database garbage-collects outdated records
and balances indexes. The process also frees disk space occupied by
deleted records and packs the remaining data, reducing database size.

58 Installing and Running on Unix

When you restore, you can change the database page size or distribute
the database among multiple files or disks.

• Backups can run concurrently with other users.

You need not shut down the database to run a backup. Any data changes
that occur after the backup begins are not recorded in the backup file.
After you create a database backup, you can include it as part of a regu-
lar system backup.

• Multi-file databases are never partially backed up.

If a database spans multiple files, gbak backs up either all files or none.

• Data can be transferred to another operating system.

You can back up a remote database across a network. If desired, you can
also make a backup in a generic format. This is called a transportable
backup and allows restoration on a non-networked machine. Making
transportable backups is highly recommended in heterogeneous envi-
ronments, whether networked or not.

General Syntax
To run gbak, specify a source, a target, and any options desired. The syntax is:

gbak [options] source target

When backing up a database, source names an existing database file, and target
names a destination backup file or device. For examples of backing up, see the
next section.

When restoring a database, source names an existing backup file or device, and
target names one or more database files to restore from the backup. For examples
of restoring, see “Performing a Simple Restoration,” in this chapter. For exam-
ples of restoring to multiple files, see “Splitting a Database into Several Files,” in
this chapter.

Some options are used only for backing up, some only for restoring, and some for
either. Specify the full option name or any shorter form down to the least signifi-
cant abbreviation. For example, you can type -create_database, -create, or -c.

Performing a Simple Backup
To perform a simple backup, use the -backup_database (-b) option. For exam-
ple, the following command creates a backup of employee.gdb called employee.gbk:

gbak -backup employee.gdb employee.gbk

Using the Command-line DBA Utilities 59

Note Database files and backup files can have any legal file name; the .gdb and
.gbk file extensions are InterBase conventions only.

The -backup option is not required; if it is omitted, gbak performs a backup by
default. For clarity however, examples in this guide use -backup.

When creating a backup file, gbak always stores the database as one file. For
example, you cannot split a large database among multiple backup files. Typical
backup files will occupy less space than the database because backup files
include only the current version of data and need less overhead for data storage.

If you specify a backup file that already exists, gbak overwrites it. To avoid over-
writing, specify a unique name for the backup file.

If a database spans multiple files, specify only the first file (the primary file) as
the source. gbak uses the header page of each file to locate additional files, so the
entire database can be backed up based on the primary file.

Backing Up Remote Databases

In a remote backup, specify the name of the machine where the database resides.
The target backup file must be on the local machine. For example, if a database
resides on a remote machine named zeus, back it up as follows:

gbak -backup zeus:/usr/db/employee.gdb employee.gbk

After creating employee.gbk on the local machine, restore it as follows:

gbak -create employee.gbk employee.gdb

After you move a database from one machine to another, two copies of the data-
base exist. If you intend to maintain only one active copy, delete one.

In the previous example, a colon (:) is used to separate the remote machine name
from the remote path name. This indicates that the network connection is via
TCP/IP.

Backing Up to a Storage Device

When backing up to a storage device (tape, for example), the tape might become
full. If this happens, gbak pauses and displays the following prompt:

Done with volume # number , " device "
Press return to reopen that file, or type a new name
followed by return to open a different file.

Name: default_device

60 Installing and Running on Unix

The actual volume number and default device name will appear. To continue
backing up to the same device, insert a new tape and press Return . To continue
backing up to another device, insert a tape in another device, type the new
device name at the prompt, and press Return .

Performing a Simple Restoration
To perform a simple restoration of a database, use the -create_database (-c)
option. For example, the following command restores the backup file, employee.-
gbk, to a database named employee.gdb:

gbak -create employee.gbk employee.gdb

Unless you specify multiple target files, gbak restores the source as a single-file
database. Typically, a restored database occupies less disk space than it did just
before being backed up, but disk space requirements could change if the on-disk
structure (ODS) version changes. For information about ODS, see “Upgrading to
a New On-disk Structure,” in this chapter.

The -create option prohibits overwriting a target file, so the previous command
fails if employee.gdb already exists. To force gbak to overwrite an existing target
database, use the -replace_database (-r) option:

gbak -r employee.gbk employee.gdb

Caution Using -replace is discouraged. When restoring to an existing file, a safer
approach is to rename the existing database file, use -create to restore the
backup file, then delete or archive the old database file as needed.

Restoring from a Storage Device

When restoring multiple tapes (or floppy disks) from a storage device, gbak
pauses and displays the following prompt when it is ready to read the next tape:

Done with volume # number , " device "
Press return to reopen that file, or type a new name
followed by return to open a different file.

Name: default_device

The actual volume number and default device name will appear. To continue
restoring from the same device, insert a new tape and press Return . To continue
restoring from another device, insert a tape in another device, type the new
device name at the prompt, and press Return .

Using the Command-line DBA Utilities 61

Monitoring the Status of Backup and Restore
Verifying what gbak is doing as it runs can be helpful. The -verify (-v) option
displays status messages on your screen. For example,

> gbak -backup -verify emp.gdb emp.gbk

gbak: readied database emp.gdb for backup
gbak: creating file emp.gbk
gbak: starting transaction
gbak: database emp.gdb has a page size of 2048 bytes.
gbak: writing global fields
gbak: writing global field ADDRESS
gbak: writing global field AMOUNT
gbak: writing global field BUDGET_SUBS

. . .

Instead of displaying messages on the screen, you can redirect them to an output
file by using the -y option. Specify a destination path name as an argument to -y.
The following command redirects the output of the previous example to the file,
messages_emp:

/interbase> gbak -b -v -y messages_emp emp.gdb emp.gbk

You can suppress status messages by following -y with suppress_output instead
of a file name. For example:

/interbas> gbak -b -v -y suppress_output emp.gdb emp.gbk

Making a Transportable Backup
To move a database to another machine that is not on the network, use the
-transportable (-t) option. The -transportable option writes data in a generic for-
mat, so you can restore to any machine that supports InterBase.

To make a transportable backup:

1. Back up the database using the -transportable (-t) option. For example, if
backing up to a file, enter:

gbak -backup -transport employee.gdb employ_t.gbk

If backing up to a removable medium, such as tape, specify the device
name instead of a backup file:

gbak -backup -transport employee.gdb /dev/rst0

62 Installing and Running on Unix

2. If you backed up to a removable medium, proceed to Step 3. If you cre-
ated a backup file, use operating-system commands to copy the file to
tape, then load the contents of the tape onto another machine.

3. On the destination machine, restore the backup file. For example, if
restoring from a file, enter:

gbak -create employ_t.gbk employee.gdb

If restoring from a removable medium, such as tape, specify the device
name instead of the backup file:

gbak -create /dev/rst0 employee.gdb

Tip If you work in a heterogeneous environment, you should make transport-
able backups regularly, even if the database is on a networked machine. If
the network connection is interrupted, a remote database will not be avail-
able unless a transportable copy is placed on local machines.

Backup Options
Backup options include:

• Backing up metadata only

• Preventing garbage collection

• Ignoring checksums

• Ignoring limbo transactions

Backing Up Metadata

When backing up a database, you can exclude its data, saving only its metadata.
You might want to do this to:

• Retain a record of the metadata before it is modified.

• Create an empty copy of the database. The copy will have the same
metadata but can be populated with different data.

Use the -meta_data (-m) option to back up metadata only. For example, back up
the metadata of database emp.gdb as follows:

gbak -backup -meta emp.gdb emp.gbk

To create a new database using the same metadata as emp.gdb, restore emp.gbk to
a new file, which will contain no data:

Using the Command-line DBA Utilities 63

gbak -create emp.gbk new_emp.gdb

You can also extract a database’s metadata using isql -a. This produces a data
definition file (a text file), whereas gbak -meta creates a backup file (containing
metadata only).

Preventing Garbage Collection

Normally during a backup, gbak performs garbage collection. Garbage collec-
tion physically erases old versions of records from disk. The -garbage_collect
(-g) option prevents garbage collection during a backup. This option is rarely
used. It might be useful if there is data corruption in old record versions and you
want to prevent InterBase from visiting those records during a backup.

Ignoring Checksums

A checksum is a page-by-page analysis of data to verify its integrity. A bad
checksum means that a database page has been randomly overwritten (for
example, due to a system crash).

Checksum errors indicate data corruption, and gbak normally prevents you
from backing up a database if bad checksums are detected. To ignore checksums
during a backup, use the -ignore option. Be sure to examine the data the next
time you restore the database.

Ignoring Limbo Transactions

Limbo transactions are usually caused by the failure of a two-phase commit.
They can also exist due to system failure or when a single-database transaction
is prepared. Before backing up a database that contains limbo transactions, you
typically use gfix to perform automated recovery in case some transactions need
to be committed.

If you know that limbo transactions can be safely rolled back, you do not need to
perform automated transaction recovery. Instead, use the -limbo (-l) option. For
example,

gbak -backup -limbo my.gdb my.gbk

When you back up using -limbo, gbak ignores all record versions created by
any limbo transaction, finds the most recently committed version of a record,
and backs up that version.

64 Installing and Running on Unix

Restoration Options
Restoration options include:

• Splitting a database into more than one file

• Making indexes inactive

• Disabling validity checking

• Changing database page size

• Restoring a database without its shadow

• Restoring data incrementally

Splitting a Database into Several Files

By default, when gbak restores a backup, it creates a single database file. You
can override this default and restore to multiple files. You can then distribute a
database among different disks, which gives you more flexibility in allocating
system resources.

To create a multi-file database from a backup file, use the following syntax:

gbak -create backup primary m secondary1 [n1 secondary2 [n2] ...]

Table 6-8: Backup Options

Argument Description

backup The .gbk file containing the database backup.

primary The primary database file. It contains the metadata and is the first file
used by InterBase. The remaining database pages are allocated to one
or more secondary files.

m Desired length of primary in database pages; minimum value is 200
pages.

secondary1 First of the additional (secondary) files in a multi-file database.

n1 Desired length of secondary1 in database pages; no minimum value. If
you specify only one secondary file, n1 is optional because the last file
will be as large as necessary to store the rest of the database, regardless
of assigned page length.

secondary2 The next secondary file in a multi-file database. You can specify as many
secondary files as needed.

n2 Desired length of secondary2 in database pages; no minimum value.
Specifying the length of the last secondary file is not required.

Using the Command-line DBA Utilities 65

For example, to split database big.gdb into multiple files, first back it up:

gbak -verify -backup big.gdb big.gbk

Then restore the backup file into multiple database files:

gbak -verify -create big.gbk big0.gdb 1000 /x/big1.gdb 500 /y/big2.gdb

The length of the primary file, big0.gdb, is specified as 1,000 pages. If a value less
than 200 is given, InterBase automatically increases it to 200 pages.

Note In the example, directories /x and /y represent different disks on the
machine. It is good practice to store secondary files on separate disks,
because their purpose is to let databases grow beyond the limits of a single
disk. You must also ensure that all files in a database can be accessed
directly by whatever program you run.

Making Indexes Inactive

Normally, gbak rebuilds indexes when a database is restored. If the database
contained duplicate values in a unique index when it was backed up, gbak will
fail when you attempt to restore the database.

To override this, use the -inactive (-i) option when you restore. This makes
indexes inactive and disables rebuilding. For example,

gbak -create -inactive employee.gbk employee.gdb

Duplicate values can be introduced into a database if indexes were temporarily
made inactive (for example, to allow insertion of many records or to rebalance
an index).

If gbak fails because of duplicate values, restore the database using -inactive, fix
the duplicate values, and activate indexes using the SQL statements CREATE
INDEX or ALTER INDEX. A unique index cannot be activated using the ALTER
INDEX statement; a unique index must be dropped and then created again. For
more information on activating indexes, see the Language Reference.

Note The -inactive option is also useful for bringing the database online more
quickly. Data access will be slower until the indexes are rebuilt, but at least
the database is available. After the database is restored, users can access
the database while you reactivate the indexes.

Disabling Validity Checking

If you redefine validity constraints in a database where data is already entered,
your data may no longer satisfy the validity constraints. You might not discover

66 Installing and Running on Unix

this until you try to restore the database, at which time gbak generates an
invalid data error.

Caution Always make a copy of metadata before redefining it (for example, by
extracting it using isql).

To restore a database that contains invalid data, use the -no_validity (-no)
option:

gbak -create -no employee.gbk employee.gdb

The -no_validity option deletes validity constraints from the metadata. After the
database is restored, change the data to make it valid according to the new integ-
rity constraints. Then add back the constraints that were deleted.

The -no_validity option is also useful if you plan to redefine the validity condi-
tions after restoring the database. If you do so, thoroughly test the data after
redefining any validity constraints.

Changing the Database Page Size

InterBase supports database page sizes of 1024, 2048, 4096, and 8192 bytes. The
default is 1024 bytes. Use the -page_size (-p) option to change the page size.

Changing the page size can improve performance for the following reasons:

• Storing and retrieving BLOB data is most efficient when the entire BLOB
fits on a single database page. If an application stores BLOB data exceed-
ing 1K, using a larger page size reduces the time for accessing the BLOB.

• InterBase performs better if rows do not span pages. If a database con-
tains long rows of data, consider increasing the page size.

• If a database has a large index, increasing the database page size reduces
the number of levels in the index hierarchy. Indexes work faster if their
depth is kept to a minimum. Consider increasing the page size if index
depth is greater than 2 on any frequently used index.

• If most transactions involve only a few rows of data, a smaller page size
may be appropriate, because less data needs to be passed back and forth
and less memory is used by the disk cache.

To change the page size of a database, back up the database as you normally
would. Then restore the database, specifying -page_size and a new page size (in
bytes). The following example changes the page size of emp.gdB to 2048 bytes:

gbak -backup emp.gdb emp.gbk
gbak -create -page 2048 emp.gbk emp_new.gdb

Using the Command-line DBA Utilities 67

Restoring a Database Without Its Shadow

Use the -kill option to restore a database without restoring its shadow. You
might want to do this to restore a database created on a platform that does not
support shadowing. When a database is restored using -kill, the definition of its
shadow is deleted in the restored database.

Restoring Data Incrementally

Normally, gbak restores all metadata before restoring any data. If you specify
the -one_at_a_time (-o) option, gbak restores the metadata and data for each
table, committing one table at a time. The -o option is useful when you are hav-
ing trouble restoring a backup file (for example, if the data is corrupt or invalid
according to integrity constraints).

If you have a problem backup file, restoring the database one table at a time lets
you recover some of the data intact. You can restore only the tables that precede
the bad data; gbak fails the moment it encounters bad data.

Upgrading to a New On-disk Structure
New major releases of InterBase often contain changes to the on-disk structure
(ODS). If the ODS has changed, and you want to take advantage of any new
InterBase features, upgrade your databases to the new ODS.

To upgrade existing databases to a new ODS, perform the following steps:

1. Before installing the new version of InterBase, back up your databases
using the old version of gbak. For confirmation, display the gbak ver-
sion and ODS version by supplying the -z option. For example, if emp.gdb
is a database created with InterBase 3.3, back it up as follows:

gbak -z -verify -backup emp.gdb v33_emp.gbk

2. After the new version of InterBase is installed, use the new gbak to
restore the backup files you created. As before, use -z to confirm the gbak
and ODS versions. For example, after creating v33_emp.gbk, restore it as
follows:

gbak -z -v -c v33_emp.gbk v4_emp.gdb

68 Installing and Running on Unix

Shadowing a Database 69

CHAPTER 7

7Shadowing a Database

InterBase lets you recover a database in case of disk failure, network failure, or
accidental deletion of the database. The recovery method is called disk shadow-
ing, or sometimes just shadowing. This chapter describes how to set up and use
shadowing.

Overview of Shadowing

This section describes the various tasks involved in shadowing, as well as the
advantages and limitations of shadowing.

Tasks for Shadowing
The main tasks in setting up and maintaining shadowing are as follows:

• Creating a shadow.

Shadowing begins with the creation of a shadow. A shadow is an identi-
cal, physical copy of a database. When a shadow is defined for a data-
base, changes to the database are written simultaneously to its shadow.
In this way, the shadow always reflects the current state of the database.
For information about the different ways to define a shadow, see “Creat-
ing a Shadow,” in this chapter.

• Activating a shadow.

If something happens to make a database unavailable, the shadow can
be activated. Activating a shadow means it “takes over” for the database;
the shadow becomes accessible to users as the main database. Activating
a shadow happens either automatically or through the intervention of a
DBA, depending on how the shadow was defined. For more information
about activating a shadow, see “Activating a Shadow,” in this chapter.

70 Installing and Running on Unix

• Deleting a shadow.

If shadowing is no longer desired, it can be stopped by deleting the
shadow. For more information about deleting a shadow, see “Dropping a
Shadow,” in this chapter.

• Adding files to a shadow.

A shadow can consist of more than one file. As shadows grow in size,
files can be added to accommodate the increased space requirements. For
more information about adding shadow files, see “Adding a Shadow
File,” in this chapter.

Advantages of Shadowing
Shadowing offers several advantages:

• Recovery is quick. Activating a shadow makes it available immediately.

• Creating a shadow does not require exclusive access to the database.

• Shadow files use the same amount of disk space as the database. Log
files, on the other hand, can grow well beyond the size of the database.

• You can control the allocation of disk space. A shadow can span multiple
files on multiple disks.

• Shadowing does not use a separate process. The database process han-
dles writing to the shadow.

• Shadowing can run behind the scenes and needs little or no mainte-
nance.

Limitations of Shadowing
Shadowing has the following limitations:

• Shadowing is useful only for recovery from hardware failures or acci-
dental deletion of the database. User errors or software failures that cor-
rupt the database are duplicated in the shadow.

• Recovery to a specific point in time is not possible. When a shadow is
activated, it takes over as a duplicate of the database. Shadowing is an
“all or nothing” recovery method.

• Shadowing can occur only to disk. Shadowing to tape or other media is
unsupported.

Shadowing a Database 71

Creating a Shadow

A shadow is created with the CREATE SHADOW statement in SQL. Because
this does not require exclusive access, it can be done without affecting users. For
detailed information about CREATE SHADOW, see the Language Reference.

Before creating a shadow, consider the following topics:

• The location of the shadow

A shadow should be created on a different disk from where the main
database resides. Because shadowing is intended as a recovery mecha-
nism in case of disk failure, maintaining a database and its shadow on
the same disk defeats the purpose of shadowing. In addition, it is advis-
able for a shadow to reside on a different node from the database.

• Distributing the shadow

A shadow can be created as a single disk file called a shadow file or as
multiple files called a shadow set. To improve space allocation and disk
I/O, each file in a shadow set can be placed on a different disk.

• User access to the database

If a shadow becomes unavailable, InterBase can either deny user access
to the database until shadowing is resumed, or allow access even though
database changes are not being shadowed. Depending on which data-
base behavior is desired, the DBA creates a shadow either in auto mode
or in manual mode. For more information about these modes, see “Creat-
ing a Shadow in Auto Mode or Manual Mode,” in this chapter.

• Automatic shadow creation

To ensure that a new shadow is automatically created, create a condi-
tional shadow. For more information, see “Creating a Conditional
Shadow,” in this chapter.

The next sections describe how to create shadows with various options:

• Single-file or multi-file shadows

• Auto or manual shadows

• Conditional shadows

These choices are not mutually exclusive. For example, you can create a single-
file, conditional shadow in manual mode.

72 Installing and Running on Unix

Creating a Single-file Shadow
To create a single-file shadow for database employee.gdb, enter:

SQL> CREATE SHADOW 1 "/usr/dave/employee.shd";

The name of the shadow file is employee.shd, and it is identified by the number 1.
Verify that the shadow has been created by using the isql command SHOW
DATABASE:

SQL> SHOW DATABASE;
Database: employee.gdb
 Shadow 1: "/usr/interbase/employee.shd" auto
PAGE_SIZE 1024
Number of DB pages allocated = 392
Sweep interval = 20000

The page size of the shadow is the same as that of the database.

Creating a Multi-file Shadow
If the size of a database exceeds the space available on one disk, create a multi-
file shadow and spread the files over several disks. To create a multi-file shadow,
specify the name and size of each file in the shadow set. For example,

SQL> CREATE SHADOW 1 "employee.shd" LENGTH 1000
CON> FILE "emp1.shd" LENGTH 2000
CON> FILE "emp2.shd" LENGTH 2000;

The previous example creates a shadow set consisting of three files. The primary
file, employee.shd, is 1,000 database pages in length. The secondary files, identi-
fied by the FILE keyword, are each 2,000 database pages long.

Instead of specifying the page length of secondary files, you can specify their
starting page. The previous example could be entered as follows:

SQL> CREATE SHADOW 1 "employee.shd" LENGTH 1000
CON> FILE "emp1.shd" STARTING AT 1000
CON> FILE "emp2.shd" STARTING AT 3000;

In either case, you can use SHOW DATABASE to verify the file names, page
lengths, and starting pages for the shadow just created:

SQL> SHOW DATABASE;
Database: employee.gdb
 Shadow 1: "/usr/interbase/employee.shd" auto length 1000
 file /usr/interbase/emp1.shd length 2000 starting 1000
 file /usr/interbase/emp2.shd length 2000 starting 3000
PAGE_SIZE 1024

Shadowing a Database 73

Number of DB pages allocated = 392
Sweep interval = 20000

Note The page length you allocate for secondary shadow files need not corre-
spond to the page length of the database’s secondary files. As the database
grows and its first shadow file becomes full, updates to the database auto-
matically overflow into the next shadow file.

Creating a Shadow in Auto Mode or Manual Mode
A shadow can become unavailable for the same reasons a database becomes
unavailable (disk failure, network failure, or accidental deletion). If a shadow
becomes unavailable, and it was created in auto mode, database operations con-
tinue automatically without shadowing. If a shadow becomes unavailable, and
it was created in manual mode, further access to the database is denied until the
DBA intervenes. The benefits of auto mode and manual mode are compared in
the following table:

Auto Mode

The AUTO keyword directs the CREATE SHADOW statement to create a
shadow in auto mode:

SQL> CREATE SHADOW 1 AUTO "employee.shd";

Auto mode is the default, so omitting the AUTO keyword achieves the same
result.

In auto mode, database operation is uninterrupted even though there is no
shadow. To resume shadowing, it may be necessary to create a new shadow. If
the original shadow was created as a conditional shadow, a new shadow is auto-
matically created. For more information about conditional shadows, see “Creat-
ing a Conditional Shadow,” in this chapter.

Table 7-1: Auto vs. Manual Shadows

Mode Advantage Disadvantage

Auto Database operation is uninterrupted. Creates a temporary period when the
database is not shadowed.
The DBA might be unaware that the
database is operating without a
shadow.

Manual Prevents the database from running
unintentionally without a shadow.

Database operation is halted until the
problem is fixed.
Needs intervention of the DBA.

74 Installing and Running on Unix

Manual Mode

The MANUAL keyword directs the CREATE SHADOW statement to create a
shadow in manual mode:

SQL> CREATE SHADOW 1 MANUAL "employee.shd";

Manual mode is useful when continuous shadowing is more important than
continuous operation of the database. When a manual-mode shadow becomes
unavailable, further attachments to the database are prevented. To allow data-
base attachments again, enter the following command:

gfix -kill database

This command deletes metadata references to the unavailable shadow corre-
sponding to database. After deleting the references, a new shadow can be created
if shadowing needs to resume.

Creating a Conditional Shadow
A shadow can be defined so that if it replaces a database, a new shadow will be
automatically created, allowing shadowing to continue uninterrupted. A
shadow defined with this behavior is called a conditional shadow.

To create a conditional shadow, specify the CONDITIONAL keyword with the
CREATE SHADOW statement. For example,

SQL> CREATE SHADOW 3 CONDITIONAL "atlas.shd";

Creating a conditional file directs InterBase to automatically create a new
shadow. This happens in either of two cases:

• The database or one of its shadow files becomes unavailable.

• The shadow takes over for the database due to hardware failure.

Activating a Shadow

When a database becomes unavailable, database operations are resumed by acti-
vating the shadow. To do so, use gfix with the -activate (or -a) option.

Important Before activating a shadow, check that the main database is unavailable. If
a shadow is activated while the main database is available, the shadow can
be corrupted by existing attachments to the main database.

Shadowing a Database 75

To activate a shadow, specify the path name of its primary file. For example, if
database employee.gdb has a shadow named employee.shd, enter:

gfix -a employee.shd

After a shadow is activated, you might want to change its name to the name of
your original database. Then, create a new shadow if shadowing needs to con-
tinue and if another disk drive is available.

Dropping a Shadow

To stop shadowing, use the shadow number as an argument to the DROP
SHADOW statement. For example,

SQL> DROP SHADOW 1

If you need to look up the shadow number, use the isql command SHOW
DATABASE.

Caution DROP SHADOW deletes shadow references from a database’s metadata,
as well as the physical files on disk.

Adding a Shadow File

If a database is expected to increase in size, consider adding files to its shadow.
To add a shadow file, first use DROP SHADOW to delete the existing shadow,
then use CREATE SHADOW to create a multi-file shadow.

The page length you allocate for secondary shadow files need not correspond to
the page length of the database’s secondary files. As the database grows and its
first shadow file becomes full, updates to the database automatically overflow
into the next shadow file.

76 Installing and Running on Unix

Error Messages 77

Appendix A

AError Messages

This appendix presents a list of error messages generated by the InterBase utili-
ties for database administration. Along with the text of each error message is a
suggested action to correct the problem.

The list of error messages is organized by utility:

• Backup and Restore (gbak)

• Database Maintenance (gfix)

• Security (gsec)

Error Messages for Backup and Restore

Table A-1: Error Messages for Backup and Restore

Error Message Causes and Suggested Actions to Take

Array dimension for column <string> is
invalid

Fix the array definition before backing up.

Bad attribute for RDB$CHARACTER_SETS An incompatible character set is in use.

Bad attribute for RDB$COLLATIONS Fix the attribute in the named system table.

Bad attribute for table constraint Check integrity constraints; if restoring, consider using the
-no_validity option to delete validity constraints.

Blocking factor parameter missing Supply a numeric argument for the -factor option.

Cannot commit files Database may contain corruption, or metadata may violate
integrity constraints. Try restoring tables using the
-one_at_a_time option, or delete validity constraints using
the -no_validity option.

Cannot commit index <string> Data may conflict with defined indexes. Try restoring using
the -inactive option to prevent rebuilding indexes.

Cannot find column for BLOB

Cannot find table <string>

78 Installing and Running on Unix

Cannot open backup file <string> Correct the file name you supplied and try again.

Cannot open status and error output file
<string>

Messages are being redirected to invalid file name. Check
format of file or access permissions on the directory of out-
put file.

Commit failed on table <string> Data corruption or violation of integrity constraint in the
specified table. Check metadata or restore “one table at a
time.”

Conflicting switches for backup/restore A backup-only option and restore-only option were used in
the same operation. Fix the command and re-execute.

Could not open file name <string> Fix the file name and re-execute command.

Could not read from file <string> Fix the file name and re-execute command.

Could not write to file <string> Fix the file name and re-execute command.

Data type n not understood An illegal data type is being specified.

Database format n is too old to restore to The gbak version used is incompatible with the InterBase
version of the database. It may be necessary to back up the
database using the -expand or -old options before it can be
restored.

Database <string> already exists. To replace
it, use the -r switch

You used -create in restoring a back up file, but the target
database already exists. Either rename the target database
or use -replace .

Could not drop database <string> (database
might be in use).

You used -replace in restoring a file to an existing database,
but the database is in use. Either rename the target data-
base or wait until it is not in use.

Device type not specified The -device option (Apollo only) must be followed by ct or
mt .

Device type <string> not known The -device option (Apollo only) was used incorrectly.

Do not recognize record type n

Do not recognize <string> attribute n -- con-
tinuing

Do not understand BLOB INFO item n

Error accessing BLOB column <string> --
continuing

ERROR: Backup incomplete The backup cannot be written to the target device or file
system. Either there is insufficient space, a hardware write
problem, or data corruption.

Error committing metadata for table <string> A table within the database may be corrupt. If restoring a
database, try using -one_at_a_time to isolate the table.

Table A-1: Error Messages for Backup and Restore (Continued)

Error Message Causes and Suggested Actions to Take

Error Messages 79

Exiting before completion due to errors This message accompanies other error messages and indi-
cates that back up or restore could not execute. Check
other error messages for the cause.

Expected array dimension n but instead
found m

The problem array may need to be redefined.

Expected array version number n but
instead found m

The problem array may need to be redefined.

Expected backup database <string>, found
<string>

Check the name of the backup file being restored.

Expected backup description record

Expected backup start time <string>, found
<string>

Expected backup version 1, 2, or 3. Found n

Expected blocking factor, encountered
<string>

The -factor option requires a numeric argument.

Expected data attribute

Expected database description record

Expected number of bytes to be skipped,
encountered <string>

Expected page size, encountered <string> The -page_size option requires a numeric argument.

Expected record length

Expected volume number n, found volume n When backing up or restoring with multiple tapes, be sure to
specify the correct volume number.

Expected XDR record length

Failed in put_blr_gen_id

Failed in store_blr_gen_id

Failed to create database <string> The target database specified is invalid. It may already
exist.

column <string> used in index <string>
seems to have vanished

An index references a non-existent column. Check either
the index definition or column definition.

Found unknown switch An unrecognized gbak option was specified.

Index <string> omitted because n of the
expected m keys were found

Input and output have the same name. Dis-
allowed.

A backup file and database must have unique names. Cor-
rect the names and try again.

Table A-1: Error Messages for Backup and Restore (Continued)

Error Message Causes and Suggested Actions to Take

80 Installing and Running on Unix

Length given for initial file (n) is less than
minimum (m)

In restoring a database into multiple files, the primary file
was not allocated sufficient space. InterBase automatically
increases the page length to the minimum value. No action
necessary.

Missing parameter for the number of bytes
to be skipped

Multiple sources or destinations specified Only one device name can be specified as a source or tar-
get.

No table name for data The database contains data that is unassigned to a table.
Use gfix to validate or mend the database.

Page size is allowed only on restore or cre-
ate

The -page_size option was used during a back up instead
of a restore.

Page size parameter missing The -page_size option requires a numeric argument.

Page size specified (n bytes) rounded up to
m bytes

Invalid page sizes are rounded up to 1024, 2048, 4096, or
8192, whichever is closest.

Page size specified (n) greater than limit
(8192 bytes)

Specify a page size of 1024, 2048, 4096, or 8192.

Password parameter missing The back up or restore is accessing a remote machine. Use
-password and specify a password.

Protection is not there yet

Redirect location for output is not specified You specified an option reserved for future use by Inter-
Base.

REPLACE specified, but the first file
<string> is a database

Check that the file name following the -replace option is a
backup file rather than a database.

Requires both input and output file names Specify both a source and target when backing up or restor-
ing.

RESTORE: decompression length error Possible incompatibility in the gbak version used for back-
ing up and the gbak version used for restoring. Check
whether -expand should be specified during back up.

Restore failed for record in table <string> Possible data corruption in the named table.

Skipped n bytes after reading a bad attribute
n

Skipped n bytes looking for next valid
attribute, encountered attribute m

Trigger <string> is invalid

Table A-1: Error Messages for Backup and Restore (Continued)

Error Message Causes and Suggested Actions to Take

Error Messages 81

Error Messages for Database Maintenance

Unexpected end of file on backup file Restoration of the backup file failed. The backup procedure
that created the backup file may have terminated abnor-
mally. If possible, create a new backup file and use it to
restore the database.

Unexpected I/O error while <string> backup
file

A disk error or other hardware error may have occurred dur-
ing a backup or restore.

Unknown switch <string> An unrecognized gbak option was specified.

User name parameter missing The backup or restore is accessing a remote machine. Sup-
ply a user name with the -user option.

Validation error on column in table <string> The database cannot be restored because it contains data
that violates integrity constraints. It may be necessary to
delete constraints from the metadata by specifying
-no_validity during restore.

Warning -- record could not be restored Possible corruption of the named data.

Wrong length record, expected n encoun-
tered n

Table A-2: Messages for Database Maintenance

Error Message Causes and Suggested Actions to Take

Invalid switch A command-line option was not recognized.

More limbo transactions than fit. Try again. The database contains more limbo transactions than gfix
can print in a single session. Commit or roll back some of
the limbo transactions, then try again.

Please retry, specifying <string> Both a file name and at least one option must be specified.

Database file name <string> already given A command-line option was interpreted as a database file
because the option was not preceded by a hyphen (-) or
slash (/). Correct the syntax.

Incompatible switch combinations You specified at least two options that do not work together,
or you specified an option that has no meaning without
another option (for example, -full by itself).

Numeric value required The -housekeeping option requires a single, non-negative
argument specifying number of transactions per sweep.

Transaction number or “all” required You specified -commit , -rollback , or -two_phase without
supplying the required argument.

Table A-1: Error Messages for Backup and Restore (Continued)

Error Message Causes and Suggested Actions to Take

82 Installing and Running on Unix

Error Messages for Security Utility

Table A-3: Error Messages for Security Utility

Error Message Causes and Suggested Actions to Take

Add record error The add command either specified an existing user, used
invalid syntax, or was issued without appropriate privilege to
run gsec . Change the user name or use modify on the
existing user.

<string> already specified During an add or modify , you specified data for the same
column more than once. Retype the command.

Ambiguous switch specified A command did not uniquely specify a valid operation.

Delete record error The delete command was not allowed. Check that you have
appropriate privilege to use gsec .

Error in switch specifications This message accompanies other error messages and indi-
cates that invalid syntax was used. Check other error mes-
sages for the cause.

Find/delete record error Either the delete command could not find a specified user,
or you do not have appropriate privilege to use gsec .

Find/display record error Either the display command could not find a specified user,
or you do not have appropriate privilege to use gsec .

Find/modify record error Either the modify command could not find a specified user,
or you do not have appropriate privilege to use gsec .

Incompatible switches specified Correct the syntax and try again.

Invalid parameter, no switch defined You specified a value without a preceding argument.

Invalid switch specified You specified an unrecognized option. Fix it and try again.

Modify record error Invalid syntax for modify command. Fix it and try again.
Also check that you have appropriate privilege to run gsec .

No user name specified Specify a user name after add , modify , or delete .

Record not found for user: string An entry for the specified user could not be found. Use dis-
play to list all users, then try again.

Unable to open database The isc4.gdb security database does not exist or cannot be
located by the operating system.

isql Command Reference 83

Appendix B

Bisql Command Reference

This chapter describes the syntax and usage for commands available only in
InterBase isql (interactive SQL). For a description of the standard SQL com-
mands available in isql, see the Language Reference.

Command-line isql supports the following special commands:

BLOBDUMP

Places the contents of a BLOB column in a named file for reading or editing.

Syntax BLOBDUMPblob_id filename ;

Table B-1: isql Commands

BLOBDUMP SET BLOBDISPLAY SHELL SHOW INDEX

EDIT SET COUNT SHOW CHECK SHOW PROCEDURES

EXIT SET ECHO SHOW DATABASE SHOW SYSTEM

HELP SET LIST SHOW DOMAINS SHOW TABLES

INPUT SET NAMES SHOW EXCEPTIONS SHOW TRIGGERS

OUTPUT SET PLAN SHOW FILTERS SHOW VERSION

QUIT SET STATS SHOW FUNCTIONS SHOW VIEWS

SET SET TERM SHOW GENERATORS

SET AUTODDL SET TIME SHOW GRANT

Argument Description

blob_id System-assigned hexadecimal identifier, made up of two hexadecimal
numbers separated by a colon (:). The first number is the ID of the
table containing the BLOB column. The second number is a sequen-
tial number identifying a particular instance of BLOB data.

filename Name of the file into which to place BLOB contents.

84 Installing and Running on Unix

Description BLOBDUMP stores BLOB data identified by blob_id in the file specified by
filename. Because binary files cannot be displayed, BLOBDUMP is useful for
viewing or editing binary data. BLOBDUMP is also useful for saving blocks of
text (BLOB data) to a file.

To determine the blob_id to supply in the BLOBDUMP statement, issue any
SELECT statement that selects a column of BLOB data. When the table’s col-
umns appear, any BLOB columns contain hexadecimal BLOB IDs. The display
of BLOB output can be controlled using SET BLOBDISPLAY.

Example Suppose that BLOB ID 58:c59 refers to graphical data in JPEG format. To place
this BLOB data into a graphics file named picture.jpg, enter:

BLOBDUMP 58:c59 picture.jpg;

See Also SET BLOBDISPLAY

EDIT

Allows editing and re-execution of isql commands.

Syntax EDIT [filename];

Description The EDIT command enables you to edit commands in:

• a source file and then execute the commands upon exiting the editor.

• the current isql session, then re-execute them.

EDIT calls the text editor specified by the EDITOR environment variable. If this
environment variable is not defined, then it uses the Unix text editor.

If given filename as an argument, EDIT places the contents of filename in an edit
buffer. If no file name is given, EDIT places the commands in the current isql
session in the edit buffer.

After exiting the editor, isql automatically executes the commands in the edit
buffer.

Examples To edit the commands in a file called start.sql and execute the commands when
done, enter:

Argument Description

filename Name of the file to edit.

isql Command Reference 85

EDIT start.sql;

In the next example, a user wants to enter the following statement interactively:

SELECT DISTINCT JOB_CODE, JOB_TITLE FROM JOB;

Instead, the user mistakenly omits the DISTINCT keyword, so the statement is
edited and re-executed:

SELECT JOB_CODE, JOB_TITLE FROM JOB;
EDIT;

See Also INPUT, OUTPUT, SHELL

EXIT

Commits the current transaction, closes the database, and ends the isql
session.

Syntax EXIT;

Description Both EXIT and QUIT close the database and end an isql session. EXIT commits
any changes made since the last COMMIT or ROLLBACK, whereas QUIT rolls
them back.

EXIT is equivalent to the end-of-file character, which differs across systems.

Caution EXIT commits changes without prompting for confirmation. Before using
EXIT, be sure that no transactions need to be rolled back.

See Also QUIT, SET AUTODDL

HELP

Displays a list of isql commands and short descriptions.

Syntax HELP;

Description HELP lists the built-in isql commands, with a brief description of each.

Example To save the HELP screen to a file named isqlhelp.lst, enter:

OUTPUT isqlhelp.lst;
HELP;

86 Installing and Running on Unix

OUTPUT;

After issuing the HELP command, use OUTPUT to redirect output back to the
screen.

INPUT

Read and execute commands from the named file.

Syntax INPUT filename ;

Description INPUT reads commands from filename and executes them as a block. In this way,
INPUT enables execution of commands without prompting. filename must con-
tain SQL statements or isql commands.

Input files can contain their own INPUT commands. Nesting INPUT commands
enables isql to process multiple files. When isql reaches the end of one file,
processing returns to the previous file until all commands are executed.

The INPUT command is intended for non-interactive use. Therefore, the EDIT
command does not work in input files.

Using INPUT filename from within an isql session has the same effect as using
-input filename from the command line.

Unless output is redirected using OUTPUT, any results returned by executing
filename appear on the screen.

Examples For this example, suppose that file add.lst contains the following INSERT
statement:

INSERT INTO COUNTRY (COUNTRY, CURRENCY)
VALUES ("Mexico", "Peso");

To execute the command stored in add.lst, enter:

INPUT add.lst;

For the next example, suppose that file table.lst contains the following SHOW
commands:

SHOW TABLE COUNTRY;
SHOW TABLE CUSTOMER;

Argument Description

filename Name of the file containing SQL statements, isql commands, or both.

isql Command Reference 87

SHOW TABLE DEPARTMENT;
SHOW TABLE EMPLOYEE;
SHOW TABLE EMPLOYEE_PROJECT;
SHOW TABLE JOB;

To execute these commands, enter:

INPUT table.lst;

To record each command and store its results in a file named table.out, enter:

SET ECHO ON;
OUTPUT table.out;
INPUT table.lst;
OUTPUT;

See Also OUTPUT

OUTPUT

Redirects output to the named file or to standard output.

Syntax OUTPUT [filename];

Description OUTPUT determines where the results of isql commands are displayed. By
default, results are displayed on standard output (usually a screen). To store
results in a file, supply a filename argument. To return to the default mode, again
displaying results on the standard output, use OUTPUT without specifying a
file name.

By default, only data is redirected. Interactive commands are not redirected
unless SET ECHO is in effect. If SET ECHO is in effect, isql displays each com-
mand before it is executed. In this way, isql captures both the results and the
command that produced them. SET ECHO is useful for displaying the text of a
query immediately before the results.

Note Error messages cannot be redirected to an output file.

Using OUTPUT filename from within an isql session has the same effect as using
-output filename from the command line.

Argument Description

filename Name of the file in which to save output. If no file name is given,
results appear on the standard output.

88 Installing and Running on Unix

Example The following example stores the results of one SELECT statement in the file,
sales.out. Normal output processing resumes after the SELECT statement.

 OUTPUT sales.out;
 SELECT * FROM SALES;
 OUTPUT;

See Also INPUT, SET ECHO

QUIT

Rolls back the current transaction, closes the database, and ends the isql
session.

Syntax QUIT;

Description Both EXIT and QUIT close the database and end an isql session. QUIT rolls back
any changes made since the last COMMIT or ROLLBACK, whereas EXIT com-
mits the changes.

Caution QUIT rolls back uncommitted changes without prompting for confirma-
tion. Before using QUIT, be sure that any changes that need to be commit-
ted are committed. For example, if SET AUTODDL is off, DDL statements
must be committed explicitly.

See Also EXIT, SET AUTODDL, ROLLBACK

SET

Lists the status of the features that control an isql session.

Syntax SET;

Description isql provides several SET commands for specifying how data is displayed or
how other commands are processed.

The SET command, by itself, verifies which features are currently set. Some SET
commands turn a feature on or off. Other SET commands assign a value.

Many isql SET commands have corresponding SQL statements that provide
similar or identical functionality. In addition, some of the isql features controlled
by SET commands can also be controlled using isql command-line options.

isql Command Reference 89

The following table lists supported SET commands:

Example To display the isql features currently in effect, enter:

SET;
Print statistics: OFF
Echo commands: OFF
List format: OFF
Row count: OFF
Autocommit DDL: OFF
Access plan: OFF
Display BLOB type: NONE
Terminator: ;

The output shows that isql will not echo commands, will display BLOB data if
they are of subtype 1, will automatically commit DDL statements, and will rec-
ognize a semicolon (;) as the statement termination character.

See Also SET AUTODDL, SET BLOBDISPLAY, SET COUNT, SET ECHO, SET LIST,
SET NAMES, SET PLAN, SET STATS, SET TERMINATOR, SET TIME

SET AUTODDL

Determines whether DDL statements are committed automatically after being
executed or committed only after an explicit COMMIT.

Syntax SET AUTODDL [ON | OFF];

Table B-2: SET Commands

SET SET AUTODDL

SET BLOBDISPLAY SET COUNT

SET ECHO SET LIST

SET NAMES SET PLAN

SET STATS SET TERMINATOR

SET TIME

Argument Description

ON Turns on automatic commit of DDL (default).

OFF Turns off automatic commit of DDL.

90 Installing and Running on Unix

Description SET AUTODDL is used to turn on or off the automatic commit of DDL state-
ments. By default, DDL statements are automatically committed after they are
executed, in a separate transaction. This is the recommended behavior.

If the OFF keyword is specified, autocommit of DDL is turned off. Then, DDL
statements can only be committed explicitly through a user’s transaction. This
may be useful for database prototyping, because uncommitted changes are eas-
ily undone by rolling them back.

Using SET AUTODDL OFF from within an isql session has the same effect as
using -noauto from the command line. Using SET AUTODDL ON restores the
default behavior.

Note The ON and OFF keywords are optional. If they are omitted, the command
toggles automatic commit from ON to OFF or OFF to ON.

Examples The following example turns AUTODDL on, showing status before and after:

SET;
No echo
set blob 1
Terminator: ;

SET AUTO ON;

SET;
No echo
set blob 1
autocommit DDL
Terminator: ;

See Also EXIT, QUIT, SET

SET BLOBDISPLAY

Determines whether to suppress the display of data associated with a BLOB ID.

Syntax SET BLOBDISPLAY [n | ALL | OFF];

Argument Description

n Integer specifying the BLOB subtype to display. Use 0 for BLOB data
of unknown subtype; use 1 (default) for BLOB data of text subtype.

ALL Display BLOB data of all subtypes.

OFF Turn off display of BLOB data of all subtypes.

isql Command Reference 91

Description SET BLOBDISPLAY has the following uses:

• To display BLOB data of a particular subtype, use SET BLOBDISPLAY n.
By default, isql displays BLOB data of text subtype (n = 1).

• To display BLOB data of all subtypes, use SET BLOBDISPLAY ALL.

• To avoid displaying BLOB data, use SET BLOBDISPLAY OFF. Omitting
the OFF keyword has the same effect. Turn BLOB display off to make
output easier to read.

In any column containing BLOB data, the actual data does not appear in the col-
umn. Instead, the column displays a BLOB ID that represents the data. If SET
BLOBDISPLAY is on, data associated with a BLOB ID appears under the row
containing the BLOB ID. If SET BLOBDISPLAY is off, the BLOB ID still appears
even though its associated data does not.

SET BLOBDISPLAY has a shorthand equivalent, SET BLOB.

Examples The following examples show output from the same SELECT statement. Each
example uses a different SET BLOB command to affect how output appears. The
first example turns off BLOB display. The output shows only the BLOB ID.

SET BLOB OFF;
SELECT PROJ_NAME, PROJ_DESC FROM PROJECT;

PROJ_NAME PROJ_DESC
==================== =================
Video Database 24:6
DigiPizza 24:8
AutoMap 24:a
MapBrowser port 24:c
Translator upgrade 24:3b
Marketing project 3 24:3d

The next example restores the default by setting BLOB display to subtype 1
(text). The contents of the BLOB appear below the corresponding BLOB ID.

SET;
No echo
autocommit DDL
Terminator: ;

SET BLOB 1;
SET;

No echo
set blob 1
autocommit DDL
Terminator: ;

SELECT PROJ_NAME, PROJ_DESC FROM PROJECT;

PROJ_NAME PROJ_DESC

92 Installing and Running on Unix

==================== =================
Video Database 24:6
==
PROJ_DESC:
Design a video data base management system for
controlling on-demand video distribution.

==
DigiPizza 24:8
==
PROJ_DESC:
Develop second generation digital pizza maker
with flash-bake heating element and
digital ingredient measuring system.
. . .

See Also BLOBDUMP, SET

SET COUNT

Determines whether to display a message indicating the number of rows
retrieved.

Syntax SET COUNT [ON | OFF];

Description By default, when a SELECT statement retrieves rows from a query, no message
appears to say how many rows were retrieved.

Use SET COUNT ON to change the default behavior and display the message.
To restore the default behavior, use SET COUNT OFF.

Note The ON and OFF keywords are optional. If they are omitted, the command
toggles row count from ON to OFF or OFF to ON.

Example To display the number of rows returned by any query, enter:

SET COUNT ON;
SELECT * FROM COUNTRY

WHERE CURRENCY LIKE "%FRANC%";

Argument Description

ON Turns on display of the “rows returned” message.

OFF Turns off display of the “rows returned” message (default).

isql Command Reference 93

COUNTRY CURRENCY
=============== ==========

SWITZERLAND SFRANC
FRANCE FFRANC
BELGIUM BFRANC

3 rows returned

See Also SET

SET ECHO

Determines whether commands are redisplayed before being executed.

Syntax SET ECHO [ON | OFF];

Description By default, commands are not redisplayed, or echoed, before being executed.

Use SET ECHO ON to change the default behavior and echo commands. Com-
mand echoing is useful when commands are read from an input file, because
normally you do not see commands that are executed from a file. Command
echoing also enables a command to be recorded in an output file, along with the
data retrieved.

Using SET ECHO ON from within an isql session has the same effect as using
-echo from the command line. To turn command echoing off, use SET ECHO
OFF. This restores the default behavior.

Note The ON and OFF keywords are optional. If they are omitted, the command
toggles echo from ON to OFF or OFF to ON.

Example To turn on command echoing, enter:

SET ECHO ON;

See Also INPUT, OUTPUT, SET

Argument Description

ON Turns on command echoing.

OFF Turns off command echoing (default).

94 Installing and Running on Unix

SET LIST

Determines whether output appears in tabular format or in list format.

Syntax SET LIST [ON | OFF];

Description By default, when a SELECT statement retrieves rows from a query, the output
appears in a tabular format, with data organized in rows and columns.

Use SET LIST ON to change the default behavior and display output in a list
format. In list format, data appears one value per line, with column headings
appearing as labels. List format is useful when columnar output is too wide to fit
nicely on the screen.

Note The ON and OFF keywords are optional. If they are omitted, the command
toggles list format display from ON to OFF or OFF to ON.

Example The following example shows output from a SELECT statement that appears in
list format. The salary values are in lira.

SET LIST ON;
SELECT * FROM JOB

WHERE JOB_COUNTRY = "Italy";

JOB_CODE SRep
JOB_GRADE 4
JOB_COUNTRY Italy
JOB_TITLE Sales Representative
MIN_SALARY 33600000.00
MAX_SALARY 168000000.00
JOB_REQUIREMENT <null>
LANGUAGE_REQ <null>

See Also SET

Argument Description

ON Turns on list format for display of output.

OFF Turns off list format for display of output (default).

isql Command Reference 95

SET NAMES

Specifies the active character set to use in database transactions.

Syntax SET NAMES [charset];

Description SET NAMES specifies the character set to use for subsequent database attach-
ments in isql. It enables you to override the default character set for a database.
To return to using the default character set, use SET NAMES with no argument.

Use SET NAMES before connecting to the database whose character set you
want to specify. For a complete list of the character sets recognized by InterBase,
see the Language Reference.

Choice of character set limits possible collation orders to a subset of all available
collation orders. Given a specific character set, a specific collation order can be
specified when data is selected, inserted, or updated in a column.

Example To change the active character set to ISO8859_1, enter:

 SET NAMES ISO8859_1;
 CONNECT employee.gdb;

See Also SET

SET PLAN

Determines whether to display the optimizer’s query plan.

Syntax SET PLAN [ON | OFF];

Description By default, when a SELECT statement retrieves rows from a query, isql does not
display the query plan used to retrieve the data.

Argument Description

charset Name of the active character set. Default: NONE.

Argument Description

ON Turns on display of the optimizer’s query plan.

OFF Turns off display of the optimizer’s query plan (default).

96 Installing and Running on Unix

Use SET PLAN ON to change the default behavior and display the query opti-
mizer plan. To restore the default behavior, use SET PLAN OFF.

To change the query optimizer plan, use the PLAN clause in the SELECT
statement.

Note The ON and OFF keywords are optional. If they are omitted, the command
toggles display of query plan from ON to OFF or OFF to ON.

Example The following example shows output from a SELECT statement as well as the
query optimizer plan that was used to retrieve the data:

SET PLAN ON;
SELECT JOB_COUNTRY, MIN_SALARY FROM JOB

WHERE MIN_SALARY > 50000
AND JOB_COUNTRY = "France";

PLAN (JOB INDEX (RDB$FOREIGN3,MINSALX,MAXSALX))

JOB_COUNTRY MIN_SALARY
=============== ======================
France 118200.00

See Also SET

SET STATS

Determines whether to display performance statistics after the results of a query.

Syntax SET STATS [ON | OFF];

Description By default, when a SELECT statement retrieves rows from a query, isql does not
display performance statistics after the results. Use SET STATS ON to change the
default behavior and display performance statistics. To restore the default
behavior, use SET STATS OFF.

Performance statistics include:

• Current available memory, in bytes

Argument Description

ON Turns on display of performance statistics.

OFF Turns off display of performance statistics (default).

isql Command Reference 97

• Change in available memory, in bytes (useful when adding or deleting
data)

• Maximum available memory, in bytes

• Elapsed time for the operation

• CPU time for the operation

• Number of cache buffers used

• Number of reads requested

• Number of writes requested

• Number of fetches made

Performance statistics can help determine if changes are needed in system
resources, database resources, or query optimization.

Do not confuse SET STATS with the SQL statement SET STATISTICS, which
recalculates the selectivity of an index.

Note The ON and OFF keywords are optional. If they are omitted, the command
toggles statistics display from ON to OFF or OFF to ON.

Example The following example shows output from a SELECT statement as well as the
performance statistics for the operation:

SET STATS ON;
SELECT JOB_COUNTRY, MIN_SALARY FROM JOB

WHERE MIN_SALARY > 50000
AND JOB_COUNTRY = "France";

JOB_COUNTRY MIN_SALARY
=============== ======================

France 118200.00

Current memory = 407552
Delta memory = 0
Max memory = 412672
Elapsed time= 0.49 sec
Cpu = 0.06 sec
Buffers = 75
Reads = 3
Writes = 2
Fetches = 441

See Also SHOW DATABASE

98 Installing and Running on Unix

SET TERM

Determines which character or characters signal the end of a command.

Syntax SET TERM string ;

Description By default, isql commands must be terminated by a semicolon (;). Use SET
TERM to change the terminator character.

SET TERM is typically used with CREATE PROCEDURE or CREATE TRIGGER.
Procedures and triggers are defined using procedure and trigger language in
which statements always end with a semicolon. The procedure or trigger itself
must then be terminated by a character other than a semicolon.

A text file containing CREATE PROCEDURE or CREATE TRIGGER definitions
should include one SET TERM command before the definitions and a corre-
sponding SET TERM after the definitions. The beginning SET TERM defines a
new termination character; the ending SET TERM restores the semicolon (;) as
the default.

Using SET TERM from within an isql session has the same effect as using
-terminator from the command line.

Example The following example shows a text file that uses SET TERM in creating a proce-
dure. The first SET TERM defines ## as the termination characters; the matching
SET TERM restores ; as the termination character.

SET TERM ## ;
CREATE PROCEDURE ADD_EMP_PROJ (EMP_NO SMALLINT, PROJ_ID CHAR(5))
AS
BEGIN

BEGIN
INSERT INTO employee_project (emp_no, proj_id)

VALUES (:emp_no, :proj_id);
WHEN SQLCODE -530 DO
EXCEPTION unknown_emp_id;
END
RETURN;

END ##
SET TERM ; ##

Argument Description

string Specifies a character or characters to use in terminating a statement.
Default: semicolon (;).

isql Command Reference 99

SET TIME

Determines whether to display the time portion of a DATE value.

Syntax SET TIME [ON | OFF];

Description The InterBase DATE data type includes a date portion (including day, month,
and year) and a time portion (including hours, minutes, and seconds).

By default, isql displays only the date portion of DATE values. SET TIME ON
turns on the display of time values. SET TIME OFF turns off the display of time
values.

Note The ON and OFF keywords are optional. If they are omitted, the command
toggles time display from ON to OFF or OFF to ON.

Example The following turns the time display on:

SET TIME ON;

See Also SET

SHELL

Allows execution of an operating system command or temporary access to an
operating system shell.

Syntax SHELL [<os_command>];

Description The SHELL command provides temporary access to Unix commands in an isql
session. Use SHELL to execute an operating system command without ending
the current isql session.

Argument Description

ON Turns on display of time in DATE value.

OFF Turns off display of time in DATE value (default).

Argument Description

<os_command> A Unix command. If no command is specified, isql provides interac-
tive access to the operating system.

100 Installing and Running on Unix

If <os_command> is specified, Unix executes the command and then returns to
isql when complete.

If no command is specified, a Unix prompt appears, enabling you to execute a
sequence of commands. To return to isql, type EXIT. For example, SHELL can be
used to edit an input file and run it at a later time. By contrast, if an input file is
edited using the EDIT command, the input file is executed as soon as the editing
session ends.

Using SHELL does not commit transactions before it calls the shell.

Example The following example uses SHELL to display the contents of the current
directory:

SHELL ls -l;

See Also EDIT

SHOW CHECK

Displays all CHECK constraints defined for a specified table.

Syntax SHOW CHECKtable ;

Description SHOW CHECK displays CHECK constraints for a named table in the current
database. Only user-defined metadata is displayed. To see a list of existing
tables, use SHOW TABLES.

Example The following example shows CHECK constraints defined for the table, JOB.
The SHOW TABLES command is used first to display a list of available tables.

SHOW TABLES;
COUNTRY CUSTOMER
DEPARTMENT EMPLOYEE
EMPLOYEE_PROJECT JOB
PHONE_LIST PROJECT
PROJ_DEPT_BUDGET SALARY_HISTORY
SALES

SHOW CHECK JOB;
CHECK (min_salary < max_salary)

See Also SHOW TABLES

Argument Description

table Name of an existing table in the current database.

isql Command Reference 101

SHOW DATABASE

Displays information about the current database.

Syntax SHOW DATABASE;

Description SHOW DATABASE displays the current database’s file name, page size and allo-
cation, and sweep interval.

The output of SHOW DATABASE is used to verify data definition or to adminis-
ter the database. For example, use the backup and restore utilities to change
page size or reallocate pages among multiple files, and use the database mainte-
nance utility to change the sweep interval.

SHOW DATABASE has a shorthand equivalent, SHOW DB.

Example The following example connects to a database and displays information about it:

isql
Use CONNECT or CREATE DATABASE to specify a database

CONNECT "employee.gdb";
Database: employee.gdb

SHOW DB;
Database: employee.gdb

Owner: SYSDBA
PAGE_SIZE 1024
Number of DB pages allocated = 422
Sweep interval = 20000

SHOW DOMAINS

Lists all domains or displays information about a specified domain.

Syntax SHOW {DOMAINS | DOMAIN name};

Description To see a list of existing domains, use SHOW DOMAINS without specifying a
domain name. SHOW DOMAIN name displays information about the named
domain in the current database. Output includes a domain’s data type, default
value, and any CHECK constraints defined. Only user-defined metadata is dis-
played.

Argument Description

name Name of an existing domain in the current database.

102 Installing and Running on Unix

Example The following example lists all domains and then shows the definition of
domain SALARY:

SHOW DOMAINS;
FIRSTNAME LASTNAME
PHONENUMBER COUNTRYNAME
ADDRESSLINE EMPNO
DEPTNO PROJNO
CUSTNO JOBCODE
JOBGRADE SALARY
BUDGET PRODTYPE
PONUMBER

SHOW DOMAIN SALARY;
SALARY NUMERIC(15, 2) Nullable

DEFAULT 0
CHECK (VALUE > 0)

SHOW EXCEPTIONS

Lists all exceptions or displays the text of a specified exception.

Syntax SHOW {EXCEPTIONS | EXCEPTION name};

Description SHOW EXCEPTIONS displays an alphabetical list of exceptions. SHOW
EXCEPTION name displays the text of the named exception.

Examples To list all exceptions defined for the current database, enter:

SHOW EXCEPTIONS;
Exception Name Used by, Type
================== =======================
UNKNOWN_EMP_ID

Invalid employee number or project id.
. . .

Argument Description

name Name of an existing exception in the current database.

isql Command Reference 103

SHOW FILTERS

Lists all BLOB filters or displays information about a specified filter.

Syntax SHOW {FILTERS | FILTER name};

Description To see a list of existing filters, use SHOW FILTERS. SHOW FILTER name displays
information about the named filter in the current database. Output includes
information previously defined by the DECLARE FILTER statement; namely, the
input subtype, output subtype, module (or library) name, and entry point.

Example The following lists all filters and then shows the definition of DESC_FILTER:

SHOW FILTERS;
DESC_FILTER

SHOW FILTER DESC_FILTER;
BLOB Filter: DESC_FILTER
Input subtype: 1 Output subtype -4
Filter library is: desc_filter
Entry point is: FILTERLIB

SHOW FUNCTIONS

Lists all user-defined functions (UDFs) defined in the database or displays infor-
mation about a specified UDF.

Syntax SHOW {FUNCTIONS | FUNCTION name};

Description To see a list of existing functions defined in the database, use SHOW
FUNCTIONS. SHOW FUNCTION name displays information about the named
function in the current database. Output includes information previously
defined by the DECLARE EXTERNAL FUNCTION statement: the name of the
function and function library, the name of the entry point, and the data types of
return values and input arguments.

Argument Description

name Name of an existing BLOB filter in the current database.

Argument Description

name Name of an existing UDF in the current database.

104 Installing and Running on Unix

Example The following example lists all UDFs and shows the definition of MAXNUM:

SHOW FUNCTIONS;
ABS MAXNUM
TIME UPPER_NON_C
UPPER

SHOW FUNCTION MAXNUM;
Function MAXNUM:
Function library is /usr/interbase/lib/gdsfunc.so
Entry point is fn_max
Returns BY VALUE DOUBLE PRECISION
Argument 1: DOUBLE PRECISION
Argument 2: DOUBLE PRECISION

SHOW GENERATORS

Lists all generators or displays information about a specified generator.

Syntax SHOW {GENERATORS | GENERATORname};

Description To see a list of existing generators, use SHOW GENERATORS. SHOW
GENERATOR name displays information about the named generator in the cur-
rent database. Output includes the name of the generator and its next value.

SHOW GENERATOR has a shorthand equivalent, SHOW GEN.

To create a generator, use CREATE GENERATOR. To assign a starting value, use
SET GENERATOR. To insert a generated value into a database, use GEN_ID().

Example The following example lists all generators and then shows information about
EMP_NO_GEN:

SHOW GENERATORS;
Generator EMP_NO_GEN, Next value: 146
Generator CUST_NO_GEN, Next value: 1016

SHOW GENERATOR EMP_NO_GEN;
Generator EMP_NO_GEN, Next value: 146

Argument Description

name Name of an existing generator in the current database.

isql Command Reference 105

SHOW GRANT

Displays privileges for a database object.

Syntax SHOW GRANTobject ;

Description SHOW GRANT displays the privileges defined for a specified table, view, or
procedure. Allowed privileges are DELETE, EXECUTE, INSERT, REFERENCES,
SELECT, UPDATE, or ALL. To change privileges, use the SQL statements
GRANT or REVOKE.

Before using SHOW GRANT, you can list the available database objects. Use
SHOW PROCEDURES, SHOW TABLES, and SHOW VIEWS.

Example To display GRANT privileges on the table JOB enter:

 SHOW GRANT JOB;
GRANT SELECT ON JOB TO ALL
GRANT DELETE, INSERT, SELECT, UPDATE ON JOB TO MANAGER

See Also SHOW PROCEDURES, SHOW TABLES, SHOW VIEWS

SHOW INDEX

Displays index information for a specified index, for a specified table, or for all
tables in the current database.

Syntax SHOW INDEX [index | table];

Description SHOW INDEX displays the index name, the index type (for example, UNIQUE
or DESC), and the columns on which an index is defined.

If the index argument is specified, SHOW INDEX displays information only for
that index. If table is specified, SHOW INDEX displays information for all

Argument Description

object Name of an existing table, view, or procedure in the current database.

Argument Description

index Name of an existing index in the current database.

table Name of an existing table in the current database.

106 Installing and Running on Unix

indexes in the named table; to display existing tables, use SHOW TABLE. If no
argument is specified, SHOW INDEX displays information for all indexes in the
current database. SHOW INDEX has a shorthand equivalent, SHOW IND.

Examples To display indexes for database employee.gdb, enter:

SHOW INDEX;
RDB$PRIMARY1 UNIQUE INDEX ON COUNTRY(COUNTRY)
CUSTNAMEX INDEX ON CUSTOMER(CUSTOMER)
CUSTREGION INDEX ON CUSTOMER(COUNTRY, CITY)
RDB$FOREIGN23 INDEX ON CUSTOMER(COUNTRY)

. . .

To display index information for the SALES table, enter:

SHOW IND SALES;
NEEDX INDEX ON SALES(DATE_NEEDED)
QTYX DESCENDING INDEX ON SALES(ITEM_TYPE, QTY_ORDERED)
RDB$FOREIGN25 INDEX ON SALES(CUST_NO)
RDB$FOREIGN26 INDEX ON SALES(SALES_REP)
RDB$PRIMARY24 UNIQUE INDEX ON SALES(PO_NUMBER)
SALESTATX INDEX ON SALES(ORDER_STATUS, PAID)

See Also SHOW TABLES

SHOW PROCEDURES

Lists all procedures or displays the text of a specified procedure.

Syntax SHOW {PROCEDURES | PROCEDUREname};

Description SHOW PROCEDURES displays an alphabetical list of procedures, along with
the database objects they depend on. Deleting a database object that has a
dependent procedure is not allowed. To avoid an isql error, delete the procedure
(using DROP PROCEDURE) before deleting the database object.

SHOW PROCEDURE name displays the text and parameters of the named pro-
cedure. SHOW PROCEDURE has a shorthand equivalent, SHOW PROC.

Examples To list all procedures defined for the current database, enter:

SHOW PROCEDURES;
Procedure Name Dependency Type

Argument Description

name Name of an existing procedure in the current database.

isql Command Reference 107

================= =================== =======
ADD_EMP_PROJ EMPLOYEE_PROJECTTable

UNKNOWN_EMP_ID Exception
DELETE_EMPLOYEE DEPARTMENT Table

EMPLOYEE Table
EMPLOYEE_PROJECTTable
PROJECT Table
REASSIGN_SALES Exception
SALARY_HISTORY Table
SALES Table

DEPT_BUDGET DEPARTMENT Table
DEPT_BUDGET Procedure

. . .

To display the text of procedure ADD_EMP_PROJ, enter:

SHOW PROC ADD_EMP_PROJ;
Procedure text:
===
BEGIN

BEGIN
INSERT INTO employee_project (emp_no, proj_id) VALUES (:emp_no,

:proj_id);
WHEN SQLCODE -530 DO
EXCEPTION unknown_emp_id;
END
RETURN;

END
===
Parameters:
EMP_NO INPUT SMALLINT
PROJ_ID INPUT CHAR(5)

SHOW SYSTEM

Displays the names of system tables and system views for the current database.

Syntax SHOW SYSTEM [TABLES];

Description SHOW SYSTEM lists system tables and system views in the current database.
SHOW SYSTEM accepts an optional keyword, TABLES, which does not affect
the behavior of the command.

SHOW SYSTEM has a shorthand equivalent, SHOW SYS.

Example To list system tables and system views for the current database, enter:

SHOW SYS;
RDB$CHARACTER_SETS RDB$CHECK_CONSTRAINTS

108 Installing and Running on Unix

RDB$COLLATIONS RDB$DATABASE
RDB$DEPENDENCIES RDB$EXCEPTIONS
RDB$FIELDS RDB$FIELD_DIMENSIONS
RDB$FILES RDB$FILTERS
RDB$FORMATS RDB$FUNCTIONS
RDB$FUNCTION_ARGUMENTS RDB$GENERATORS
RDB$INDEX_SEGMENTS RDB$INDICES
RDB$LOG_FILES RDB$PAGES
RDB$PROCEDURES RDB$PROCEDURE_PARAMETERS
RDB$REF_CONSTRAINTS RDB$RELATIONS
RDB$RELATION_CONSTRAINTS RDB$RELATION_FIELDS
RDB$SECURITY_CLASSES RDB$TRANSACTIONS
RDB$TRIGGERS RDB$TRIGGER_MESSAGES
RDB$TYPES RDB$USER_PRIVILEGES
RDB$VIEW_RELATIONS

See Also For more information about system tables, see the Language Reference.

SHOW TABLES

Lists all tables or views, or displays information about a specified table or view.

Syntax SHOW {TABLES | TABLE name};

Description SHOW TABLES displays an alphabetical list of tables and views in the current
database. To determine which listed objects are views rather than tables, use
SHOW VIEWS.

SHOW TABLE name displays information about the named object. If the object is
a table, command output lists column names and definitions, PRIMARY KEY
and FOREIGN KEY, CHECK constraints, and triggers. If the object is a view,
command output lists column names and definitions, as well as the SELECT
statement that the view is based on.

Examples To list all tables or views defined for the current database, enter:

SHOW TABLES;
COUNTRY CUSTOMER
DEPARTMENT EMPLOYEE
EMPLOYEE_PROJECT JOB
PHONE_LIST PROJECT
PROJ_DEPT_BUDGET SALARY_HISTORY
SALES

Argument Description

name Name of an existing table or view in the current database.

isql Command Reference 109

To list the definition for the COUNTRY table, enter:

SHOW TABLE COUNTRY;
COUNTRY (COUNTRYNAME) VARCHAR(15) NOT NULL
CURRENCY VARCHAR(10) NOT NULL
PRIMARY KEY (COUNTRY)

See Also SHOW VIEW, SHOW VIEWS

SHOW TRIGGERS

Lists all triggers or displays information about a specified trigger.

Syntax SHOW {TRIGGERS | TRIGGER name};

Description SHOW TRIGGERS displays all triggers defined in the database, along with the
table they depend on. SHOW TRIGGER name displays the name, sequence, type,
activation status, and definition of the named trigger.

SHOW TRIGGER has a shorthand equivalent, SHOW TRIG.

Examples To list all triggers defined for the current database, enter:

SHOW TRIGGERS;
Table name Trigger name
=========== ============
EMPLOYEE SET_EMP_NO
EMPLOYEE SAVE_SALARY_CHANGE
CUSTOMER SET_CUST_NO
SALES POST_NEW_ORDER

To display information about the SET_CUST_NO trigger, enter:

SHOW TRIG SET_CUST_NO;

Triggers:
SET_CUST_NO, Sequence: 0, Type: BEFORE INSERT, Active
AS
BEGIN

new.cust_no = gen_id(cust_no_gen, 1);
END

Argument Description

name Name of an existing trigger in the current database.

110 Installing and Running on Unix

SHOW VERSION

Displays information about software versions.

Syntax SHOW VERSION;

Description SHOW VERSION displays the software version of isql, the InterBase engine,
and the on-disk structure (ODS).

Certain tasks might not work as expected if performed on databases that were
created using older versions of InterBase. To check the versions of software that
are running, use SHOW VERSION.

SHOW VERSION has a shorthand equivalent, SHOW VER.

Example To display software versions, enter:

SHOW VER;
ISQL Version: HP-B4.0C
InterBase/UNIX (access method), version "HP-B4.0C"
on disk structure version 8.0

See Also SHOW DATABASE

SHOW VIEWS

Lists all views or displays information about a specified view.

Syntax SHOW {VIEWS | VIEW name};

Description SHOW VIEWS displays an alphabetical list of all views in the current database.
SHOW VIEW name displays information about the named view.

Example To list all views defined for the current database, enter:

SHOW VIEWS;
PHONE_LIST

See Also SHOW TABLE

Argument Description

name Name of an existing view in the current database.

Command-line DBA Utilities Reference 111

Appendix C

CCommand-line DBA Utilities
Reference

This chapter is a reference for the command-line DBA utilities, gsec, gfix, and
gbak. For a general discussion of using these utilities, see Chapter 6: “Using the
Command-line DBA Utilities.”

gbak

Backs up or restores a database, optionally changing database characteristics.

Syntax For backing up:

gbak [-b] [options] database target

For restoring:

gbak {-c|-r} [options] source database

For restoring to multiple files:

gbak {-c|-r} [options] source primary m secondary1 [n1 secondary2 [n2]]

Table C-1: gbak Argument Descriptions

Argument Description

options See “Options” below.

database Name of a database to back up or restore.

source Name of a storage device or backup file from which to restore.

target Name of a storage device or backup file to which to back up.

primary Primary file when restoring to multiple database files.

m Length of primary in database pages; minimum value is 200.

secondary1 First secondary file when restoring to multiple database files.

112 Installing and Running on Unix

Options In the Option column of the following tables, only the characters outside the
brackets ([]) are required.

n1 Length of secondary1; if only one secondary file is supplied, n1 is
optional.

secondary2 Next secondary file; specify as many secondary files as needed.

n2 Length of secondary2; it is unnecessary to specify the length of
the last secondary file.

Table C-2: gbak Backup Options

Option Description

-b[ackup_database] Back up database to file or device.

-e[xpand] Do not create a compressed back up.

-fa[ctor] n Use blocking factor n for tape device.

-g[arbage_collect] Do not garbage collect during backup.

-ig [nore] Ignore checksums during backup.

-l[imbo] Ignore limbo transactions during backup.

-m[eta_data] Back up metadata only, no data.

-ol [d_descriptions] Back up metadata in old-style format.

-pa[ssword] text Check for password text before accessing a database.

-t[ransportable] Create a transportable back up (useful for copying a database to
different operating systems).

-u[ser] name Check for user name before accessing remote database.

-v[erify] Show what gbak is doing.

-y [file |
suppress_output]

Direct status messages to file or suppress output messages. Sup-
presses messages if file is omitted.

-z Show version of gbak and of InterBase engine.

Table C-3: gbak Restore Options

Option Description

-c[reate_database] Restore database to a new file.

-i[nactive] Make indexes inactive upon restore.

-k[ill] Do not create any shadows that were previously defined.

-n[o_validity] Delete validity constraints from restored metadata; allows restora-
tion of data that would otherwise not meet validity constraints.

Table C-1: gbak Argument Descriptions (Continued)

Argument Description

Command-line DBA Utilities Reference 113

Description gbak performs database backup and restoration. In addition to simple backups
and restores, gbak can be used to upgrade the on-disk structure (ODS), copy a
database from one machine type to another, split a database into multiple files,
or change the database page size.

Because gbak does not require exclusive access to a database, online backups are
allowed. Regular backups and restores with gbak improve database perfor-
mance by balancing indexes, by packing data more efficiently, and by grouping
tables in a single area of the database file.

Examples Back up database employee.gdb to file employee.gbk, displaying status messages:

gbak -backup -verify employee.gdb employee.gbk

Restore employee.gbk, splitting the created database among three files;
newemp.gdb is 1,000 pages long, emp1.gdb is 500 pages long, and emp2.gdb is as
large as necessary to store the rest of the database:

gbak -create employee.gbk newemp.gdb 1000 emp1.gdb 500 emp2.gdb

Change the page size of newemp.gdb to 2048 bytes:

gbak -backup newemp.gdb newemp.gbk
gbak -create -page 2048 newemp.gbk employee.gdb

Restore database stocks.gdb without its shadow:

gbak -create -kill stocks.gbk stocks.gdb

-o[ne_at_a_time] Restore one table at a time; useful for partial recovery if database
contains corrupt data.

-p[age_size] n Reset page size to n bytes (1024, 2048, 4196, or 8192). Default:
1024.

-pa[ssword] text Check for password text before accessing a database.

-r[eplace_database] Restore database to new file or replace existing file.

-u[ser] name Check for user name before accessing remote database.
Required when using gbak from a Windows Client.

-v[erify] Show what gbak is doing.

-y [file |
suppress_output]

If used with -v, direct status messages to file; if used without -v
and file is omitted, suppress output messages.

-z Show version of gbak and of InterBase engine.

Table C-3: gbak Restore Options (Continued)

Option Description

114 Installing and Running on Unix

Back up a database that resides on a remote server named hera. Note that a user
name and password are needed to access the remote database:

gbak -b -user "burt" -pass "codeword" hera:/usr/burt.gdb my.gbk

Back up a database to a cartridge tape. The tape is loaded in a device named
/dev/rst0:

gbak -b employee.gdb/dev/rst0

gfix

Performs various maintenance activities on a database.

Syntax gfix [options] db_name

Options In the Option column of the following table, only the characters outside the
brackets ([]) are required. You may specify any additional characters up to and
including the full option name. To help identify options that perform similar
functions, the Usage column indicates the type of activity associated with an
option.

Table C-4: gfix Options

Option Usage Description

-at[tach] n Shutdown Used with -shut to prevent new database attach-
ments after n seconds.

-ca[che] Shutdown Reserved for future releases of InterBase.

-c[ommit] {id | all } Transaction
recovery

Commit limbo transaction specified by id or commit
all limbo transactions.

-f[orce] n Shutdown Used with -shut to force immediate shutdown of a
database, beginning in n seconds. This is a drastic
solution that should be used with caution.

-f[ull] Data repair Used with -v to check record and page structures,
releasing unassigned record fragments.

-h[ousekeeping] n Sweeping Change automatic sweep interval to n transactions,
or disable sweeping by setting n to 0. Default inter-
val is 20,000 transactions. Exclusive access is not
needed.

-i[gnore] Data repair Ignore checksum errors when validating or sweep-
ing.

Command-line DBA Utilities Reference 115

Description gfix can be used to shut down the database, make minor repairs to data struc-
tures, and recover transactions.

The gfix options expect a database as the file argument.

-l[ist] Transaction
recovery

Display IDs of each limbo transaction and indicate
what would occur if -t were used for automated two-
phase recovery.

-m[end] Data repair Mark corrupt records as unavailable, so they are
skipped (for example, during a subsequent back
up).

-n[o_update] Data repair Used with -v to validate corrupt or mis-allocated
structures. Structures are reported but not fixed.

-o[nline] Shutdown Cancels a -shut operation that is scheduled to take
effect or that is currently in effect.

-pa[ssword] text Remote
access

Check for password text before accessing a data-
base.

-p[rompt] Transaction
recovery

Used with -l to prompt for action during transaction
recovery.

-r[ollback] {id | all } Transaction
recovery

Roll back limbo transaction specified by id or roll
back all limbo transactions.

-s[weep] Sweeping Force an immediate sweep of the database. Useful
if automatic sweeping is disabled. Exclusive access
is not necessary.

-sh [ut] Shutdown Shut down the database. Must also specify either
-attach , -force , or -tran .

-t[wo_phase]
{id | all }

Transaction
recovery

Perform automated two-phase recovery, either for a
limbo transaction specified by id or for all limbo
transactions.

-tr [an] n Shutdown Used with -shut to prevent new transactions from
starting.

-user name Remote
access

Check for user name before accessing a remote
database.

-v[alidate] Data repair Locate and release pages that are allocated but
unassigned to any data structures. Also reports cor-
rupt structures.

-w[rite] Enable and disable forced (synchronous) writes.

-z Show version of gfix and of InterBase engine.

Table C-4: gfix Options (Continued)

Option Usage Description

116 Installing and Running on Unix

Examples Schedule employee.gdb to deny further attachments in an hour:

gfix -shut -attach 3600 employee.gdb

Disable automatic sweeping for stocks.gdb. This task is typically a prelude to set-
ting up database sweeps at scheduled times:

gfix -housekeeping 0 stocks.gdb

Perform automated two-phase recovery on sales.gdb:

gfix -list -two_phase sales.gdb

gsec

Display, add, modify, or delete information in the security database.

Syntax gsec [options] [arguments]

Options In the Option column of the following table, only the characters outside the
brackets ([]) are required. You may specify any additional characters up to and
including the full option name.

In interactive mode, use the gsec options as commands by omitting the leading
hyphen. Additional interactive commands include ? (same as help) and quit,
which ends the interactive session.

Table C-5: gsec Options

Option Description

-a[dd] name Add user’s login name to security database. Supply additional
arguments to specify user information.

-de[lete] name Remove row containing user name from security database.

-di [splay] Display all rows of security database.

-di [splay] name Display security information for user name.

-h[elp] Display syntax and usage of gsec commands.

-m[odify] name Change information for user’s login name in security database.
Supply additional arguments to specify user information.

-z Show version of gsec and of InterBase engine.

Command-line DBA Utilities Reference 117

Arguments Arguments correspond to columns in the isc4.gdb security database and are
specified only when using -add or -modify. Arguments must always be speci-
fied with a leading hyphen, even if gsec is used in interactive mode. No argu-
ments are required, but specify at least a password when adding new users.

Description The gsec utility is used to manage database and server security. With no options
or arguments on the command line, gsec enters interactive mode (marked by a
GSEC> prompt). Otherwise, it performs the functions specified by the com-
mand-line options and arguments.

You must log in as root to use gsec.

Examples The following command adds user IDAKNOW and assigns password xyz123:

gsec
GSEC> add IDAKNOW -pw xyz123
GSEC> quit

Table C-6: gsec Argument Descriptions

Argument Description

-f[name] name User’s first name

-g[id] id User’s group id (an integer)

-l[name] name User’s last name

-mn [ame] name User’s middle name

-o[rg] text User’s organization

-p[roj] text User’s project

-pw text User’s password

-u[id] id User’s user id (an integer)

118 Installing and Running on Unix

119

Index

A
activating shadows 74–75
adding

shadow files 75
user names 43

applications
building 26
improving performance 46, 66

assigning passwords 43
attachments, preventing 54
AUTO mode 73
automated transaction recovery 51, 52, 63
automatic commit of DDL statements 30, 89
automatic sweeping 46

disabling 47

B
backing up databases 46, 48, 57

previous InterBase versions 11
remote 59

backup copies 45
backup files

creating 58–60
options 62
transportable 61

multiple 59
naming 59

bad checksums 51
ignoring 63

binary data 84
binary files 84
BLOB data

displaying 90–92
editing 83
ID numbers 91

retrieving 84
saving 83

BLOB filters 27, 103
BLOBDUMP 38, 83
building applications 26

C
case, nomenclature 3
changing user names 44
character sets 95
CHECK constraints 100, 101
checksum errors 51

ignoring 63
closing databases 85, 88
column headers 31
column names, nomenclature 3
command-line options

gbak 57
gfix

shutdown 54
sweeping 46
transaction recovery 52

gsec 43
isql 30–31

specifying 29–30
command-line utilities 41–67

reference 111–117
commands

gbak 111–114
gfix 114–116
gsec 42–44, 116–117
isql 35–40

displaying 85, 87, 93
editing 84
executing 86
reference 83–110

COMMIT 32
commits 51

automatic 30, 89
conditional shadows 74
CONNECT 32
connections

databases 32
remote servers 31, 32

constraints 100, 101
disabling 65
naming 4

continuation prompt 30
corrupt databases, fixing 48, 49–51
CREATE DATABASE 30, 32

120

creating
backup files 58–60
shadows 71–74

conditional 74

D
data 29

binary 84
BLOB 83–84, 90–92
losing 57

database administration 25, 46, 66
adding users 43
backing up databases 58–60, 61

options 62
changing sweep interval 46–47
changing user names 44
disabling sweep interval 47
fixing corrupt databases 49
maintenance utility 45–57
recovering limbo transactions 51
restarting databases 56
restoring databases 60

incrementally 67
options 64
to multiple files 64

security utility 41–44
shutting down databases 53–56

canceling 57
troubleshooting 48
verifying data structures 48

database objects, naming 3
database pages 45

fixing orphan pages 49
resizing 66

database structures
mending 49–51
retrieving 101
validating 48–49

databases
backing up 46, 48, 57
closing 85, 88
fixing corrupt 48, 49–51
garbage collection 45, 63
maintaining 45–57
repairing 47–51

checksum errors 51
limbo transactions 51–53
mis-allocated structures 49–51
orphan pages 49

restarting 56
shadowing 69–75
shutting down 53–56

canceling 57
specifying character sets 95
sweeping 45–47

DDL 35
automatic commits 30, 89
extracting 30, 31, 33–35
processing 29
transactions 32

DECLARE FILTER 103
default settings, isql 37
default sweep interval 46
default terminator 30
deleting

objects 106
records 45
shadows 75

directories, path names 4, 5
disk crashes 57
displaying

error messages 87
isql commands 85, 87, 93
metadata 35
privileges 105
statements 30
version numbers 31, 110

DML 35
processing 29

domains 101
DROP SHADOW 75

E
echoing 30, 93
EDIT 39, 84

INPUT and 86
editing

BLOB data 83
input files 100
isql commands 84

121

editors 84
environments, isql 37
error messages, displaying 87
errors

checksum 51, 63
corrupt database 48, 49–51
isql 40
system 49

exceptions 102
EXIT 85

QUIT vs. 88
extracting

DDL 30, 31
metadata 33–35

F
file names

backup copies 59
nomenclature 4–5

files
backup 59
binary 84
input 30, 86, 93, 100
shadow 72, 75
writing to 30, 33

filespec parameter 4
filters 103
formats, output 94

G
garbage collection 45

preventing 63
gbak 57–67

backing up databases 58–60, 61
options 62

commands 111–114
preventing garbage collection 63
rebuilding indexes 65
resizing database pages 66
restoring databases 60

incrementally 67
options 64
to multiple files 64

starting 58
status messages 61

syntax 58
validity checking 65

generators 104
gfix 45–57

activating shadows 74–75
commands 114–116
killing shadows 74
options 46, 52

shutdown 54
repairing databases 47–51

checksum errors 51
limbo transactions 51–53
mis-allocated structures 49–51
orphan pages 49

restarting databases 56
shutting down databases 53–56
sweeping 45–47
syntax 45

gsec 41–44
adding users 43–44
changing entries 44
commands 42–44, 116–117

summarized 42
deleting entries 44
exiting 42
options 43
starting 42, 44

H
HELP 85
housekeeping 46, 47

I
ignoring bad checksums 63
improving application performance 46, 66
indexes 35

rebuilding 65
retrieving 105

INPUT 39, 86
input files 30, 86

editing 100
reading 93

installing InterBase 9–18
integrity constraints 100, 101

disabling 65

122

naming 4
InterBase

architecture 45
installing 9–18
licensing 13–15
version numbers 31, 110

international character sets 95
IPCSEMAPHORE 9
IPCSHMEM 9
isc4.gdb 41, 42

viewing contents 42
iscinstall utility 13

messages 16–17
isql 29–40

commands 35–40
displaying 85, 87, 93
editing 84
executing 86
reference 83–110
summarized 36, 37

connecting to databases 32
default settings 37
errors 40
exiting 31, 40, 85, 88
options 30–31

specifying 29–30
setting environment 37
starting 29–30, 32
terminator characters 30, 31, 98

K
killing shadows 67, 74

L
licensing InterBase 13–15
limbo transactions 63

defined 52
recovering 51

list formats 94
lock header files 11
losing data 57

M
maintaining databases 45–57
MANUAL mode 74

messages 92
gbak 61

metadata 29
backing up 62
displaying 35
extracting 33–35
redefining 66

mis-allocated structures 49–51
multi-file specifications 5
multiple backup files 59

N
naming conventions 3–5
nesting INPUT commands 86
node names, shared disks vs. 32
nodes, naming 4, 5
nomenclature 3–5

O
objects, deleting 106
on-disk structures, upgrading 67
operating system shells 99
orphan database pages 49
outdated records, removing 45
OUTPUT 87
output 87, 93

BLOB data 90–92
formatting 94
metadata 35
redirecting 87
statements 30
user-defined functions 103

output files 30, 33

P
parameters, filespec 4
passwords 31, 41

assigning 43
path names 4, 5
performance statistics 96
platforms 4
power failure 57
preventing

attachments 54
garbage collection 63

123

new transactions 55
primary file specifications 4
printing conventions (documentation) 2–3
privileges, displaying 105
procedures 35

defining 98
listing 106

Q
queries 95, 99

counting rows retrieved 92
performance statistics 96
retrieving rows 94
testing 29

QUIT 88
EXIT vs. 85

R
rebuilding indexes 65
records, removing outdated 45
recovering transactions 51, 52, 63
remote backups 59
remote servers, connecting to 31, 32
removing

outdated records 45
shadows 67

repairing databases 47–51
checksum errors 51
limbo transactions 51–53
mis-allocated structures 49–51
orphan pages 49

restarting databases 56
restrictions, nomenclature 4
ROLLBACK 32
rolling back transactions 88

S
secondary file specifications 4, 5
security 41–44

changing user names 44
displaying privileges 105

SEM_UNDO structures 9
semaphore facility 9
SET 88
SET AUTODDL 89

SET BLOBDISPLAY 90
SET COUNT 92
SET ECHO 93
SET LIST 94
SET NAMES 95
SET PLAN 95, 99
SET STATS 96
SET TERM 98
SET TERMINATOR 30
SET TRANSACTION 32
shadowing databases 69–75

advantages 70
limitations 70
overview 69–70

shadows
activating 74–75
adding files 75
AUTO mode 73
conditional 74
creating 71–74
dropping 75
killing 74
MANUAL mode 74
removing 67

shared disks, node names vs. 32
shared memory facility 9
SHELL 39, 99
SHOW CHECK 100
SHOW DATABASE 72, 101
SHOW DOMAINS 101
SHOW EXCEPTIONS 102
SHOW FILTERS 103
SHOW FUNCTIONS 103
SHOW GENERATORS 104
SHOW GRANT 105
SHOW INDEX 105
SHOW PROCEDURES 106
SHOW SYSTEM 107
SHOW TABLES 108
SHOW TRIGGERS 109
SHOW VERSION 110
SHOW VIEWS 110
shutting down databases 53–56

bringing back online 56
canceling 57

124

preventing attachments 54
preventing new transactions 55

SQLCODE 40
starting

gbak 58
gsec 42, 44
isql 29–30, 32

statements
displaying 30
example, printing conventions 2
terminator characters 30, 31, 98

storage devices
backing up databases 59
restoring databases 60

sweeping databases 45–47
automatically 46
changing sweep interval 46–47
disabling sweep interval 47

syntax
file name specifications 4
statements, printing conventions 2

system editors 84
system errors 49
system shells 99
system tables 107
system views 107

T
table names, nomenclature 3
tables 35

constraints 100, 101
disabling 65

listing 108
tabular formats 94
tape backups 59

restoring databases 60
TCP/IP 32
terminator characters

default 30
isql 30, 31, 98

testing
installation 18
queries 29

text editors 84
text, saving to files 84
transactions

commit process 51
committing 32, 85
DDL 32
isql 32–33
limbo 52, 63

recovering 51
preventing new 55
rolling back 32, 88

transportable backups 61
triggers 35

defining 98
listing 109

troubleshooting 48

U
user names 31, 41

adding 43–44
changing 44

user permissions 29
user-defined functions 27

viewing 103

V
validating database structures 48–49
validity checking 65
version numbers, displaying 31, 110
views

listing 108, 110
naming 3

W
write errors 49

