
LilyPond
The music typesetter

Learning Manual

The LilyPond development team
Copyright c© 1999–2007 by the authors

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with no Invariant Sections. A copy of
the license is included in the section entitled “GNU Free Documentation License”.

(For LilyPond version 2.11.39)

i

Table of Contents

Preface . 1

1 Introduction . 2
1.1 Engraving . 2
1.2 Automated engraving . 3
1.3 What symbols to engrave? . 4
1.4 Music representation . 6
1.5 Example applications . 7
1.6 About this manual . 8

2 Tutorial . 11
2.1 First steps . 11

2.1.1 Compiling a file . 11
2.1.2 Simple notation . 12
2.1.3 Working on text files . 16
2.1.4 How to read the manual . 17

2.2 Single staff notation . 18
2.2.1 Accidentals and key signatures . 18
2.2.2 Ties and slurs . 20
2.2.3 Articulation and dynamics . 21
2.2.4 Adding text . 22
2.2.5 Automatic and manual beams . 23
2.2.6 Advanced rhythmic commands . 23

2.3 Multiple notes at once . 24
2.3.1 Music expressions explained . 24
2.3.2 Multiple staves . 26
2.3.3 Staff groups . 27
2.3.4 Combining notes into chords . 28
2.3.5 Single staff polyphony . 28

2.4 Songs . 29
2.4.1 Setting simple songs . 29
2.4.2 Aligning lyrics to a melody . 30
2.4.3 Lyrics to multiple staves . 33

2.5 Final touches . 34
2.5.1 Organizing pieces with variables . 34
2.5.2 Version number . 35
2.5.3 Adding titles . 36
2.5.4 Absolute note names . 36
2.5.5 After the tutorial . 37

3 Fundamental concepts . 39
3.1 How LilyPond files work . 39

3.1.1 Introduction to the LilyPond file structure . 39
3.1.2 Score is a (single) compound musical expression . 41
3.1.3 Nesting music expressions . 43
3.1.4 On the un-nestedness of brackets and ties . 44

3.2 Voices contain music . 45

ii

3.2.1 I’m hearing Voices . 45
3.2.2 Explicitly instantiating voices . 50
3.2.3 Voices and vocals . 53

3.3 Contexts and engravers . 55
3.3.1 Contexts explained . 56
3.3.2 Creating contexts . 57
3.3.3 Engravers explained . 57
3.3.4 Modifying context properties . 58
3.3.5 Adding and removing engravers . 61

3.3.5.1 Changing a single context . 61
3.3.5.2 Changing all contexts of the same type . 63

3.4 Extending the templates . 63
3.4.1 Soprano and cello . 64
3.4.2 Four-part SATB vocal score . 67
3.4.3 Building a score from scratch . 71

4 Tweaking output . 75
4.1 Tweaking basics . 75

4.1.1 Introduction to tweaks . 75
4.1.2 Objects and interfaces . 75
4.1.3 Naming conventions of objects and properties . 76
4.1.4 Tweaking methods . 76

4.2 The Internals Reference manual . 77
4.2.1 Properties of layout objects . 77
4.2.2 Properties found in interfaces . 81
4.2.3 Types of properties . 82

4.3 Appearance of objects . 83
4.3.1 Visibility and color of objects . 83
4.3.2 Size of objects . 87
4.3.3 Length and thickness of objects . 90

4.4 Placement of objects . 91
4.4.1 Automatic behaviour . 91
4.4.2 Within-staff objects . 92
4.4.3 Outside staff objects . 95

4.5 Collisions of objects . 100
4.5.1 Moving objects . 100
4.5.2 Fixing overlapping notation . 102
4.5.3 Real music example . 107

4.6 Further tweaking . 115
4.6.1 Other uses for tweaks . 115
4.6.2 Using variables for tweaks . 116
4.6.3 Other sources of information . 118
4.6.4 Advanced tweaks with Scheme . 119
4.6.5 Avoiding tweaks with slower processing . 120

iii

5 Working on LilyPond projects . 121
5.1 Suggestions for writing LilyPond files . 121

5.1.1 General suggestions . 121
5.1.2 Typesetting existing music . 122
5.1.3 Large projects . 122
5.1.4 Saving typing with variables and functions . 122
5.1.5 Style sheets . 124

5.2 When things don’t work . 127
5.2.1 Updating old files . 127
5.2.2 Troubleshooting (taking it all apart) . 128
5.2.3 Minimal examples . 128

5.3 Scores and parts . 129

Appendix A Templates . 131
A.1 Single staff . 131

A.1.1 Notes only . 131
A.1.2 Notes and lyrics . 131
A.1.3 Notes and chords . 132
A.1.4 Notes, lyrics, and chords. 132

A.2 Piano templates . 133
A.2.1 Solo piano . 133
A.2.2 Piano and melody with lyrics . 134
A.2.3 Piano centered lyrics . 135
A.2.4 Piano centered dynamics . 136

A.3 String quartet . 138
A.3.1 String quartet . 138
A.3.2 String quartet parts . 139

A.4 Vocal ensembles . 142
A.4.1 SATB vocal score . 142
A.4.2 SATB vocal score and automatic piano reduction . 143
A.4.3 SATB with aligned contexts . 146

A.5 Ancient notation templates . 148
A.5.1 Transcription of mensural music . 149
A.5.2 Gregorian transcription template . 154

A.6 Jazz combo . 155
A.7 Lilypond-book templates . 156

A.7.1 LaTeX . 156
A.7.2 Texinfo . 156

Appendix B Scheme tutorial . 157

Appendix C GNU Free Documentation License 159
C.0.1 ADDENDUM: How to use this License for your documents 164

Appendix D LilyPond index . 165

Preface 1

Preface

It must have been during a rehearsal of the EJE (Eindhoven Youth Orchestra), somewhere in
1995 that Jan, one of the cranked violists, told Han-Wen, one of the distorted French horn
players, about the grand new project he was working on. It was an automated system for
printing music (to be precise, it was MPP, a preprocessor for MusiXTeX). As it happened,
Han-Wen accidentally wanted to print out some parts from a score, so he started looking at the
software, and he quickly got hooked. It was decided that MPP was a dead end. After lots of
philosophizing and heated email exchanges, Han-Wen started LilyPond in 1996. This time, Jan
got sucked into Han-Wen’s new project.

In some ways, developing a computer program is like learning to play an instrument. In the
beginning, discovering how it works is fun, and the things you cannot do are challenging. After
the initial excitement, you have to practice and practice. Scales and studies can be dull, and
if you are not motivated by others – teachers, conductors or audience – it is very tempting to
give up. You continue, and gradually playing becomes a part of your life. Some days it comes
naturally, and it is wonderful, and on some days it just does not work, but you keep playing,
day after day.

Like making music, working on LilyPond can be dull work, and on some days it feels like
plodding through a morass of bugs. Nevertheless, it has become a part of our life, and we keep
doing it. Probably the most important motivation is that our program actually does something
useful for people. When we browse around the net we find many people who use LilyPond, and
produce impressive pieces of sheet music. Seeing that feels unreal, but in a very pleasant way.

Our users not only give us good vibes by using our program, many of them also help us by
giving suggestions and sending bug reports, so we would like to thank all users that sent us bug
reports, gave suggestions or contributed in any other way to LilyPond.

Playing and printing music is more than a nice analogy. Programming together is a lot of
fun, and helping people is deeply satisfying, but ultimately, working on LilyPond is a way to
express our deep love for music. May it help you create lots of beautiful music!

Han-Wen and Jan
Utrecht/Eindhoven, The Netherlands, July 2002.

Chapter 1: Introduction 2

1 Introduction

1.1 Engraving

The art of music typography is called (plate) engraving. The term derives from the traditional
process of music printing. Just a few decades ago, sheet music was made by cutting and stamping
the music into a zinc or pewter plate in mirror image. The plate would be inked, the depressions
caused by the cutting and stamping would hold ink. An image was formed by pressing paper
to the plate. The stamping and cutting was completely done by hand. Making a correction was
cumbersome, if possible at all, so the engraving had to be perfect in one go. Engraving was a
highly specialized skill; a craftsman had to complete around five years of training before earning
the title of master engraver, and another five years of experience were necessary to become truly
skilled.

Nowadays, all newly printed music is produced with computers. This has obvious advantages;
prints are cheaper to make, and editorial work can be delivered by email. Unfortunately, the
pervasive use of computers has also decreased the graphical quality of scores. Computer printouts
have a bland, mechanical look, which makes them unpleasant to play from.

The images below illustrate the difference between traditional engraving and typical computer
output, and the third picture shows how LilyPond mimics the traditional look. The left picture
shows a scan of a flat symbol from an edition published in 2000. The center depicts a symbol
from a hand-engraved Bärenreiter edition of the same music. The left scan illustrates typical
flaws of computer print: the staff lines are thin, the weight of the flat symbol matches the light
lines and it has a straight layout with sharp corners. By contrast, the Bärenreiter flat has a
bold, almost voluptuous rounded look. Our flat symbol is designed after, among others, this
one. It is rounded, and its weight harmonizes with the thickness of our staff lines, which are
also much thicker than lines in the computer edition.

Henle (2000) Bärenreiter (1950) LilyPond Feta font
(2003)

In spacing, the distribution of space should reflect the durations between notes. However,
many modern scores adhere to the durations with mathematical precision, which leads to poor
results. In the next example a motive is printed twice: once using exact mathematical spacing,
and once with corrections. Can you spot which fragment is which?

� ��� �� � �� ��� � �

Chapter 1: Introduction 3

��� � � �� ��� �� ��

Each bar in the fragment only uses notes that are played in a constant rhythm. The spacing
should reflect that. Unfortunately, the eye deceives us a little; not only does it notice the
distance between note heads, it also takes into account the distance between consecutive stems.
As a result, the notes of an up-stem/down-stem combination should be put farther apart, and
the notes of a down-stem/up-stem combination should be put closer together, all depending on
the combined vertical positions of the notes. The upper two measures are printed with this
correction, the lower two measures without, forming down-stem/up-stem clumps of notes.

Musicians are usually more absorbed with performing than with studying the looks of a piece
of music, so nitpicking about typographical details may seem academical. But it is not. In larger
pieces with monotonous rhythms, spacing corrections lead to subtle variations in the layout of
every line, giving each one a distinct visual signature. Without this signature all lines would
look the same, and they become like a labyrinth. If a musician looks away once or has a lapse
in concentration, the lines might lose their place on the page.

Similarly, the strong visual look of bold symbols on heavy staff lines stands out better when
the music is far away from the reader, for example, if it is on a music stand. A careful distribution
of white space allows music to be set very tightly without cluttering symbols together. The result
minimizes the number of page turns, which is a great advantage.

This is a common characteristic of typography. Layout should be pretty, not only for its own
sake, but especially because it helps the reader in her task. For performance material like sheet
music, this is of double importance: musicians have a limited amount of attention. The less
attention they need for reading, the more they can focus on playing the music. In other words,
better typography translates to better performances.

These examples demonstrate that music typography is an art that is subtle and complex,
and that producing it requires considerable expertise, which musicians usually do not have.
LilyPond is our effort to bring the graphical excellence of hand-engraved music to the computer
age, and make it available to normal musicians. We have tuned our algorithms, font-designs,
and program settings to produce prints that match the quality of the old editions we love to see
and love to play from.

1.2 Automated engraving

How do we go about implementing typography? If craftsmen need over ten years to become
true masters, how could we simple hackers ever write a program to take over their jobs?

The answer is: we cannot. Typography relies on human judgment of appearance, so people
cannot be replaced completely. However, much of the dull work can be automated. If LilyPond
solves most of the common situations correctly, this will be a huge improvement over existing
software. The remaining cases can be tuned by hand. Over the course of years, the software
can be refined to do more and more things automatically, so manual overrides are less and less
necessary.

When we started, we wrote the LilyPond program entirely in the C++ programming language;
the program’s functionality was set in stone by the developers. That proved to be unsatisfactory
for a number of reasons:

• When LilyPond makes mistakes, users need to override formatting decisions. Therefore, the
user must have access to the formatting engine. Hence, rules and settings cannot be fixed
by us at compile-time but must be accessible for users at run-time.

• Engraving is a matter of visual judgment, and therefore a matter of taste. As knowledgeable
as we are, users can disagree with our personal decisions. Therefore, the definitions of
typographical style must also be accessible to the user.

Chapter 1: Introduction 4

• Finally, we continually refine the formatting algorithms, so we need a flexible approach to
rules. The C++ language forces a certain method of grouping rules that do not match well
with how music notation works.

These problems have been addressed by integrating an interpreter for the Scheme program-
ming language and rewriting parts of LilyPond in Scheme. The current formatting architecture
is built around the notion of graphical objects, described by Scheme variables and functions.
This architecture encompasses formatting rules, typographical style and individual formatting
decisions. The user has direct access to most of these controls.

Scheme variables control layout decisions. For example, many graphical objects have a direc-
tion variable that encodes the choice between up and down (or left and right). Here you see two
chords, with accents and arpeggios. In the first chord, the graphical objects have all directions
down (or left). The second chord has all directions up (right).

�
�
�

� ����� ������

The process of formatting a score consists of reading and writing the variables of graphical
objects. Some variables have a preset value. For example, the thickness of many lines – a
characteristic of typographical style – is a variable with a preset value. You are free to alter this
value, giving your score a different typographical impression.

��

�

��

�

� �

�

�

�

�

�
� �

��

� �� ����

�

�

�

�

��

�

�
��

Formatting rules are also preset variables: each object has variables containing procedures.
These procedures perform the actual formatting, and by substituting different ones, we can
change the appearance of objects. In the following example, the rule which note head objects
are used to produce their symbol is changed during the music fragment.

��D
F
G �2�2c

m m
�� c bla

��4
2� �

c �
1.3 What symbols to engrave?

The formatting process decides where to place symbols. However, this can only be done once it
is decided what symbols should be printed, in other words what notation to use.

Common music notation is a system of recording music that has evolved over the past 1000
years. The form that is now in common use dates from the early renaissance. Although the
basic form (i.e., note heads on a 5-line staff) has not changed, the details still evolve to express

Chapter 1: Introduction 5

the innovations of contemporary notation. Hence, it encompasses some 500 years of music. Its
applications range from monophonic melodies to monstrous counterpoints for large orchestras.

How can we get a grip on such a many-headed beast, and force it into the confines of a com-
puter program? Our solution is to break up the problem of notation (as opposed to engraving,
i.e., typography) into digestible and programmable chunks: every type of symbol is handled by
a separate module, a so-called plug-in. Each plug-in is completely modular and independent, so
each can be developed and improved separately. Such plug-ins are called engravers, by analogy
with craftsmen who translate musical ideas to graphic symbols.

In the following example, we see how we start out with a plug-in for note heads, the Note_
heads_engraver.

� �
�

�� �
�

�
� �

Then a Staff_symbol_engraver adds the staff

� ��� �� �
�

�
�

the Clef_engraver defines a reference point for the staff

� ���� � � �� � �
and the Stem_engraver adds stems.

�� � ��
� �� � ��� ��� ���

�

The Stem_engraver is notified of any note head coming along. Every time one (or more, for a
chord) note head is seen, a stem object is created and connected to the note head. By adding
engravers for beams, slurs, accents, accidentals, bar lines, time signature, and key signature, we
get a complete piece of notation.

�� �����
�� ��� �� �� �� � �

This system works well for monophonic music, but what about polyphony? In polyphonic
notation, many voices can share a staff.

� � �� � ��
� ���� �� � �
�
�

�
�� �� �

�
� ��� �

�
��� ����

Chapter 1: Introduction 6

In this situation, the accidentals and staff are shared, but the stems, slurs, beams, etc., are
private to each voice. Hence, engravers should be grouped. The engravers for note heads, stems,
slurs, etc., go into a group called ‘Voice context,’ while the engravers for key, accidental, bar,
etc., go into a group called ‘Staff context.’ In the case of polyphony, a single Staff context
contains more than one Voice context. Similarly, multiple Staff contexts can be put into a single
Score context. The Score context is the top level notation context.

See also

Internals Reference: Contexts.

����
����
��

� �
�� �
� �
� ��

��� �
�
��
	

��

�
�
��

�

�
�

�

�
�

��	

��

��	

������ �� �

� �� ��

� ��
	
��	

1.4 Music representation

Ideally, the input format for any high-level formatting system is an abstract description of the
content. In this case, that would be the music itself. This poses a formidable problem: how
can we define what music really is? Instead of trying to find an answer, we have reversed the
question. We write a program capable of producing sheet music, and adjust the format to be
as lean as possible. When the format can no longer be trimmed down, by definition we are left
with content itself. Our program serves as a formal definition of a music document.

The syntax is also the user-interface for LilyPond, hence it is easy to type
{
c'4 d'8

}

a quarter note C1 (middle C) and an eighth note D1 (D above middle C)

��� ��
On a microscopic scale, such syntax is easy to use. On a larger scale, syntax also needs

structure. How else can you enter complex pieces like symphonies and operas? The structure is
formed by the concept of music expressions: by combining small fragments of music into larger
ones, more complex music can be expressed. For example

c4

�� �

Chapter 1: Introduction 7

Chords can be constructed with << and >> enclosing the notes
<<c4 d4 e4>>

� �� ��
This expression is put in sequence by enclosing it in curly braces { ... }

{ f4 <<c4 d4 e4>> }

� ���� �
The above is also an expression, and so it may be combined again with another simultaneous
expression (a half note) using <<, \\, and >>

<< g2 \\ { f4 <<c4 d4 e4>> } >>

� � ���� �
Such recursive structures can be specified neatly and formally in a context-free grammar.

The parsing code is also generated from this grammar. In other words, the syntax of LilyPond
is clearly and unambiguously defined.

User-interfaces and syntax are what people see and deal with most. They are partly a matter
of taste, and also subject of much discussion. Although discussions on taste do have their merit,
they are not very productive. In the larger picture of LilyPond, the importance of input syntax is
small: inventing neat syntax is easy, while writing decent formatting code is much harder. This
is also illustrated by the line-counts for the respective components: parsing and representation
take up less than 10% of the source code.

1.5 Example applications

We have written LilyPond as an experiment of how to condense the art of music engraving into
a computer program. Thanks to all that hard work, the program can now be used to perform
useful tasks. The simplest application is printing notes.

4
2� �� ��

�
� �

By adding chord names and lyrics we obtain a lead sheet.

C

�
kle

�
kle

�4
2�

C

twin

�
tle

�
twin lit

�
F

star

�
C

Chapter 1: Introduction 8

Polyphonic notation and piano music can also be printed. The following example combines
some more exotic constructs.

Screech and boink
Random complex notation

Han-Wen Nienhuys

����� �

���

�� ���
� � ��

� ��
� 3

��� �

�
�����

�

�

�
�

��

���
�

���
8
4

	 ��� 84
�

��

�

�

����

The fragments shown above have all been written by hand, but that is not a requirement.
Since the formatting engine is mostly automatic, it can serve as an output means for other
programs that manipulate music. For example, it can also be used to convert databases of
musical fragments to images for use on websites and multimedia presentations.

This manual also shows an application: the input format is text, and can therefore be easily
embedded in other text-based formats such as LATEX, HTML, or in the case of this manual,
Texinfo. By means of a special program, the input fragments can be replaced by music images
in the resulting PDF or HTML output files. This makes it easy to mix music and text in
documents.

1.6 About this manual

FIXME: needs almost-complete rewrite. -gp
There are four manuals about LilyPond: the Learning Manual, the Notation Reference, the

Application Usage, and the Internals Reference.

Learning Manual (LM)

This book explains how to begin learning LilyPond, as well as explaining some key concepts in
easy terms. It is recommended to read these chapters in a linear fashion.
• Chapter 2 [Tutorial], page 11, gives a gentle introduction to typesetting music. First time

users should start here.
• Chapter 3 [Fundamental concepts], page 39, explains some general concepts about the lily-

pond file format. If you are not certain where to place a command, read this chapter!
• Chapter 5 [Working on LilyPond projects], page 121, discusses practical uses of LilyPond

and how to avoid some common problems.
• Chapter 4 [Tweaking output], page 75, shows how to change the default engraving that

LilyPond produces.

Notation Reference (NR)

This book explains all the LilyPond commands which produce notation. It assumes that readers
are familiar with the concepts in the Learning manual.

All of this needs to be rewritten after GDP, anyway.

Chapter 1: Introduction 9

Program usage

This book explains how to execute the program and how to integrate LilyPond notation with
other programs.
• program usage manual, 〈undefined〉 [Install], page 〈undefined〉 , explains how to install Lily-

Pond (including compilation if desired).
• program usage manual, 〈undefined〉 [Setup], page 〈undefined〉 , describes how to configure

your computer for optimum LilyPond usage, such as using special environments for certain
text editors.

• program usage manual, 〈undefined〉 [Running LilyPond], page 〈undefined〉 , shows how to
run LilyPond and its helper programs. In addition, this section explains how to upgrade
input files from previous versions of LilyPond.

• program usage manual, 〈undefined〉 [LilyPond-book], page 〈undefined〉 , explains the details
behind creating documents with in-line music examples, like this manual.

• program usage manual, 〈undefined〉 [Converting from other formats], page 〈undefined〉 , ex-
plains how to run the conversion programs. These programs are supplied with the LilyPond
package, and convert a variety of music formats to the .ly format.

Other information

There are a number of other places which may be very valuable.
• The music glossary explains musical terms, and includes translations to various languages.

It is a separate document, available in HTML and PDF. If you are not familiar with music
notation or music terminology (especially if you are a non-native English speaker), it is
highly advisable to consult the glossary.

• The Snippets are a great collection of short examples which demonstrate tricks, tips, and
special features of LilyPond. Most of these snippets can also be found in the LilyPond
Snippet Repository. This website also has a searchable LilyPond manual.

• The Internals Reference is a set of heavily cross linked HTML pages, which document the
nitty-gritty details of each and every LilyPond class, object, and function. It is produced
directly from the formatting definitions used.
Almost all formatting functionality that is used internally, is available directly to the user.
For example, all variables that control thickness values, distances, etc., can be changed in
input files. There are a huge number of formatting options, and all of them are described in
this document. Each section of the notation manual has a See also subsection, which refers
to the generated documentation. In the HTML document, these subsections have clickable
links.

Once you are an experienced user, you can use the manual as reference: there is an extensive
index1, but the document is also available in a big HTML page, which can be searched easily
using the search facility of a web browser.

In all HTML documents that have music fragments embedded, the LilyPond input that was
used to produce that image can be viewed by clicking the image.

The location of the documentation files that are mentioned here can vary from system to
system. On occasion, this manual refers to initialization and example files. Throughout this
manual, we refer to input files relative to the top-directory of the source archive. For example,
‘input/lsr/dirname/bla.ly’ may refer to the file ‘lilypond2.x.y/input/lsr/dirname/bla
.ly’. On binary packages for the Unix platform, the documentation and examples can typi-
cally be found somewhere below ‘/usr/share/doc/lilypond/’. Initialization files, for example

1 If you are looking for something, and you cannot find it in the manual, that is considered a bug. In that case,
please file a bug report.

http://lsr.dsi.unimi.it/
http://lsr.dsi.unimi.it/

Chapter 1: Introduction 10

‘scm/lily.scm’, or ‘ly/engraver-init.ly’, are usually found in the directory ‘/usr/share/
lilypond/’.

Finally, this and all other manuals, are available online both as PDF files and HTML from
the web site, which can be found at http://www.lilypond.org/.

http://www.lilypond.org/

Chapter 2: Tutorial 11

2 Tutorial

This tutorial starts with an introduction to the LilyPond music language and explains how to
produce printed music. After this first contact we will explain how to create beautiful printed
music containing common musical notation.

2.1 First steps

This section gives a basic introduction to working with LilyPond.

2.1.1 Compiling a file

“Compiling” is the term used for processing an input text file in LilyPond format to produce a
file which can be printed and (optionally) a MIDI file which can be played. The first example
shows what a simple input text file looks like.

To create sheet music, we write a text file that specifies the notation. For example, if we
write:

{
c' e' g' e'

}

the result looks like this:

�� �� ��
� �
Note: Notes and lyrics in LilyPond input must always be surrounded
by { curly braces }. The braces should also be surrounded by a space
unless they are at the beginning or end of a line to avoid ambiguities.
The braces may be omitted in some examples in this manual, but don’t
forget them in your own music! For more information about the display
of examples in the manual, see Section 2.1.4 [How to read the manual],
page 17.
 	

In addition, LilyPond input is case sensitive. { c d e } is valid input; { C D E } will produce
an error message.

Entering music and viewing output

In this section we will explain what commands to run and how to view or print the output.

Note that there are several other text editors available with better support for LilyPond. For
more information, see program usage manual, 〈undefined〉 [Text editor support], page 〈unde-
fined〉 . � �

Note: The first time you ever run LilyPond, it may take a minute or
two because all of the system fonts have to be analyzed first. After this,
LilyPond will be much faster!
 	

Chapter 2: Tutorial 12

MacOS X

If you double click LilyPond.app, it will open with an example file. Save it, for example, to
‘test.ly’ on your Desktop, and then process it with the menu command Compile > Typeset
File. The resulting PDF file will be displayed on your screen.

For future use of LilyPond, you should begin by selecting ‘New’ or ‘Open’. You must save
your file before typesetting it. If any errors occur in processing, please see the log window.

Windows

On Windows, if you double-click in the LilyPond icon on the Desktop, it will open a simple
text editor with an example file. Save it, for example, to ‘test.ly’ on your Desktop and then
double-click on the file to process it (the file icon looks like a note). After some seconds, you will
get a file ‘test.pdf’ on your desktop. Double-click on this PDF file to view the typeset score.
An alternative method to process the ‘test.ly’ file is to drag and drop it onto the LilyPond
icon using your mouse pointer.

To edit an existing ‘.ly’ file, right-click on it and select “Edit source”. To get an empty file
to start from, run the editor as described above and use “New” in the “File” menu, or right-click
on the desktop and select “New..Text Document”, change its name to a name of your choice and
change the file extension to .ly. Double-click the icon to type in your LilyPond source code as
before.

Double-clicking the file does not only result in a PDF file, but also produces a ‘.log’ file that
contains some information on what LilyPond has done to the file. If any errors occur, please
examine this file.

Unix

Create a text file called ‘test.ly’ and enter:
{
c' e' g' e'

}

To process ‘test.ly’, proceed as follows:
lilypond test.ly

You will see something resembling:
lilypond test.ly
GNU LilyPond 2.12.0
Processing `test.ly'
Parsing...
Interpreting music...
Preprocessing graphical objects...
Finding the ideal number of pages...
Fitting music on 1 page...
Drawing systems...
Layout output to `test.ps'...
Converting to `test.pdf'...

2.1.2 Simple notation

LilyPond will add some notation elements automatically. In the next example, we have only
specified four pitches, but LilyPond has added a clef, time signature, and rhythms.

{
c' e' g' e'

}

Chapter 2: Tutorial 13

��� � � �
This behavior may be altered, but in most cases these automatic values are useful.

Pitches

Music Glossary: 〈undefined〉 [pitch], page 〈undefined〉, 〈undefined〉 [interval], page 〈undefined〉,
〈undefined〉 [scale], page 〈undefined〉, 〈undefined〉 [middle C], page 〈undefined〉, 〈undefined〉
[octave], page 〈undefined〉, 〈undefined〉 [accidental], page 〈undefined〉.

The easiest way to enter notes is by using \relative mode. In this mode, the octave is chosen
automatically by assuming the following note is always to be placed closest to the previous note,
i.e., it is to be placed in the octave which is within three staff spaces of the previous note. We
begin by entering the most elementary piece of music, a scale, in which every note is within just
one staff space of the previous note.

\relative c' { % set the starting point to middle C
c d e f
g a b c

}

� ��� �� � �� �
The initial note is middle C . Each successive note is placed closest to the previous note – in

other words, the first c is the closest C to middle C. This is followed by the closest D to the
previous note. We can create melodies which have larger intervals, still using only \relative
mode:

\relative c' {
d f a g
c b f d

}

� ��� � ��� � �
It is not necessary for the first note of the melody to start on the note which specifies the starting
pitch. In the previous example, the first note – the d – is the closest D to middle C.

By adding (or removing) quotes ' or commas , from the \relative c' { command, we can
change the starting octave:

\relative c'' { % one octave above middle C
e c a c

}

� � � � ��

Chapter 2: Tutorial 14

Relative mode can be confusing initially, but is the easiest way to enter most melodies. Let
us see how this relative calculation works in practice. Starting from a B, which is on the middle
line in a treble clef, you can reach a C, D and E within 3 staff spaces going up, and an A, G
and F within 3 staff spaces going down. So if the note following a B is a C, D or F it will be
assumed to be above the B, and an A, G or F will be assumed to be below.

\relative c'' {
b c % c is 1 staff space up, so is the c above
b d % d is 2 up or 5 down, so is the d above
b e % e is 3 up or 4 down, so is the e above
b a % a is 6 up or 1 down, so is the a below
b g % g is 5 up or 2 down, so is the g below
b f % f is 4 up or 3 down, so is the f below

}

� �� � �� �� � ���� �
Exactly the same happens even when any of these notes are sharpened or flattened. Acci-

dentals are totally ignored in the calculation of relative position. Precisely the same staff space
counting is done from a note at any other position on the staff.

To add intervals that are larger than three staff spaces, we can raise the octave by adding a
single quote ' (or apostrophe) to the note name. We can lower the octave by adding a comma
, to the note name.

\relative c'' {
a a, c' f,
g g'' a,, f'

}

� �
�

�
��� � ��

To change a note by two (or more!) octaves, we use multiple '' or ,, – but be careful that you
use two single quotes '' and not one double quote " ! The initial value in \relative c' may
also be modified like this.

Durations (rhythms)

Music Glossary: 〈undefined〉 [beam], page 〈undefined〉, 〈undefined〉 [duration], page 〈undefined〉,
〈undefined〉 [whole note], page 〈undefined〉, 〈undefined〉 [half note], page 〈undefined〉, 〈undefined〉
[quarter note], page 〈undefined〉, 〈undefined〉 [dotted note], page 〈undefined〉.

The duration of a note is specified by a number after the note name. 1 for a whole note, 2
for a half note, 4 for a quarter note and so on. Beams are added automatically.

If you do not specify a duration, the previous duration is used for the next note. The duration
of the first note defaults to a quarter.

\relative c'' {
a1
a2 a4 a8 a

Chapter 2: Tutorial 15

a16 a a a a32 a a a a64 a a a a a a a a2
}

�� �� �� �

� ����� � ��3 �� ���� ���
To create dotted notes, add a dot . to the duration number. The duration of a dotted note

must be stated explicitly (i.e., with a number).
\relative c'' {
a a a4. a8
a8. a16 a a8. a8 a4.

}

�� �� � �� � ��� �� �� � ��

Rests

Music Glossary: 〈undefined〉 [rest], page 〈undefined〉.
A rest is entered just like a note with the name r:

\relative c'' {
a r r2
r8 a r4 r4. r8

}

� �� � � � � ��� ��
Time signature

Music Glossary: 〈undefined〉 [time signature], page 〈undefined〉.
The time signature can be set with the \time command:

\relative c'' {
\time 3/4
a4 a a
\time 6/8
a4. a
\time 4/4
a4 a a a

}

����
8
6 ��� � � ����

4
3

Chapter 2: Tutorial 16

Clef

Music Glossary: 〈undefined〉 [clef], page 〈undefined〉.
The clef can be set using the \clef command:

\relative c' {
\clef treble
c1
\clef alto
c1
\clef tenor
c1
\clef bass
c1

}

���� ��� �
�

All together

Here is a small example showing all these elements together:
\relative c, {
\time 3/4
\clef bass
c2 e8 c' g'2.
f4 e d c4 c, r4

}

� �
�

�
�

���
4
3 �� �
�

See also

Notation Reference: notation reference, 〈undefined〉 [Writing pitches], page 〈undefined〉 ,
notation reference, 〈undefined〉 [Writing rhythms], page 〈undefined〉 , notation reference, 〈un-
defined〉 [Writing rests], page 〈undefined〉 , notation reference, 〈undefined〉 [Time signature],
page 〈undefined〉 , notation reference, 〈undefined〉 [Clef], page 〈undefined〉 .

2.1.3 Working on text files

LilyPond input files are similar to source files in many common programming languages. They
are case sensitive, and white-space is generally ignored. Expressions are formed with curly braces
{ }, and comments are denoted with % or %{ ... %}.

If the previous sentences sound like nonsense, don’t worry! We’ll explain what all these terms
mean:
• Case sensitive: it matters whether you enter a letter in lower case (e.g. a, b, s, t) or

upper case (e.g. A, B, S, T). Notes are lower case: { c d e } is valid input; { C D E } will
produce an error message.

Chapter 2: Tutorial 17

• Whitespace insensitive: it does not matter how many spaces (or new lines) you add. { c d
e } means the same thing as { c d e } and:

{ c d
e }

Of course, the previous example is hard to read. A good rule of thumb is to indent code
blocks with either a tab or two spaces:

{
c d e

}

• Expressions: every piece of LilyPond input needs to have { curly braces } placed around
the input. These braces tell LilyPond that the input is a single music expression, just like
parentheses () in mathematics. The braces should be surrounded by a space unless they
are at the beginning or end of a line to avoid ambiguities.
A LilyPond command followed by a simple expression in braces (such as \relative { })
also counts as a single music expression.

• Comments: a comment is a remark for the human reader of the music input; it is ignored
while parsing, so it has no effect on the printed output. There are two types of comments.
The percent symbol % introduces a line comment; anything after % on that line is ignored.
By convention, a line comment is placed above the code it refers to.

a4 a a a
% this comment refers to the Bs
b2 b

A block comment marks a whole section of music input as a comment. Anything that is
enclosed in %{ and %} is ignored. However, block comments do not ‘nest’. This means that
you cannot place a block comment inside another block comment. If you try, the first %} will
terminate both block comments. The following fragment shows possible uses for comments:

% notes for twinkle twinkle follow
c4 c g' g a a g2

%{
This line, and the notes below
are ignored, since they are in a
block comment.

g g f f e e d d c2
%}

2.1.4 How to read the manual

LilyPond input must be surrounded by { } marks or a \relative c'' { ... }, as we saw in
Section 2.1.3 [Working on text files], page 16. For the rest of this manual, most examples will
omit this. To replicate the examples, you may copy and paste the displayed input but you must
add the \relative c'' { } like this:

\relative c'' {
... example goes here...

}

Why omit the braces? Most examples in this manual can be inserted into the middle of a
longer piece of music. For these examples, it does not make sense to add \relative c'' { } –
you should not place a \relative inside another \relative! If we included \relative c'' { }
around every example, you would not be able to copy a small documentation example and paste

Chapter 2: Tutorial 18

it inside a longer piece of your own. Most people want to add material to an existing piece, so
we format the manual this way.

Clickable examples

Many people learn programs by trying and fiddling around with the program. This is also
possible with LilyPond. If you click on a picture in the HTML version of this manual, you will
see the exact LilyPond input that was used to generate that image. Try it on this image:

Click here.

���

By cutting and pasting everything in the “ly snippet” section, you have a starting template
for experiments. To see exactly the same output (line-width and all), copy everything from
“Start cut-&-pastable section” to the bottom of the file.

See also

There are more tips for constructing input files in Section 5.1 [Suggestions for writing Lily-
Pond files], page 121. But it might be best to read through the rest of the tutorial first.

2.2 Single staff notation

This section introduces common notation that is used for one voice on one staff.

2.2.1 Accidentals and key signatures

Accidentals

Music Glossary: 〈undefined〉 [sharp], page 〈undefined〉, 〈undefined〉 [flat], page 〈undefined〉,
〈undefined〉 [double sharp], page 〈undefined〉, 〈undefined〉 [double flat], page 〈undefined〉, 〈un-
defined〉 [accidental], page 〈undefined〉.

A sharp pitch is made by adding is to the name, and a flat pitch by adding es. As you
might expect, a double sharp or double flat is made by adding isis or eses. This syntax is
derived from note naming conventions in Nordic and Germanic languages, like German and
Dutch. To use other names for accidentals, see notation reference, 〈undefined〉 [Note names in
other languages], page 〈undefined〉 .

cis1 ees fisis, aeses

� �� ��� � �� �
Key signatures

Music Glossary: 〈undefined〉 [key signature], page 〈undefined〉, 〈undefined〉 [major], page 〈unde-
fined〉, 〈undefined〉 [minor], page 〈undefined〉.

The key signature is set with the command \key followed by a pitch and \major or \minor.

Chapter 2: Tutorial 19

\key d \major
a1
\key c \minor
a

�� �� � �� � ��� �

Warning: key signatures and pitches

Music Glossary: 〈undefined〉 [accidental], page 〈undefined〉, 〈undefined〉 [key signature],
page 〈undefined〉, 〈undefined〉 [pitch], page 〈undefined〉, 〈undefined〉 [flat], page 〈undefined〉,
〈undefined〉 [natural], page 〈undefined〉, 〈undefined〉 [sharp], page 〈undefined〉, 〈undefined〉
[transposition], page 〈undefined〉.

To determine whether to print an accidental, LilyPond examines the pitches and the key
signature. The key signature only affects the printed accidentals, not the note’s pitch! This is
a feature that often causes confusion to newcomers, so let us explain it in more detail.

LilyPond makes a sharp distinction between musical content and layout. The alteration (flat,
natural sign or sharp) of a note is part of the pitch, and is therefore musical content. Whether
an accidental (a printed flat, natural or sharp sign) is printed in front of the corresponding
note is a question of layout. Layout is something that follows rules, so accidentals are printed
automatically according to those rules. The pitches in your music are works of art, so they will
not be added automatically, and you must enter what you want to hear.

In this example:
\key d \major
d cis fis

�� �� �� �

No note has a printed accidental, but you must still add is and type cis and fis in the input
file.

The code e does not mean “print a black dot just below the first line of the staff.” Rather,
it means “there is a note with pitch E-natural.” In the key of A-flat major, it does get an
accidental:

\key aes \major
e

� �� ���� �

Adding all alterations explicitly might require a little more effort when typing, but the
advantage is that transposing is easier, and accidentals can be printed according to different
conventions. For some examples how accidentals can be printed according to different rules, see
notation reference, 〈undefined〉 [Automatic accidentals], page 〈undefined〉 .

Chapter 2: Tutorial 20

See also

Notation Reference: notation reference, 〈undefined〉 [Note names in other languages],
page 〈undefined〉 , notation reference, 〈undefined〉 [Accidentals], page 〈undefined〉 , notation ref-
erence, 〈undefined〉 [Automatic accidentals], page 〈undefined〉 , notation reference, 〈undefined〉
[Key signature], page 〈undefined〉 .

Music Glossary: 〈undefined〉 [Pitch names], page 〈undefined〉.

2.2.2 Ties and slurs

Ties

Music Glossary: 〈undefined〉 [tie], page 〈undefined〉.
A tie is created by appending a tilde ~ to the first note being tied.

g4~ g c2~
c4 ~ c8 a8 ~ a2

� �� � �� ���
Slurs

Music Glossary: 〈undefined〉 [slur], page 〈undefined〉.
A slur is a curve drawn across many notes. The starting note and ending note are marked

with (and) respectively.
d4(c16) cis(d e c cis d) e(d4)

���� �� �� � �� ��� �

Phrasing slurs

Music Glossary: 〈undefined〉 [slurs], page 〈undefined〉, 〈undefined〉 [phrasing], page 〈undefined〉.
Slurs to indicate longer phrasing can be entered with \(and \). You can have both slurs

and phrasing slurs at the same time, but you cannot have simultaneous slurs or simultaneous
phrasing slurs.

a8(\(ais b c) cis2 b'2 a4 cis,\)

��� ��
� � �� � � � �

Warnings: slurs vs. ties

Music Glossary: 〈undefined〉 [articulation], page 〈undefined〉, 〈undefined〉 [slur], page 〈unde-
fined〉, 〈undefined〉 [tie], page 〈undefined〉.

A slur looks like a tie, but it has a different meaning. A tie simply makes the first note longer,
and can only be used on pairs of notes with the same pitch. Slurs indicate the articulation of
notes, and can be used on larger groups of notes. Slurs and ties can be nested.

Chapter 2: Tutorial 21

c2~(c8 fis fis4 ~ fis2 g2)

�� � �� �� ��

See also

Notation Reference: notation reference, 〈undefined〉 [Ties], page 〈undefined〉 , notation ref-
erence, 〈undefined〉 [Slurs], page 〈undefined〉 , notation reference, 〈undefined〉 [Phrasing slurs],
page 〈undefined〉 .

2.2.3 Articulation and dynamics

Articulations

Music Glossary: 〈undefined〉 [articulation], page 〈undefined〉.
Common articulations can be added to a note using a dash - and a single character:

c-. c-- c-> c-^ c-+ c-_

�� ��� �� � �� �� ��

Fingerings

Music Glossary: 〈undefined〉 [fingering], page 〈undefined〉.
Similarly, fingering indications can be added to a note using a dash (-) and the digit to be

printed:

c-3 e-5 b-2 a-1

3� ��2�� � 1
5

Articulations and fingerings are usually placed automatically, but you can specify a direction
by replacing the dash (-) with ^ (up) or _ (down). You can also use multiple articulations on
the same note. However, in most cases it is best to let LilyPond determine the articulation
directions.

c_-^1 d^. f^4_2-> e^-_+

�� � � �� �4

�
2

�1

�
�

Chapter 2: Tutorial 22

Dynamics

Music Glossary: 〈undefined〉 [dynamics], page 〈undefined〉, 〈undefined〉 [crescendo], page 〈unde-
fined〉, 〈undefined〉 [decrescendo], page 〈undefined〉.

Dynamic signs are made by adding the markings (with a backslash) to the note:
c\ff c\mf c\p c\pp

�
mf

�
ppff

�
p

�� �

Crescendi and decrescendi are started with the commands \< and \>. The next dynamics
sign, for example \f, will end the (de)crescendo, or the command \! can be used:

c2\< c2\ff\> c2 c2\!

� ��
ff

� ��

See also

Notation Reference: notation reference, 〈undefined〉 [Articulations and ornamentations],
page 〈undefined〉 , notation reference, 〈undefined〉 [Fingering instructions], page 〈undefined〉
, notation reference, 〈undefined〉 [Dynamics], page 〈undefined〉 .

2.2.4 Adding text

Text may be added to your scores:
c1^"espr" a_"legato"

�
legato

espr� ��

Extra formatting may be added with the \markup command:
c1^\markup{ \bold espr}
a1_\markup{
\dynamic f \italic \small { 2nd } \hspace #0.1 \dynamic p

}

���
espr�

f 2nd p

Chapter 2: Tutorial 23

See also

Notation Reference: notation reference, 〈undefined〉 [Writing text], page 〈undefined〉 .

2.2.5 Automatic and manual beams

Music Glossary: 〈undefined〉 [beam], page 〈undefined〉.
All beams are drawn automatically:

a8 ais d ees r d c16 b a8

� � � �� ��� � ��� �� �

If you do not like the automatic beams, they may be overridden manually. Mark the first note
to be beamed with [and the last one with].

a8[ais] d[ees r d] a b

� �� ���� �� ��� �

See also

Notation Reference: notation reference, 〈undefined〉 [Automatic beams], page 〈undefined〉 ,
notation reference, 〈undefined〉 [Manual beams], page 〈undefined〉 .

2.2.6 Advanced rhythmic commands

Partial measure

Music Glossary: 〈undefined〉 [anacrusis], page 〈undefined〉.
A pickup (or anacrusis) is entered with the keyword \partial. It is followed by a duration:

\partial 4 is a quarter note pickup and \partial 8 an eighth note.
\partial 8
f8 c2 d

� ��� ��
Tuplets

Music Glossary: 〈undefined〉 [note value], page 〈undefined〉, 〈undefined〉 [triplet], page 〈unde-
fined〉.

Tuplets are made with the \times keyword. It takes two arguments: a fraction and a piece
of music. The duration of the piece of music is multiplied by the fraction. Triplets make notes
occupy 2/3 of their notated duration, so a triplet has 2/3 as its fraction

Chapter 2: Tutorial 24

\times 2/3 { f8 g a }
\times 2/3 { c r c }
\times 2/3 { f,8 g16[a g a] }
\times 2/3 { d4 a8 }

���� � � ��
3

�
�

� �� ��
3

3

� ���
3

Grace notes

Music Glossary: 〈undefined〉 [grace notes], page 〈undefined〉, 〈undefined〉 [acciaccatura],
page 〈undefined〉, 〈undefined〉 [appoggiatura], page 〈undefined〉.

Grace notes are created with the \grace command, although they can also be created by
prefixing a music expression with the keyword \appoggiatura or \acciaccatura:

c2 \grace { a32[b] } c2
c2 \appoggiatura b16 c2
c2 \acciaccatura b16 c2

� � ���� �� ���� � ��

See also

Notation Reference: notation reference, 〈undefined〉 [Grace notes], page 〈undefined〉 , no-
tation reference, 〈undefined〉 [Tuplets], page 〈undefined〉 , notation reference, 〈undefined〉 [Up-
beats], page 〈undefined〉 .

2.3 Multiple notes at once

This section introduces having more than one note at the same time: multiple instruments,
multiple staves for a single instrument (i.e. piano), and chords.

Polyphony in music refers to having more than one voice occurring in a piece of music.
Polyphony in LilyPond refers to having more than one voice on the same staff.

2.3.1 Music expressions explained

In LilyPond input files, music is represented by music expressions. A single note is a music
expression:

a4

�� �

Chapter 2: Tutorial 25

Enclosing a note in braces creates a compound music expression. Here we have created a
compound music expression with two notes:

{ a4 g4 }

� � � �

Putting a group of music expressions (e.g. notes) in braces means that they are in sequence
(i.e. each one follows the previous one). The result is another music expression:

{ { a4 g } f g }

�� �� � �
Analogy: mathematical expressions

This mechanism is similar to mathematical formulas: a big formula is created by composing
small formulas. Such formulas are called expressions, and they can contain other expressions,
so you can make arbitrarily complex and large expressions. For example,

1

1 + 2

(1 + 2) * 3

((1 + 2) * 3) / (4 * 5)

This is a sequence of expressions, where each expression is contained in the next (larger) one.
The simplest expressions are numbers, and larger ones are made by combining expressions with
operators (like +, * and /) and parentheses. Like mathematical expressions, music expressions
can be nested arbitrarily deep, which is necessary for complex music like polyphonic scores.

Simultaneous music expressions: multiple staves

Music Glossary: 〈undefined〉 [polyphony], page 〈undefined〉.
This technique is useful for polyphonic music. To enter music with more voices or more

staves, we combine expressions in parallel. To indicate that two voices should play at the same
time, simply enter a simultaneous combination of music expressions. A ‘simultaneous’ music
expression is formed by enclosing expressions inside << and >>. In the following example, three
sequences (all containing two separate notes) are combined simultaneously:

\relative c'' {
<<
{ a4 g }
{ f e }
{ d b }

>>
}

Chapter 2: Tutorial 26

� �

�
��

��
�
�

�
�

�

Note that we have indented each level of the input with a different amount of space. LilyPond
does not care how much (or little) space there is at the beginning of a line, but indenting LilyPond
code like this makes it much easier for humans to read.� �

Note: each note is relative to the previous note in the input, not relative
to the c’’ in the initial \\relative command.
 	

Simultaneous music expressions: single staff

To determine the number of staves in a piece, LilyPond looks at the beginning of the first
expression. If is a single note, there is one staff; if there is a simultaneous expression, there is
more than one staff.

\relative c'' {
c2 <<c e>>
<< { e f } { c <<b d>> } >>

}

��� � ��� ���
2.3.2 Multiple staves

LilyPond input files are constructed out of music expressions, as we saw in Section 2.3.1 [Music
expressions explained], page 24. If the score begins with simultaneous music expressions, Lily-
Pond creates multiples staves. However, it is easier to see what happens if we create each staff
explicitly.

To print more than one staff, each piece of music that makes up a staff is marked by adding
\new Staff before it. These Staff elements are then combined in parallel with << and >>:

\relative c'' {
<<
\new Staff { \clef treble c }
\new Staff { \clef bass c,, }

>>
}

�
�
�

� �
�

Chapter 2: Tutorial 27

The command \new introduces a ‘notation context.’ A notation context is an environment
in which musical events (like notes or \clef commands) are interpreted. For simple pieces,
such notation contexts are created automatically. For more complex pieces, it is best to mark
contexts explicitly.

There are several types of contexts. Score, Staff, and Voice handle melodic notation, while
Lyrics sets lyric texts and ChordNames prints chord names.

In terms of syntax, prepending \new to a music expression creates a bigger music expression.
In this way it resembles the minus sign in mathematics. The formula (4 + 5) is an expression,
so −(4 + 5) is a bigger expression.

Time signatures entered in one staff affects all other staves by default. On the other hand,
the key signature of one staff does not affect other staves. This different default behaviour is
because scores with transposing instruments are more common than polyrhythmic scores.

\relative c'' {
<<
\new Staff { \clef treble \key d \major \time 3/4 c }
\new Staff { \clef bass c,, }

>>
}

��� �
��
�

4
3

4
3

2.3.3 Staff groups

Music Glossary: 〈undefined〉 [brace], page 〈undefined〉.
Piano music is typeset in two staves connected by a brace. Printing such a staff is similar

to the polyphonic example in Section 2.3.2 [Multiple staves], page 26. However, now this entire
expression is inserted inside a PianoStaff:

\new PianoStaff <<
\new Staff ...
\new Staff ...

>>

Here is a small example:
\relative c'' {
\new PianoStaff <<
\new Staff { \time 2/4 c4 e g g, }
\new Staff { \clef bass c,, c' e c }

>>
}

��
�
�

4
2

� �
�

�
�

�

�
4
2

Chapter 2: Tutorial 28

Other staff groupings are introduced with \new GrandStaff, suitable for orchestral scores,
and \new ChoirStaff, suitable for vocal scores. These staff groups each form another type of
context, one that generates the brace at the left end of every system and also controls the extent
of bar lines.

See also

Notation Reference: notation reference, 〈undefined〉 [Piano music], page 〈undefined〉 , nota-
tion reference, 〈undefined〉 [Displaying staves], page 〈undefined〉 .

2.3.4 Combining notes into chords

Music Glossary: 〈undefined〉 [chord], page 〈undefined〉.
We saw earlier how notes can be combined into chords by indicating they are simultaneous

by enclosing them in double angle brackets. However, the normal way of indicating a chord is
to surround the pitches with single angle brackets. Note that all the notes in a chord must have
the same duration, and that the duration is placed after the closing bracket.

r4 <c e g>4 <c f a>2

� �� � �� ���

Think of chords as almost equivalent to single notes: almost everything you can attach to
a single note can be attached to a chord, and everything must go outside the angle brackets.
For example, you can combine markings like beams and ties with chords. They must be placed
outside the angle brackets.

r4 <c e g>8[<c f a>]~ <c f a>2
r4 <c e g>8(<c e g>\> <c e g>4 <c f a>\!)

� �� � �� � � �� ��� ���� ���� �� ��

2.3.5 Single staff polyphony

When different melodic lines are combined on a single staff they are printed as polyphonic voices;
each voice has its own stems, slurs and beams, and the top voice has the stems up, while the
bottom voice has them down.

Entering such parts is done by entering each voice as a sequence (with {...}) and combining
these simultaneously, separating the voices with \\

<<
{ a4 g2 f4~ f4 } \\
{ r4 g4 f2 f4 }

>>

�� �� � ��� � �

Chapter 2: Tutorial 29

For polyphonic music typesetting, spacer rests can also be convenient; these are rests that do
not print. They are useful for filling up voices that temporarily do not play. Here is the same
example with a spacer rest (s) instead of a normal rest (r),

<<
{ a4 g2 f4~ f4 } \\
{ s4 g4 f2 f4 }

>>

�� �� � �� ��
Again, these expressions can be nested arbitrarily.

<<
\new Staff <<
{ a4 g2 f4~ f4 } \\
{ s4 g4 f2 f4 }

>>
\new Staff <<
\clef bass
{ <c g>1 ~ <c g>4 } \\
{ e,,4 d e2 ~ e4}

>>
>>

�

�

��
��

�

�

�

�

��

�
��

�
�
�

�

See also

Notation Reference: notation reference, 〈undefined〉 [Simultaneous notes], page 〈undefined〉 .

2.4 Songs

This section introduces vocal music and simple song sheets.

2.4.1 Setting simple songs

Music Glossary: 〈undefined〉 [lyrics], page 〈undefined〉.
Here is the start of the melody to a nursery rhyme, “Girls and boys come out to play”:

\relative c'' {
\key g \major
\time 6/8

Chapter 2: Tutorial 30

d4 b8 c4 a8 d4 b8 g4
}

�� ���� �8
6� � �� �

The lyrics can be set to these notes, combining both with the \addlyrics keyword. Lyrics
are entered by separating each syllable with a space.

<<
\relative c'' {
\key g \major
\time 6/8
d4 b8 c4 a8 d4 b8 g4

}
\addlyrics {
Girls and boys come out to play,

}
>>

boys

8
6

play,

�
�

comeandGirls

��� � �
out

�
to

�� ��

Note the curly brackets delimiting both the music and the lyrics, and the double angle
brackets << ... >> around the whole piece to show that the music and lyrics are to occur at the
same time.

2.4.2 Aligning lyrics to a melody

Music Glossary: 〈undefined〉 [melisma], page 〈undefined〉, 〈undefined〉 [extender line], page 〈un-
defined〉.

The next line in the nursery rhyme is ‘The moon doth shine as bright as day’. Let’s extend
it:

<<
\relative c'' {
\key g \major
\time 6/8
d4 b8 c4 a8 d4 b8 g4
g8 a4 b8 c b a d4 b8 g4.

}
\addlyrics {
Girls and boys come out to play,
The moon doth shine as bright as day;

}
>>

� �
to

�
as

��
� ��

shineand

��
Girls boys brightThemoonplay, doth

8
6
�

out

� �
come

� �� ��� �

Chapter 2: Tutorial 31

4

as day;

��
� �� � �

We see the extra lyrics do not align properly with the notes. The word ‘shine’ should be
sung on two notes, not one. This is called a melisma, a single syllable sung to more than one
note. There are several ways to spread a syllable over multiple notes, the simplest being to add
a slur across them (see Section 2.2.2 [Ties and slurs], page 20):

<<
\relative c'' {
\key g \major
\time 6/8
d4 b8 c4 a8 d4 b8 g4
g8 a4 b8 c([b)] a d4 b8 g4.

}
\addlyrics {
Girls and boys come out to play,
The moon doth shine as bright as day;

}
>>

shine

�
doth

� ��
as

� ��
The

�
8
6 ��

out

�
come

�
Girls

� �
play,

�
and

�
boys

�
to moon

� � ��

�
day;

� �
as

� �
bright

� �4

Here we have also used manual beaming (the square brackets []) to generate the beaming
which is customarily used with lyrics (see Section 2.2.5 [Automatic and manual beams], page 23).

As an alternative to using slurs, the melismata may be indicated in just the lyrics by using
an underscore, _, for each note that should be included in the melisma:

<<
\relative c'' {
\key g \major
\time 6/8
d4 b8 c4 a8 d4 b8 g4
g8 a4 b8 c[b] a d4 b8 g4.

}
\addlyrics {
Girls and boys come out to play,
The moon doth shine _ as bright as day;

}
>>

Chapter 2: Tutorial 32

�
and The

�
boys

��
moon

�
�
Girls

��� �
8
6� �

doth

�
out

�
as

�
come play, shine

��
to

� ���

day;

�
bright

�4 ��
� �
as

�

If a syllable extends over several notes or a single very long note an extender line is usually
drawn from the syllable extending under all the notes for that syllable. It is entered as two
underscores __. Here is an example from the first three bars of Dido’s Lament, from Purcell’s
Dido and Æneas:

<<
\relative c'' {
\key g \minor
\time 3/2
g2 a bes bes(a)
b c4.(bes8 a4. g8 fis4.) g8 fis1

}
\addlyrics {
When I am laid,
am laid __ in earth,

}
>>

am

�� �� ��
2
3 � ��� �
When

� ���
I

�
laid,

� ��
am

	
laid in

	
earth,

� �� �

None of the examples so far have involved words containing more than one syllable. Such
words are usually split one syllable to a note, with hyphens between syllables. Such hyphens are
entered as two dashes, resulting in a centered hyphen between the syllables. Here is an example
showing this and everything we have learned so far about aligning lyrics to notes.

<<
\relative c' {
\key g \major
\time 3/4
\partial 4
d4 g4 g a8(b) g4 g4
b8(c) d4 d e4 c2

}
\addlyrics {
A -- way in a __ man -- ger,
no __ crib for a bed, __

}
>>

Chapter 2: Tutorial 33

�
4
3

bed,

�
A

� �
way

��
in crib

�
a ger, no a

��
for

� �
man

� �� �

Some lyrics, especially those in Italian, require the opposite: setting more than one syllable
to a single note. This is achieved by linking the syllables together with a single underscore _
(with no spaces), or enclosing them in quotes. Here’s an example from Rossini’s Figaro, where
‘al’ has to be sung on the same note as the ‘go’ of ‘Largo’ in Figaro’s aria ‘Largo al factotum’:

<<
\relative c' {
\clef bass
\key c \major
\time 6/8
c4.~ c8 d b c([d)] b c d b c

}
\addlyrics {
Lar -- go_al fac -- to -- tum del -- la cit -- tà

}
>>

�

delLar

��

citto

� � ��

tum

�
fac

�

go al

8
6

�

tà

� � �

la

�
�

See also

Notation Reference: notation reference, 〈undefined〉 [Vocal music], page 〈undefined〉 .

2.4.3 Lyrics to multiple staves

The simple approach using \addlyrics can be used for placing lyrics under more than one staff.
Here is an example from Handel’s Judas Maccabæus:

<<
{
\time 6/8
\partial 8

}
\relative c'' {
\key f \major
c8 c([bes)] a a([g)] f f'4. b, c4.~ c4

}
\addlyrics {
Let flee -- cy flocks the hills a -- dorn, __

}
\relative c' {
\key f \major
r8 r4. r4 c8 a'([g)] f f([e)] d e([d)] c bes'4

}

Chapter 2: Tutorial 34

\addlyrics {
Let flee -- cy flocks the hills a -- dorn,

}
>>

�

� �� �
a

�
�

dorn,

� ��

flocks

�

�

�

8
6 �� �

the

Let

� �

a

�

8
6 �

�
cy

��
hillsLet

the

�

�� ��
cy

��

��

��

�

�
flee

�
hills

�
dorn,

�
flocks

�

�
flee

but scores any more complex than this simple example are better produced by separating out
the staff structure from the notes and lyrics with variables. These are discussed in Section 2.5.1
[Organizing pieces with variables], page 34.

See also

Notation Reference: notation reference, 〈undefined〉 [Vocal music], page 〈undefined〉 .

2.5 Final touches

This is the final section of the tutorial; it demonstrates how to add the final touches to simple
pieces, and provides an introduction to the rest of the manual.

2.5.1 Organizing pieces with variables

When all of the elements discussed earlier are combined to produce larger files, the music ex-
pressions get a lot bigger. In polyphonic music with many staves, the input files can become
very confusing. We can reduce this confusion by using variables.

With variables (also known as identifiers or macros), we can break up complex music expres-
sions. A variable is assigned as follows:

namedMusic = { ... }

The contents of the music expression namedMusic can be used later by placing a backslash
in front of the name (\namedMusic, just like a normal LilyPond command).

violin = \new Staff { \relative c'' {
a4 b c b

}}
cello = \new Staff { \relative c {
\clef bass
e2 d

}}
{
<<
\violin
\cello

>>

Chapter 2: Tutorial 35

}

��
�� �
�
� �
�
�

The name of a variable must have alphabetic characters only, no numbers, underscores, or
dashes.

Variables must be defined before the main music expression, but may be used as many times
as required anywhere after they have been defined. They may even be used in a later definition
of another variable, giving a way of shortening the input if a section of music is repeated many
times.

tripletA = \times 2/3 { c,8 e g }
barA = { \tripletA \tripletA \tripletA \tripletA }

\relative c'' {
\barA \barA
}

��3

� ����
3

�� �� � �� �3

� �� � ��
3 � �

3 � �
3

�
33

Variables may be used for many other types of objects in the input. For example,

width = 4.5\cm
name = "Wendy"
aFivePaper = \paper { paperheight = 21.0 \cm }

Depending on its contents, the variable can be used in different places. The following example
uses the above variables:

\paper {
\aFivePaper
line-width = \width

}
{ c4^\name }

2.5.2 Version number

The \version statement records the version of LilyPond that was used to write the file:

\version "2.11.38"

By convention, this is placed at the top of your LilyPond file.

These annotations make future upgrades of LilyPond go more smoothly. Changes in the
syntax are handled with a special program, ‘convert-ly’, and it uses \version to determine
what rules to apply. For details, see program usage manual, 〈undefined〉 [Updating files with
convert-ly], page 〈undefined〉 .

Chapter 2: Tutorial 36

2.5.3 Adding titles

The title, composer, opus number, and similar information are entered in the \header block.
This exists outside of the main music expression; the \header block is usually placed underneath
the Section 2.5.2 [Version number], page 35.

\version "2.11.38"
\header {
title = "Symphony"
composer = "Me"
opus = "Op. 9"

}

{
... music ...

}

When the file is processed, the title and composer are printed above the music. More informa-
tion on titling can be found in notation reference, 〈undefined〉 [Creating titles], page 〈undefined〉
.

2.5.4 Absolute note names

So far we have always used \relative to define pitches. This is the easiest way to enter most
music, but another way of defining pitches exists: absolute mode.

If you omit the \relative, LilyPond treats all pitches as absolute values. A c' will always
mean middle C, a b will always mean the note one step below middle C, and a g, will always
mean the note on the bottom staff of the bass clef.

{
\clef bass
c' b g, g,
g, f, f c'

}

� � � � �

�� �
�

�

Here is a four-octave scale:

{
\clef bass
c, d, e, f,
g, a, b, c
d e f g
a b c' d'
\clef treble
e' f' g' a'
b' c'' d'' e''
f'' g'' a'' b''
c'''1

}

Chapter 2: Tutorial 37

�
�

��� � � ��� � � ��
� � � �

�� ��
�

�
6 � �� ���

�� �

As you can see, writing a melody in the treble clef involves a lot of quote ' marks. Consider
this fragment from Mozart:

{
\key a \major
\time 6/8
cis''8. d''16 cis''8 e''4 e''8
b'8. cis''16 b'8 d''4 d''8

}

8
6

���� �� �� �� � �� � � �� �
All these quotes makes the input less readable and they are a source of errors. With

\relative, the previous example is much easier to read and type:

\relative c'' {
\key a \major
\time 6/8
cis8. d16 cis8 e4 e8
b8. cis16 b8 d4 d8

}

� �
8
6

��� ���� �� � ��� � ��

If you make a mistake with an octave mark (' or ,) while working in \relative mode, it
is very obvious – many notes will be in the wrong octave. When working in absolute mode, a
single mistake will not be as visible, and will not be as easy to find.

However, absolute mode is useful for music which has large intervals, and is extremely useful
for computer-generated LilyPond files.

2.5.5 After the tutorial

FIXME: rewrite slightly after the rest of the LM has been stabilized. Translators, ignore this
section for now.

After finishing the tutorial, you should probably try writing a piece or two. Start by adding
notes to one of the Appendix A [Templates], page 131. If you need any notation that was not
covered in the tutorial, look at the Notation Reference, starting with notation reference, 〈unde-
fined〉 [Musical notation], page 〈undefined〉 . If you want to write for an instrument ensemble
that is not covered in the templates, take a look at Section 3.4 [Extending the templates],
page 63.

Chapter 2: Tutorial 38

Once you have written a few short pieces, read the rest of the Learning Manual (chapters 3-5).
There’s nothing wrong with reading it now, of course! However, the rest of the Learning Manual
assumes that you are familiar with LilyPond input. You may wish to skim these chapters right
now, and come back to them after you have more experience.

Chapter 3: Fundamental concepts 39

3 Fundamental concepts

You’ve seen in the Tutorial how to produce beautifully printed music from a simple text file.
This section introduces the concepts and techniques required to produce equally beautiful but
more complex scores.

3.1 How LilyPond files work

The LilyPond input format is quite free-form, giving experienced users a lot of flexibility to
structure their files however they wish. But this flexibility can make things confusing for new
users. This section will explain some of this structure, but may gloss over some details in favor
of simplicity. For a complete description of the input format, see notation reference, 〈undefined〉
[File structure], page 〈undefined〉 .

3.1.1 Introduction to the LilyPond file structure

A basic example of a lilypond input file is
\version "2.11.38"
\score {
...compound music expression... % all the music goes here!
\header { }
\layout { }
\midi { }

}

There are many variations of this basic pattern, but this example serves as a useful starting
place.

Up to this point none of the examples you have seen has used a \score{} command. This
is because LilyPond automatically adds the extra commands which are needed when you give it
simple input. LilyPond treats input like this:

\relative c'' {
c4 a d c

}

as shorthand for this:
\book {
\score {
\new Staff {
\new Voice {
\relative c'' {
c4 a b c

}
}

}
\layout { }

}
}

In other words, if the input contains a single music expression, LilyPond will interpret the
file as though the music expression was wrapped up inside the commands shown above. For
now, though, let us return to the first example and examine the \score command, leaving the
others to default.

A \score block must always contain just one music expression, and this must appear imme-
diately after the \score command. Remember that a music expression could be anything from
a single note to a huge compound expression like

Chapter 3: Fundamental concepts 40

{
\new GrandStaff <<
...insert the whole score of a Wagner opera in here...

>>
}

Since everything is inside { ... }, it counts as one music expression.

As we saw previously, the \score block can contain other things, such as

\score {
{ c'4 a b c' }
\header { }
\layout { }
\midi { }

}

Some people put some of those commands outside the \score block – for example, \header is
often placed above the \score command. That’s just another shorthand that LilyPond accepts.

Two more commands you have not previously seen are \layout { } and \midi {}. If these
appear as shown they will cause LilyPond to produce a printed output and a MIDI output
respectively. They are described fully in the Notation Reference – notation reference, 〈unde-
fined〉 [Score layout], page 〈undefined〉 and notation reference, 〈undefined〉 [Creating MIDI files],
page 〈undefined〉 .

You may code multiple \score blocks. Each will be treated as a separate score, but they
will be all combined into a single output file. A \book command is not necessary – one will
be implicitly created. However, if you would like separate output files from one .ly file then
the \book command should be used to separate the different sections: each \book block will
produce a separate output file. For details see notation reference, 〈undefined〉 [Multiple scores
in a book], page 〈undefined〉 .

Another great shorthand is the ability to define variables. All the templates use this

melody = \relative c' {
c4 a b c

}

\score {
\melody

}

When LilyPond looks at this file, it takes the value of melody (everything after the equals
sign) and inserts it whenever it sees \melody. There’s nothing special about the names – it
could be melody, global, TimeKey, pianorighthand, or foofoobarbaz. For more details, see
Section 5.1.4 [Saving typing with variables and functions], page 122. Remember that you can use
almost any name you like as long as it contains just alphabetic characters and is distinct from
LilyPond command names. The exact limitations on variable names are detailed in notation
reference, 〈undefined〉 [File structure], page 〈undefined〉 .

See also

For a complete definition of the input format, see notation reference, 〈undefined〉 [File struc-
ture], page 〈undefined〉 .

Chapter 3: Fundamental concepts 41

3.1.2 Score is a (single) compound musical expression

We saw the general organization of LilyPond input files in the previous section, Section 3.1 [How
LilyPond files work], page 39. But we seemed to skip over the most important part: how do we
figure out what to write after \score?

We didn’t skip over it at all. The big mystery is simply that there is no mystery. This line
explains it all:

A \score block must begin with a compound music expression.
You may find it useful to review Section 2.3.1 [Music expressions explained], page 24. In that
section, we saw how to build big music expressions from small pieces – we started from notes,
then chords, etc. Now we’re going to start from a big music expression and work our way down.

\score {
{ % this brace begins the overall compound music expression
\new GrandStaff <<
...insert the whole score of a Wagner opera in here...

>>
} % this brace ends the overall compound music expression
\layout { }

}

A whole Wagner opera would easily double the length of this manual, so let’s just add a singer
and piano. We don’t need a GrandStaff for this ensemble, which simply groups a number of
staves together with a brace at the left, so we shall remove it. We do need a singer and a piano,
though.

\score {
<<
\new Staff = "singer" <<
>>
\new PianoStaff = piano <<
>>

>>
\layout { }

}

Remember that we use << ... >> instead of { ... } to show simultaneous music. And we
definitely want to show the vocal part and piano part at the same time, not one after the other!
However, the << ... >> construct is not really necessary for the Singer staff, as it contains only
one music expression, but Staves often do require simultaneous Voices within them, so using <<
... >> rather than braces is a good habit to adopt. We’ll add some real music later; for now
let’s just put in some dummy notes and lyrics.

\score {
<<
\new Staff = "singer" <<
\new Voice = "vocal" { c'1 }
\addlyrics { And }

>>
\new PianoStaff = "piano" <<
\new Staff = "upper" { c'1 }
\new Staff = "lower" { c'1 }

>>
>>
\layout { }

}

Chapter 3: Fundamental concepts 42

And

�
� �
�

�

��

���

Now we have a lot more details. We have the singer’s staff: it contains a Voice (in LilyPond,
this term refers to a set of notes, not necessarily vocal notes – for example, a violin generally
plays one voice) and some lyrics. We also have a piano staff: it contains an upper staff (right
hand) and a lower staff (left hand).

At this stage, we could start filling in notes. Inside the curly braces next to \new Voice =
vocal, we could start writing

\relative c'' {
r4 d8\noBeam g, c4 r

}

But if we did that, the \score section would get pretty long, and it would be harder to
understand what was happening. So let’s use variables instead. These were introduced at the
end of the previous section, remember? So, adding a few notes, we now have a piece of real
music:

melody = \relative c'' { r4 d8\noBeam g, c4 r }
text = \lyricmode { And God said, }
upper = \relative c'' { <g d g,>2~ <g d g,> }
lower = \relative c { b2 e2 }

\score {
<<
\new Staff = "singer" <<
\new Voice = "vocal" { \melody }
\addlyrics { \text }

>>
\new PianoStaff = "piano" <<
\new Staff = "upper" { \upper }
\new Staff = "lower" {
\clef "bass"
\lower

}
>>

>>
\layout { }

}

Chapter 3: Fundamental concepts 43

God

�
�

said,

�

�
�

�

� � ��
And

�
�

��

�� �

��

���
Be careful about the difference between notes, which are introduced with \relative, and

lyrics, which are introduced with \lyricmode. These are essential to tell LilyPond to interpret
the following content as music and text respectively.

When writing (or reading) a \score section, just take it slowly and carefully. Start with the
outer layer, then work on each smaller layer. It also really helps to be strict with indentation –
make sure that each item on the same layer starts on the same horizontal position in your text
editor.

3.1.3 Nesting music expressions

It is not essential to declare all staves at the beginning; they may be introduced temporarily
at any point. This is particularly useful for creating ossia sections (see 〈undefined〉 [ossia],
page 〈undefined〉). Here is a simple example showing how to introduce a new staff temporarily
for the duration of three notes:

\new Staff {
\relative g' {
r4 g8 g c4 c8 d |
e4 r8
<<
{ f c c }
\new Staff {
f8 f c

}
>>
r4 |

}
}

��� �
� �
� �� � �

�

�

� ��
� �� �

��

�

Note that the size of the clef is the same as a clef printed following a clef change – slightly
smaller than the clef at the begining of the line. This is usual for clefs printed in the middle of
a line.

The ossia section may be placed above the staff as follows:
\new Staff ="main" {
\relative g' {

Chapter 3: Fundamental concepts 44

r4 g8 g c4 c8 d |
e4 r8
<<
{ f c c }
\new Staff \with {
alignAboveContext = "main" }

{ f8 f c }
>>
r4 |

}
}

� �
� ��

� � �
� � � ��

�
� � �

�
�

�

�� �

This example uses \with, which will be explained more fully later. It is a means of modifying
the default behaviour of a single Staff. Here it says that the new staff should be placed above
the staff called “main” instead of the default position which is below.

Ossia are often written without clef and without time signature and are usually in a smaller
font. These require further commands which have not yet been introduced. See Section 4.3.2
[Size of objects], page 87

3.1.4 On the un-nestedness of brackets and ties

You have already met a number of different types of bracket in writing the input file to LilyPond.
These obey different rules which can be confusing at first. Before we explain the rules let’s first
review the different types of bracket.

Bracket Type Function
{ .. } Encloses a sequential segment of music
< .. > Encloses the notes of a chord
<< .. >> Encloses concurrent or simultaneous sections
(..) Marks the start and end of a slur
\(.. \) Marks the start and end of a phrase mark
[..] Marks the start and end of a manual beam

To these we should add other constructs which generate lines between or across notes:
ties (marked by a tilde, ~), tuplets written as \times x/y {..}, and grace notes written as
\grace{..}.

Outside LilyPond, the conventional use of brackets requires the different types to be properly
nested, like this, << [{ (..) }] >>, with the closing brackets being encountered in exactly
the opposite order to the opening brackets. This is a requirement for the three types of bracket
described by the word ‘Encloses’ in the table above – they must nest properly. However, the
remaining brackets, described with the word ‘Marks’ in the table above together with ties and
tuplets, do not have to nest properly with any of the brackets. In fact, these are not brackets in
the sense that they enclose something – they are simply markers to indicate where something
starts and ends.

Chapter 3: Fundamental concepts 45

So, for example, a phrasing slur can start before a manually inserted beam and end before
the end of the beam – not very musical, perhaps, but possible:

{ g8\(a b[c b\) a] }

�� � ��� ��
In general, different kinds of brackets, and those implied by tuplets, ties and grace notes, may

be mixed freely. This example shows a beam extending into a tuplet (line 1), a slur extending
into a tuplet (line 2), a beam and a slur extending into a tuplet, a tie crossing two tuplets, and
a phrasing slur extending out of a tuplet (lines 3 and 4).

{
r16[g16 \times 2/3 {r16 e'8] }
g16(a \times 2/3 {b d) e' }
g8[(a \times 2/3 {b d') e'~]}
\times 4/5 {e'32\(a b d' e'} a'4.\)

}

� �� ���
3

�
� � 3

� �� �3
�� �

�
2

�
5� � ��� �

3.2 Voices contain music

Singers need voices to sing, and so does LilyPond. The actual music for all instruments in a
score is contained in Voices – the most fundamental of all LilyPond’s concepts.

3.2.1 I’m hearing Voices

The lowest, most fundamental or innermost layers in a LilyPond score are called ‘Voice contexts’
or just ‘Voices’ for short. Voices are sometimes called ‘layers’ in other notation packages.

In fact, a Voice layer or context is the only one which can contain music. If a Voice context is
not explicitly declared one is created automatically, as we saw at the beginning of this chapter.
Some instruments such as an Oboe can play only one note at a time. Music written for such
instruments is monophonic and requires just a single voice. Instruments which can play more
than one note at a time like the piano will often require multiple voices to encode the different
concurrent notes and rhythms they are capable of playing.

A single voice can contain many notes in a chord, of course, so when exactly are multiple
voices needed? Look first at this example of four chords:

\key g \major
<d g>4 <d fis> <d a'> <d g>

� � ��
�

��� � ��

Chapter 3: Fundamental concepts 46

This can be expressed using just the single angle bracket chord symbols, < ... >, and for
this just a single voice is needed. But suppose the F-sharp were actually an eighth-note followed
by an eighth-note G, a passing note on the way to the A? Now we have two notes which start
at the same time but have different durations: the quarter-note D and the eighth-note F-sharp.
How are these to be coded? They cannot be written as a chord because all the notes in a chord
must have the same duration. And they cannot be written as two separate notes as they need
to start at the same time. This is when two voices are required.

Let us see how this is done in LilyPond input syntax.
The easiest way to enter fragments with more than one voice on a staff is to enter each voice as

a sequence (with {...}), and combine them simultaneously with angle brackets, <<...>>. The
fragments must also be separated with double backward slashes, \\, to place them in separate
voices. Without these, the notes would be entered into a single voice, which would usually cause
errors. This technique is particularly suited to pieces of music which are largely monophonic
with occasional short sections of polyphony.

Here’s how we split the chords above into two voices and add both the passing note and a
slur:

\key g \major
% Voice "1" Voice "2"
<< { g4 fis8(g) a4 g } \\ { d4 d d d } >> |

�� � �� � ��� � ��

Notice how the stems of the second voice now point down.
Here’s another simple example:

\key d \minor
% Voice "1" Voice "2"
<< { r4 g g4. a8 } \\ { d,2 d4 g } >> |
<< { bes4 bes c bes } \\ { g4 g g8(a) g4 } >> |
<< { a2. r4 } \\ { fis2. s4 } >> |

�� �� ���� �� �� �� �� �� �� �� �� �� �
It is not necessary to use a separate << \\ >> construct for each bar. For music with few

notes in each bar this layout can help the legibility of the code, but if there are many notes in
each bar it may be better to split out each voice separately, like this:

\key d \minor
<< {
% Voice "1"
r4 g g4. a8 |
bes4 bes c bes |
a2. r4 |

} \\ {
% Voice "2"
d,2 d4 g |

Chapter 3: Fundamental concepts 47

g4 g g8(a) g4 |
fis2. s4 |

} >>

�� ��� � ��� �� � �� �� � � � �� �� ��� �
This example has just two voices, but the same contruct may be used to encode three or

more voices by adding more back-slash separators.
The Voice contexts bear the names "1", "2", etc. In each of these contexts, the vertical

direction of slurs, stems, ties, dynamics etc., is set appropriately.
\new Staff \relative c' {
% Main voice
c16 d e f
% Voice "1" Voice "2" Voice "3"
<< { g4 f e } \\ { r8 e4 d c8 ~ } >> |
<< { d2 e2 } \\ { c8 b16 a b8 g ~ g2 } \\ { s4 b4 c2 } >> |

}

�� �� � �� ���
� �� ��� �� �� ��� �

These voices are all separate from the main voice that contains the notes just outside the
<< .. >> construct. Let’s call this the simultaneous construct. Slurs and ties may only connect
notes within the same voice, so slurs and ties cannot go into or out of a simultaneous construct.
Conversely, parallel voices from separate simultaneous constructs on the same staff are the same
voice. Other voice-related properties also carry across simultaneous constructs. Here is the same
example, with different colors and note heads for each voice. Note that changes in one voice do
not affect other voices, but they do persist in the same voice later. Note also that tied notes
may be split across the same voices in two constructs, shown here in the blue triangle voice.

\new Staff \relative c' {
% Main voice
c16 d e f
<< % Bar 1
{
\voiceOneStyle
g4 f e

}
\\
{
\voiceTwoStyle
r8 e4 d c8 ~

}
>>
<< % Bar 2

% Voice 1 continues

Chapter 3: Fundamental concepts 48

{ d2 e2 }
\\

% Voice 2 continues
{ c8 b16 a b8 g ~ g2 }

\\
{
\voiceThreeStyle
s4 b4 c2

}
>>

}

� � � �� � ��� �� �� � ��� � ��	 � ��

The commands \voiceXXXStyle are mainly intended for use in educational documents such
as this one. They modify the color of the note head, the stem and the beams, and the style of
the note head, so that the voices may be easily distinguished. Voice one is set to red diamonds,
voice two to blue triangles, voice three to green crossed circles, and voice four (not used here)
to magenta crosses. We shall see later how commands like these may be created by the user.
See Section 4.3.1 [Visibility and color of objects], page 83 TODO Add link to using variables for
tweaks

Polyphony does not change the relationship of notes within a \relative { } block. Each
note is still calculated relative to the note immediately preceding it, or to the first note of the
preceding chord. So in

\relative c' { noteA << < noteB noteC > \\ noteD >> noteE }

noteB is relative to noteA
noteC is relative to noteB, not noteA;
noteD is relative to noteB, not noteA or noteC.
noteE is relative to noteD, not noteA

An alternative way, which may be clearer if the notes in the voices are widely separated, is
to place a \relative command at the start of each voice:

\relative c' { noteA ... }
<<
\relative c'' { < noteB noteC > ... }

\\
\relative g' { noteD ... }

>>
\relative c' { noteE ... }

Let us finally analyse the voices in a more complex piece of music. Here are the notes from
the first two bars of the second of Chopin’s Deux Nocturnes, Op 32. This example will be
used at later stages in this and the next chapter to illustrate several techniques for producing
notation, so please ignore for now anything in the underlying code which looks mysterious and
concentrate just on the music and the voices – the complications will all be explained in later
sections.

Chapter 3: Fundamental concepts 49

�� ��
�� ����� ���� ����� � �

The direction of the stems is often used to indicate the continuity of two simultaneous melodic
lines. Here the stems of the highest notes are all pointing up and the stems of the lower notes
are all pointing down. This is the first indication that more than one voice is required.

But the real need for multiple voices arises when notes which start at the same time have
different durations. Look at the notes which start at beat three in the first bar. The A-flat is
a dotted quarter note, the F is a quarter note and the D-flat is a half note. These cannot be
written as a chord as all the notes in a chord must have the same duration. Neither can they be
written as sequential notes, as they must start at the same time. This section of the bar requires
three voices, and the normal practice would be to write the whole bar as three voices, as shown
below, where we have used different note heads and colors for the three voices. Again, the code
behind this example will be explained later, so ignore anything you do not understand.

��� ��� � � ������ �� ��	

� �

Let us try to encode this music from scratch. As we shall see, this encounters some difficulties.
We begin as we have learnt, using the << \\ >> construct to enter the music of the first bar in
three voices:

\new Staff \relative c'' {
\key aes \major
<<
{ c2 aes4. bes8 } \\ { aes2 f4 fes } \\ { <ees c>2 des2 }

>>
<c ees aes c>1

}

���� ����� �� � ��� �������
The stem directions are automatically assigned with the odd-numbered voices taking upward

stems and the even-numbered voices downward ones. The stems for voices 1 and 2 are right,
but the stems in voice 3 should go down in this particular piece of music. We can correct this
simply by missing out voice three and placing the music in voice four:

\new Staff \relative c'' {
\key aes \major
<< % Voice one
{ c2 aes4. bes8 }

\\ % Voice two
{ aes2 f4 fes }

\\ % Omit Voice three
\\ % Voice four
{ <ees c>2 des2 }

>> |
<c ees aes c>1 |

}

Chapter 3: Fundamental concepts 50

� � � � ��� ����� � ������ ��
�

We see that this fixes the stem direction, but exposes a problem sometimes encountered with
multiple voices – the stems of the notes in one voice can collide with the note heads in other
voices. In laying out the notes, LilyPond allows the notes or chords from two voices to occupy
the same vertical note column provided the stems are in opposite directions, but the notes from
the third and fourth voices are displaced to if necessary to avoid the note heads colliding. This
usually works well, but in this example the notes of the lowest voice are clearly not well placed
by default. LilyPond provides several ways to adjust the horizontal placing of notes. We are
not quite ready yet to see how to correct this, so we shall leave this problem until a later section
(see the force-hshift property in Section 4.5.2 [Fixing overlapping notation], page 102)

3.2.2 Explicitly instantiating voices

Voice contexts can also be created manually inside a << >> block to create polyphonic music,
using \voiceOne ... \voiceFour to indicate the required directions of stems, slurs, etc. In
longer scores this method is clearer, as it permits the voices to be separated and to be given
more descriptive names.

Specifically, the construct << \\ >> which we used in the previous section:
\new Staff {
\relative c' {
<< { e4 f g a } \\ { c,4 d e f } >>

}
}

is equivalent to
\new Staff <<
\new Voice = "1" { \voiceOne \relative c' { e4 f g a } }
\new Voice = "2" { \voiceTwo \relative c' { c4 d e f } }

>>

Both of the above would produce

�� � ��� �� � �
The \voiceXXX commands set the direction of stems, slurs, ties, articulations, text annota-

tions, augmentation dots of dotted notes, and fingerings. \voiceOne and \voiceThree make
these objects point upwards, while \voiceTwo and \voiceFour make them point downwards.
These commands also generate a horizontal shift for each voice when this is required to avoid
clashes of note heads. The command \oneVoice reverts the settings back to the normal values
for a single voice.

Let us see in some simple examples exactly what effect \oneVoice, \voiceOne and voiceTwo
have on markup, ties, slurs, and dynamics:

\relative c'{
% Default behaviour or behaviour after \oneVoice
c d8 ~ d e4 (f g a) b-> c

}

�� � ����� � ���

Chapter 3: Fundamental concepts 51

\relative c'{
\voiceOne
c d8 ~ d e4 (f g a) b-> c
\oneVoice
c, d8 ~ d e4 (f g a) b-> c

}

�� �� � � �� � �� ��
��� � �� �� �

\relative c'{
\voiceTwo
c d8 ~ d e4 (f g a) b-> c
\oneVoice
c, d8 ~ d e4 (f g a) b-> c

}

� �� � �� �� �� � �
�� �� � � � ���

An expression that appears directly inside a << >> belongs to the main voice (but, note, not
in a << \\ >> construct). This is useful when extra voices appear while the main voice is playing.
Here is a more correct rendition of the example from the previous section. The red diamond-
shaped notes demonstrate that the main melody is now in a single voice context, permitting a
phrasing slur to be drawn over them.

\new Staff \relative c' {
\voiceOneStyle
% The following notes are monophonic
c16^(d e f
% Start simultaneous section of three voices
<<
% Continue the main voice in parallel
{ g4 f e | d2 e2) }
% Initiate second voice
\new Voice {
% Set stems, etc, down
\voiceTwo
r8 e4 d c8 ~ | c8 b16 a b8 g ~ g2

}
% Initiate third voice
\new Voice {
% Set stems, etc, up
\voiceThree
s2. | s4 b4 c2

}
>>

}

Chapter 3: Fundamental concepts 52

��� �� � ���� �� �� �� � � �� � �� �

More deeply nested polyphony constructs are possible, and if a voice appears only briefly
this might be a more natural way to typeset the music.

\new Staff \relative c' {
c16^(d e f
<<
{ g4 f e | d2 e2) }
\new Voice {
\voiceTwo
r8 e4 d c8 ~ |
<<
{c8 b16 a b8 g ~ g2}
\new Voice {
\voiceThree
s4 b4 c2

}
>>

}
>>

}

�� � � �� � ��
�� �� � �� �� �� �

�
� �

This method of nesting new voices briefly is useful when only small sections of the music
are polyphonic, but when the whole staff is largely polyphonic it can be clearer to use multiple
voices throughout, using spacing notes to step over sections where the voice is silent, as here:

\new Staff \relative c' <<
% Initiate first voice
\new Voice {
\voiceOne
c16^(d e f g4 f e | d2 e2) |

}
% Initiate second voice
\new Voice {
% set stems, etc down
\voiceTwo
s4 r8 e4 d c8 ~ | c8 b16 a b8 g ~ g2 |

}
% Initiate third voice
\new Voice {
% set stems, etc up
\voiceThree
s1 | s4 b4 c2 |

}
>>

Chapter 3: Fundamental concepts 53

� �� � � �� ��� � ��
� � � � ���� ��

�
Closely spaced notes in a chord, or notes occuring at the same time in different voices, are

arranged in two, occasionally more, columns to prevent the note heads overlapping. These are
called note columns. There are separate columns for each voice, and the currently specified
voice-dependent shift is applied to the note column if there would otherwise be a collision. This
can be seen in the example above. In bar 2 the C in voice two is shifted to the right relative to
the D in voice one, and in the final chord the C in voice three is also shifted to the right relative
to the other notes.

The \shiftOn, \shiftOnn, \shiftOnnn, and \shiftOff commands specify the degree to
which notes and chords of the voice should be shifted if a collision would otherwise occur. By
default, the outer voices (normally voices one and two) have \shiftOff specified, while the
inner voices (three and four) have \shiftOn specified. When a shift is applied, Voices one and
three are shifted to the right and voices two and four to the left.

\shiftOnn and \shiftOnnn define further shift levels which may be specified temporarily to
resolve collisions in complex situations – see Section 4.5.3 [Real music example], page 107.

A note column can contain just one note (or chord) from a voice with stems up and one note
(or chord) from a voice with stems down. If notes from two voices which have their stems in the
same direction are placed at the same position and both voices have no shift or the same shift
specified, the error message “Too many clashing note columns” will be produced.

3.2.3 Voices and vocals

Vocal music presents a special difficulty: we need to combine two expressions – notes and lyrics.
You have already seen the \addlyrics{} command, which handles simple scores well. How-

ever, this technique is quite limited. For more complex music, you must introduce the lyrics in a
Lyrics context using \new Lyrics and explicitly link the lyrics to the notes with \lyricsto{},
using the name assigned to the Voice.

<<
\new Voice = "one" \relative c'' {
\autoBeamOff
\time 2/4
c4 b8. a16 g4. f8 e4 d c2

}
\new Lyrics \lyricsto "one" {
No more let sins and sor -- rows grow.

}
>>

�
�4

2

let rows

��
more sorsins

�� ��
grow.

�
and

��
No

� ��

The automatic beaming which LilyPond uses by default works well for instrumental music,
but not so well for music with lyrics, where beaming is either not required at all or is used to
indicate melismata in the lyrics. In the example above we use the command \autoBeamOff to
turn off the automatic beaming.

Let us reuse the earlier example from Judas Maccabæus to illustrate this more flexible tech-
nique. We first recast it to use variables so the music and lyrics can be separated from the staff

Chapter 3: Fundamental concepts 54

structure. We also introduce a ChoirStaff bracket. The lyrics themselves must be introduced
with \lyricmode to ensure they are interpreted as lyrics rather than music.

global = { \time 6/8 \partial 8 \key f \major}
SopOneMusic = \relative c'' {
c8 | c([bes)] a a([g)] f | f'4. b, | c4.~ c4 }

SopTwoMusic = \relative c' {
r8 | r4. r4 c8 | a'([g)] f f([e)] d | e([d)] c bes' }

SopOneLyrics = \lyricmode {
Let | flee -- cy flocks the | hills a -- dorn, __ }

SopTwoLyrics = \lyricmode {
Let | flee -- cy flocks the | hills a -- dorn, }

\score {
\new ChoirStaff <<
\new Staff <<
\new Voice = "SopOne" {
\global
\SopOneMusic

}
\new Lyrics \lyricsto "SopOne" {
\SopOneLyrics

}
>>
\new Staff <<
\new Voice = "SopTwo" {
\global
\SopTwoMusic

}
\new Lyrics \lyricsto "SopTwo" {
\SopTwoLyrics

}
>>

>>
}

flee

�
Let

��

�

dorn,

� �
the

�

�
a

�

cy

�
��

the

�

�

� �

� �

�
8
6 ��

	

flocks

�
�

�
dorn,

	
flee

� �

�
a

�

8
6

	

�

� �� �

�
hills

�

�

�
hills

�
Let

flocks

	

�
cy

This is the basic structure of all vocal scores. More staves may be added as required, more
voices may be added to the staves, more verses may be added to the lyrics, and the variables
containing the music can easily be placed in separate files should they become too long.

Here is a final example of the first line of a hymn with four verses, set for SATB. In this case
the words for all four parts are the same.

TimeKey = { \time 4/4 \partial 4 \key c \major}

Chapter 3: Fundamental concepts 55

SopMusic = \relative c' { c4 | e4. e8 g4 g | a a g }
AltoMusic = \relative c' { c4 | c4. c8 e4 e | f f e }
TenorMusic = \relative c { e4 | g4. g8 c4. b8 | a8 b c d e4 }
BassMusic = \relative c { c4 | c4. c8 c4 c | f8 g a b c4 }
VerseOne = \lyricmode {
E -- | ter -- nal fa -- ther, | strong to save, }

VerseTwo = \lyricmode {
O | Christ, whose voice the | wa -- ters heard, }

VerseThree = \lyricmode {
O | Ho -- ly Spi -- rit, | who didst brood }

VerseFour = \lyricmode {
O | Tri -- ni -- ty of | love and pow'r }

\score {
\new ChoirStaff <<
\new Staff <<
\clef "treble"
\new Voice = "Sop" { \voiceOne \TimeKey \SopMusic }
\new Voice = "Alto" { \voiceTwo \AltoMusic }
\new Lyrics \lyricsto "Sop" { \VerseOne }
\new Lyrics \lyricsto "Sop" { \VerseTwo }
\new Lyrics \lyricsto "Sop" { \VerseThree }
\new Lyrics \lyricsto "Sop" { \VerseFour }

>>
\new Staff <<
\clef "bass"
\new Voice = "Tenor" { \voiceOne \TimeKey \TenorMusic }
\new Voice = "Bass" { \voiceTwo \BassMusic }

>>
>>

}

�

and

didst

ters

���
O ly

ni

� ��

voice

Spi

�
to

��
ter

�

�
love

strong

��

�
��

E

Tri

brood

heard,

save,

��

��

fa

��

� �

Christ,

�

whose

nal

�

O

��

�

�

�

�

�

� �

the

ther,

Ho

��

O

�

�
�
of

rit,

��
ty

�

�

who

wa

��
pow'r

�

� ���

3.3 Contexts and engravers

Contexts and engravers have been mentioned informally in earlier sections; we now must look
at these concepts in more detail, as they are important in the fine-tuning of LilyPond output.

Chapter 3: Fundamental concepts 56

3.3.1 Contexts explained

When music is printed, many notational elements which do not appear explicitly in the input
file must be added to the output. For example, compare the input and output of the following
example:

cis4 cis2. g4

�� � ��� �
The input is rather sparse, but in the output, bar lines, accidentals, clef, and time signature

have been added. When LilyPond interprets the input the musical information is inspected in
time order, similar to reading a score from left to right. While reading the input, the program
remembers where measure boundaries are, and which pitches require explicit accidentals. This
information must be held on several levels. For example, the effect of an accidental is limited to
a single staff, while a bar line must be synchronized across the entire score.

Within LilyPond, these rules and bits of information are grouped in Contexts. We have
already met the Voice context. Others are the Staff and Score contexts. Contexts are hier-
archical to reflect the heirarchical nature of a musical score. For example: a Staff context can
contain many Voice contexts, and a Score context can contain many Staff contexts.

Each context has the responsibility for enforcing some notation rules, creating some nota-
tion objects and maintaining the associated properties. For example, the Voice context may
introduce an accidental and then the Staff context maintains the rule to show or suppress the
accidental for the remainder of the measure.

As another example, the synchronization of bar lines is, by default, handled in the Score
context. However, in some music we may not want the bar lines to be synchronized – consider
a polymetric score in 4/4 and 3/4 time. In such cases, we must modify the default settings of
the Score and Staff contexts.

For very simple scores, contexts are created implicitly, and you need not be aware of them.
For larger pieces, such as anything with more than one staff, they must be created explicitly
to make sure that you get as many staves as you need, and that they are in the correct order.
For typesetting pieces with specialized notation, it is usual to modify existing, or even to define
totally new, contexts.

In addition to the Score, Staff and Voice contexts there are contexts which fit between the
score and staff levels to control staff groups, such as the PianoStaff and ChoirStaff contexts.
There are also alternative staff and voice contexts, and contexts for lyrics, percussion, fret
boards, figured bass, etc.

The names of all context types are formed from one or more words, each word being cap-
italised and joined immediately to the preceding word with no hyphen or underscore, e.g.,
GregorianTranscriptionStaff.

Chapter 3: Fundamental concepts 57

3.3.2 Creating contexts

There can be only one top level context: the Score context. This is created with the \score
command, or, in simple scores, it is created automatically.

For scores with only one voice and one staff, the Voice and Staff contexts may be left to be
created automatically, but for more complex scores it is necessary to create them by hand. The
simplest command that does this is \new. It is prepended to a music expression, for example

\new type music-expression

where type is a context name (like Staff or Voice). This command creates a new context, and
starts interpreting the music-expression within that context.

Note that there is no \new Score command; the single top-level Score context is introduced
with \score.

The \new command may also give a identifying name to the context to distinguish it from
other contexts of the same type,

\new type = id music-expression

Note the distinction between the name of the context type, Staff, Voice, etc, and the
identifying name of a particular instance of that type, which can be any sequence of letters
invented by the user. The identifying name is used to refer back to that particular instance of a
context. We saw this in use in the section on lyrics in Section 3.2.3 [Voices and vocals], page 53.

3.3.3 Engravers explained

Every mark on the printed output of a score produced by LilyPond is produced by an Engraver.
Thus there is an engraver to print staves, one to print note heads, one for stems, one for beams,
etc, etc. In total there are over 120 such engravers! Fortunately, for most scores it is not
necessary to know about more than a few, and for simple scores you do not need to know about
any.

Engravers live and operate in Contexts. Engravers such as the Metronome_mark_engraver,
whose action and output applies to the score as a whole, operate in the highest level context –
the Score context.

The Clef_engraver and Key_engraver are to be found in every Staff Context, as different
staves may require different clefs and keys.

The Note_heads_engraver and Stem_engraver live in every Voice context, the lowest level
context of all.

Each engraver processes the particular objects associated with its function, and maintains
the properties that relate to that function. These properties, like the properties associated with
contexts, may be modified to change the operation of the engraver or the appearance of those
elements in the printed score.

Engravers all have compound names formed from words which describe their function. Just
the first word is capitalised, and the remainder are joined to it with underscores. Thus the
Staff_symbol_engraver is responsible for creating the lines of the staff, the Clef_engraver
determines and sets the pitch reference point on the staff by drawing a clef symbol.

Here are some of the most common engravers together with their function. You will see it is
easy to guess the function from the name, or vice versa.

Engraver Function
Accidental engraver Makes accidentals, cautionary and suggested accidentals
Beam engraver Engraves beams
Clef engraver Engraves clefs
Dynamic engraver Creates hairpins and dynamic texts

Chapter 3: Fundamental concepts 58

Key engraver Creates the key signature
Metronome mark engraver Engraves metronome marking
Note heads engraver Engraves note heads
Rest engraver Engraves rests
Staff symbol engraver Engraves the five (by default) lines of the staff
Stem engraver Creates stems and single-stem tremulos
Time signature engraver Creates time signatures

We shall see later how the output of LilyPond can be changed by modifying the action of
Engravers.

3.3.4 Modifying context properties

Contexts are responsible for holding the values of a number of context properties. Many of them
can be changed to influence the interpretation of the input and so change the appearance of the
output. They are changed by the \set command. This takes the form

\set ContextName.propertyName = #value

Where the ContextName is usually Score, Staff or Voice. It may be omitted, in which case
Voice is assumed.

The names of context properties consist of words joined together with no hyphens or under-
scores, all except the first having a capital letter. Here are a few examples of some commonly
used ones. There are many more.

propertyName Type Function Example
Value

extraNatural Boolean If true, set extra natural signs before
accidentals

#t, #f

currentBarNumber Integer Set the current bar number 50
doubleSlurs Boolean If true, print slurs both above and below

notes
#t, #f

instrumentName Text Set the name to be placed at the start of
the staff

"Cello I"

fontSize Real Increase or decrease the font size 2.4
stanza Text Set the text to print before the start of

a verse
"2"

where a Boolean is either True (#t) or False (#f), an Integer is a positive whole number, a Real
is a positive or negative decimal number, and text is enclosed in double apostrophes. Note the
occurrence of hash signs, (#), in two different places – as part of the Boolean value before the t
or f, and before value in the \set statement. So when a Boolean is being entered you need to
code two hash signs, e.g., ##t.

Before we can set any of these properties we need to know in which context they operate.
Sometimes this is obvious, but occasionally it can be tricky. If the wrong context is specified,
no error message is produced, but the expected action will not take place. For example, the
instrumentName clearly lives in the Staff context, since it is the staff that is to be named. In
this example the first staff is labelled, but not the second, because we omitted the context name.

<<
\new Staff \relative c'' {
\set Staff.instrumentName = #"Soprano"
c4 c

}
\new Staff \relative c' {

Chapter 3: Fundamental concepts 59

\set instrumentName = #"Alto" % Wrong!
d4 d
}
>>

�

�

�
�

Soprano

�
� �

�
Remember the default context name is Voice, so the second \set command set the property

instrumentName in the Voice context to “Alto”, but as LilyPond does not look for any such
property in the Voice context, no further action took place. This is not an error, and no error
message is logged in the log file.

Similarly, if the property name is mis-spelt no error message is produced, and clearly the
expected action cannot be performed. If fact, you can set any (fictitious) ‘property’ using any
name you like in any context that exists by using the \set command. But if the name is not
known to LilyPond it will not cause any action to be taken. This is one of the reasons why
it is highly recommended to use a context-sensitive editor with syntax highlighting for editing
LilyPond files, such as Vim, Jedit, ConTEXT or Emacs, since unknown property names will be
highlighted differently.

The instrumentName property will take effect only if it is set in the Staff context, but some
properties can be set in more than one context. For example, the property extraNatural is
by default set to ##t (true) for all staves. If it is set to ##f (false) in one particular Staff
context it applies just to the accidentals on that staff. If it is set to false in the Score context
it applies to all staves.

So this turns off extra naturals in one staff:
<<
\new Staff \relative c'' {
ais4 aes

}
\new Staff \relative c'' {
\set Staff.extraNatural = ##f
ais4 aes

}
>>

� �
��
� ��

� ��� �
�

and this turns them off in all staves:
<<
\new Staff \relative c'' {

Chapter 3: Fundamental concepts 60

ais4 aes
}
\new Staff \relative c'' {
\set Score.extraNatural = ##f
ais4 aes

}
>>

�
�

�
�

�
��

�
�

��
�

The value of every property set in this way can be reset to its original value with the \unset
command.

The \set and \unset commands can appear anywhere in the input file and will take effect
from the time they are encountered until the end of the score or until the property is \set or
\unset again. Let’s try changing the font size, which affects the size of the note heads (among
other things) several times. The change is from the default value, not the current value.

c4
% make note heads smaller
\set fontSize = #-4
d e
% make note heads larger
\set fontSize = #2.5
f g
% return to original size
\unset fontSize
a b

� ���� � ���
We have now seen how to set the values of several different types of property. Note that

integers and numbers are alway preceded by a hash sign, #, while a true or false value is specified
by ##t and ##f, with two hash signs. A text property should be enclosed in double quotation
signs, as above, although we shall see later that text can actually be specified in a much more
general way by using the very powerful markup command.

Context properties may also be set at the time the context is created. Sometimes this is a
clearer way of specifying a property value if it is to remain fixed for the duration of the context.
When a context is created with a \new command it may be followed immediately by a \with {
.. } block in which the property values are set. For example, if we wish to suppress the printing
of extra naturals for the duration of a staff we would write:

\new Staff \with { extraNatural = ##f }

like this:

Chapter 3: Fundamental concepts 61

<<
\new Staff
\relative c'' {
gis ges aes ais

}
\new Staff \with { extraNatural = ##f }
\relative c'' {
gis ges aes ais

}
>>

� ��
���

�� �
� �

�
� ��� �

� � �
� �

In effect this overrides the default value of the property. It may still be changed dynamically
using \set and returned to its (new) default value with \unset.

3.3.5 Adding and removing engravers

We have seen that contexts each contain several engravers, each of which is responsible for
producing a particular part of the output, like bar lines, staves, note heads, stems, etc. If an
engraver is removed from a context it can no longer produce its output. This is a crude way of
modifying the output, but it can sometimes be useful.

3.3.5.1 Changing a single context

To remove an engraver from a single context we use the \with command placed immediately
after the context creation command, as in the previous section.

As an illustration let’s repeat an example from the previous section with the staff lines
removed. Remember that the staff lines are produced by the Staff symbol engraver.

\new Staff \with {
\remove Staff_symbol_engraver

}
\relative c' {
c4
\set fontSize = #-4 % make note heads smaller
d e
\set fontSize = #2.5 % make note heads larger
f g
\unset fontSize % return to original size
a b

}

�� ��
� �� ��

Chapter 3: Fundamental concepts 62

Engravers can also be added to individual contexts. The command to do this is

\consists Engraver_name ,

placed inside a \with block. Some vocal scores have an 〈undefined〉 [ambitus], page 〈unde-
fined〉 placed at the beginning of a staff to indicate the range of notes in that staff. The ambitus
is produced by the Ambitus_engraver, which is not normally included in any context. If we
add it to the Voice context it calculates the range from that voice only:

\new Staff <<
\new Voice \with {
\consists Ambitus_engraver

}
\relative c'' {
\voiceOne
c a b g

}
\new Voice
\relative c' {
\voiceTwo
c e d f

}
>>

��� �� ���� ���

but if we add the Ambitus engraver to the Staff context it calculates the range from all the
notes in all the voices on that staff:

\new Staff \with {
\consists Ambitus_engraver

}
<<
\new Voice
\relative c'' {
\voiceOne
c a b g

}
\new Voice
\relative c' {
\voiceTwo
c e d f

}
>>

���� ��� ��� ��

Chapter 3: Fundamental concepts 63

3.3.5.2 Changing all contexts of the same type

The examples above show how to remove or add engravers to individual contexts. It is also
possible to remove or add engravers to every context of a specific type by placing the commands
in the appropriate context in a \layout block. For example, If we wanted to show ambiti for
every staff in a four-staff score we could write

\score {
<<
\new Staff <<
\relative c'' { c a b g }

>>
\new Staff <<
\relative c' { c a b g }

>>
\new Staff <<
\clef "G_8"
\relative c' { c a b g }

>>
\new Staff <<
\clef "bass"
\relative c { c a b g }

>>
>>
\layout {
\context {
\Staff
\consists Ambitus_engraver

}
}

}

� �
�

�

��
�

�

�

�
�

�
8

�

�

�

�

�

��

�

�

�

�

�

�

�

��

�
�

�

�

The default values of context properties may also be set for all contexts of a particular type by
including the \set command in a \context block in the same way.

3.4 Extending the templates

You’ve read the tutorial, you know how to write music, you understand the fundamental con-
cepts. But how can you get the staves that you want? Well, you can find lots of templates (see

Chapter 3: Fundamental concepts 64

Appendix A [Templates], page 131) which may give you a start. But what if you want something
that isn’t covered there? Read on.

TODO Add links to templates after they have been moved to LSR

3.4.1 Soprano and cello

Start off with the template that seems closest to what you want to end up with. Let’s say that
you want to write something for soprano and cello. In this case, we would start with ‘Notes and
lyrics’ (for the soprano part).

\version "2.11.38"
melody = \relative c' {
\clef treble
\key c \major
\time 4/4
a4 b c d

}

text = \lyricmode {
Aaa Bee Cee Dee

}

\score {
<<
\new Voice = "one" {
\autoBeamOff
\melody

}
\new Lyrics \lyricsto "one" \text

>>
\layout { }
\midi { }

}

Now we want to add a cello part. Let’s look at the ‘Notes only’ example:

\version "2.11.38"
melody = \relative c' {
\clef treble
\key c \major
\time 4/4
a4 b c d

}

\score {
\new Staff \melody
\layout { }
\midi { }

}

We don’t need two \version commands. We’ll need the melody section. We don’t want two
\score sections – if we had two \scores, we’d get the two parts separately. We want them
together, as a duet. Within the \score section, we don’t need two \layout or \midi.

If we simply cut and paste the melody section, we would end up with two melody definitions.
This would not generate an error, but the second one would be used for both melodies. So

Chapter 3: Fundamental concepts 65

let’s rename them to make them distinct. We’ll call the section for the soprano sopranoMusic
and the section for the cello celloMusic. While we’re doing this, let’s rename text to be
sopranoLyrics. Remember to rename both instances of all these names – both the initial
definition (the melody = \relative c' { part) and the name’s use (in the \score section).

While we’re doing this, let’s change the cello part’s staff – celli normally use bass clef. We’ll
also give the cello some different notes.

\version "2.11.38"
sopranoMusic = \relative c' {
\clef treble
\key c \major
\time 4/4
a4 b c d

}

sopranoLyrics = \lyricmode {
Aaa Bee Cee Dee

}

celloMusic = \relative c {
\clef bass
\key c \major
\time 4/4
d4 g fis8 e d4

}

\score {
<<
\new Voice = "one" {
\autoBeamOff
\sopranoMusic

}
\new Lyrics \lyricsto "one" \sopranoLyrics

>>
\layout { }
\midi { }

}

This is looking promising, but the cello part won’t appear in the score – we haven’t used it
in the \score section. If we want the cello part to appear under the soprano part, we need to
add

\new Staff \celloMusic

underneath the soprano stuff. We also need to add << and >> around the music – that tells
LilyPond that there’s more than one thing (in this case, two Staves) happening at once. The
\score looks like this now

\score {
<<
<<
\new Voice = "one" {
\autoBeamOff
\sopranoMusic

}

Chapter 3: Fundamental concepts 66

\new Lyrics \lyricsto "one" \sopranoLyrics
>>
\new Staff \celloMusic
>>
\layout { }
\midi { }

}

This looks a bit messy; the indentation is messed up now. That is easily fixed. Here’s the
complete soprano and cello template.

\version "2.11.37"
sopranoMusic = \relative c' {
\clef treble
\key c \major
\time 4/4
a4 b c d

}

sopranoLyrics = \lyricmode {
Aaa Bee Cee Dee

}

celloMusic = \relative c {
\clef bass
\key c \major
\time 4/4
d4 g fis8 e d4

}

\score {
<<
<<
\new Voice = "one" {
\autoBeamOff
\sopranoMusic

}
\new Lyrics \lyricsto "one" \sopranoLyrics

>>
\new Staff \celloMusic

>>
\layout { }
\midi { }

}

�

��
Aaa

�
Bee���

Dee

�

�� �
Cee

�� �

Chapter 3: Fundamental concepts 67

3.4.2 Four-part SATB vocal score

Most vocal scores of music written for four-part mixed choir with orchestral accompaniment such
as Mendelssohn’s Elijah or Handel’s Messiah have the choral music and words on four staves,
one for each of SATB, with a piano reduction of the orchestral accompaniment underneath.
Here’s an example from Handel’s Messiah:

was

�

�

�

��

��

�

� �

�
lamb

�

��

�

�

��

�

thy

�
thy

�
that�

� �
that

�
Piano �

�

�Bass

Tenor

Alto

� ��

�
the

�

	

�� �
slain

� �

	

�
�

�

	

�

	 �
was

�

�

�
is

��

	

�

��

the

�

�

��

�
�
slainwas

�
the

��

��
lamb�

�� �

was

�

�

�thy

���

�

the

�

�
thatWor

�

�

�

lamb

�

�

�
is

�

� �

��

�

�

�
Wor

�
lamb

�
is

�

�

�
����

�

��
���

�

�
8

�

Soprano

Wor

�

that

�
Wor

�

�

is

thy� slain�
slain

��

None of the templates provides this layout exactly. The nearest is ‘SATB vocal score and
automatic piano reduction’, but we need to change the layout and add a piano accompaniment
which is not derived automatically from the vocal parts. The variables holding the music and
words for the vocal parts are fine, but we shall need to add variables for the piano reduction.

The order in which the contexts appear in the ChoirStaff of the template do not correspond
with the order in the vocal score shown above. We need to rearrange them so there are four
staves with the words written directly underneath the notes for each part. All the voices should
be \voiceOne, which is the default, so the \voiceXXX commands should be removed. We also
need to specify the tenor clef for the tenors. The way in which lyrics are specified in the template
has not yet been encountered so we need to use the method with which we are familiar. We
should also add the names of each staff.

Doing this gives for our ChoirStaff:
\new ChoirStaff <<
\new Staff = "sopranos" <<
\set Staff.instrumentName = "Soprano"
\new Voice = "sopranos" { \global \sopMusic }

>>
\new Lyrics \lyricsto "sopranos" { \sopWords }

Chapter 3: Fundamental concepts 68

\new Staff = "altos" <<
\set Staff.instrumentName = "Alto"
\new Voice = "altos" { \global \altoMusic }

>>
\new Lyrics \lyricsto "altos" { \altoWords }
\new Staff = "tenors" <<
\set Staff.instrumentName = "Tenor"
\new Voice = "tenors" { \global \tenorMusic }

>>
\new Lyrics \lyricsto "tenors" { \tenorWords }
\new Staff = "basses" <<
\set Staff.instrumentName = "Bass"
\new Voice = "basses" { \global \bassMusic }

>>
\new Lyrics \lyricsto "basses" { \bassWords }

>> % end ChoirStaff

Next we must work out the piano part. This is easy - we just pull out the piano part from
the ‘Solo piano’ template:

\new PianoStaff <<
\set PianoStaff.instrumentName = "Piano "
\new Staff = "upper" \upper
\new Staff = "lower" \lower

>>

and add the variable definitions for upper and lower.
The ChoirStaff and PianoStaff must be combined using angle brackets as we want them to

be stacked one above the other:
<< % combine ChoirStaff and PianoStaff one above the other
\new ChoirStaff <<
\new Staff = "sopranos" <<
\new Voice = "sopranos" { \global \sopMusic }

>>
\new Lyrics \lyricsto "sopranos" { \sopWords }
\new Staff = "altos" <<
\new Voice = "altos" { \global \altoMusic }

>>
\new Lyrics \lyricsto "altos" { \altoWords }
\new Staff = "tenors" <<
\clef "G_8" % tenor clef
\new Voice = "tenors" { \global \tenorMusic }

>>
\new Lyrics \lyricsto "tenors" { \tenorWords }
\new Staff = "basses" <<
\clef "bass"
\new Voice = "basses" { \global \bassMusic }

>>
\new Lyrics \lyricsto "basses" { bassWords }

>> % end ChoirStaff

\new PianoStaff <<
\set PianoStaff.instrumentName = "Piano "
\new Staff = "upper" \upper

Chapter 3: Fundamental concepts 69

\new Staff = "lower" \lower
>>

>>

Combining all these together and adding the music for the three bars of the example above
gives:

\version "2.11.38"
global = { \key d \major \time 4/4 }
sopMusic = \relative c'' {
\clef "treble"
r4 d2 a4 | d4. d8 a2 | cis4 d cis2 |

}
sopWords = \lyricmode {
Wor -- thy is the lamb that was slain

}
altoMusic = \relative a' {
\clef "treble"
r4 a2 a4 | fis4. fis8 a2 | g4 fis fis2 |

}
altoWords = \sopWords
tenorMusic = \relative c' {
\clef "G_8"
r4 fis2 e4 | d4. d8 d2 | e4 a, cis2 |

}
tenorWords = \sopWords
bassMusic = \relative c' {
\clef "bass"
r4 d2 cis4 | b4. b8 fis2 | e4 d a'2 |

}
bassWords = \sopWords
upper = \relative a' {
\clef "treble"
\global
r4 <a d fis>2 <a e' a>4 |
<d fis d'>4. <d fis d'>8 <a d a'>2 |
<g cis g'>4 <a d fis> <a cis e>2 |

}
lower = \relative c, {
\clef "bass"
\global
<d d'>4 <d d'>2 <cis cis'>4 |
<b b'>4. <b' b'>8 <fis fis'>2 |
<e e'>4 <d d'> <a' a'>2 |

}

\score {
<< % combine ChoirStaff and PianoStaff in parallel
\new ChoirStaff <<
\new Staff = "sopranos" <<
\set Staff.instrumentName = "Soprano"
\new Voice = "sopranos" { \global \sopMusic }

>>

Chapter 3: Fundamental concepts 70

\new Lyrics \lyricsto "sopranos" { \sopWords }
\new Staff = "altos" <<
\set Staff.instrumentName = "Alto"
\new Voice = "altos" { \global \altoMusic }

>>
\new Lyrics \lyricsto "altos" { \altoWords }
\new Staff = "tenors" <<
\set Staff.instrumentName = "Tenor"
\new Voice = "tenors" { \global \tenorMusic }

>>
\new Lyrics \lyricsto "tenors" { \tenorWords }
\new Staff = "basses" <<
\set Staff.instrumentName = "Bass"
\new Voice = "basses" { \global \bassMusic }

>>
\new Lyrics \lyricsto "basses" { \bassWords }

>> % end ChoirStaff

\new PianoStaff <<
\set PianoStaff.instrumentName = "Piano "
\new Staff = "upper" \upper
\new Staff = "lower" \lower

>>
>>

}

�

��

�

��

�

���
slain

�slain
�
slain

�

��

���
was

��

��
�

Soprano �

thy

�thy
�
thy

�

��

���
Wor

�

Wor

�

��

�

Piano �

�

�Bass

Tenor

Alto

Wor

�Wor
�

�

�

��
lamb

�
lamb

�
lamb

�
lamb

�
is

�
is

�
is

�

�

�
that

�
that

�that
�
that

�

�

���
the

�the
�
the�

slain

�

��

���
thy

�

	��

�

�

	

��

���
is

� was

�
was

�
was

�

��

��
�

��
8

�

	

	���

	��

�

�

�
the

�

�

�

��

�

�

	���

�

Chapter 3: Fundamental concepts 71

3.4.3 Building a score from scratch

After gaining some facility with writing LilyPond code you may find that it is easier to build a
score from scratch rather than modifying one of the templates. You can also develop your own
style this way to suit the sort of music you like. Let’s see how to put together the score for an
organ prelude as an example.

We begin with a header section. Here go the title, name of composer, etc, then come any
variable definitions, and finally the score block. Let’s start with these in outline and fill in the
details later.

We’ll use the first two bars of Bach’s prelude based on Jesu, meine Freude which is written
for two manuals and pedal organ. You can see these two bars of music at the bottom of this
section. The top manual part has two voices, the lower and pedal organ one each. So we need
four music definitions and one to define the time signature and key:

\version "2.11.38"
\header {
title = "Jesu, meine Freude"
composer = "J S Bach"

}
TimeKey = { \time 4/4 \key c \minor }
ManualOneVoiceOneMusic = {s1}
ManualOneVoiceTwoMusic = {s1}
ManualTwoMusic = {s1}
PedalOrganMusic = {s1}

\score {
}

For now we’ve just used a spacer note, s1, instead of the real music. We’ll add that later.
Next let’s see what should go in the score block. We simply mirror the staff structure we

want. Organ music is usually written on three staves, one for each manual and one for the
pedals. The manual staves should be bracketed together so we need to use a PianoStaff for
them. The first manual part needs two voices and the second manual part just one.

\new PianoStaff <<
\new Staff = "ManualOne" <<
\new Voice { \ManualOneVoiceOneMusic }
\new Voice { \ManualOneVoiceTwoMusic }

>> % end ManualOne Staff context
\new Staff = "ManualTwo" <<
\new Voice { \ManualTwoMusic }

>> % end ManualTwo Staff context
>> % end PianoStaff context

Next we need to add a staff for the pedal organ. This goes underneath the PianoStaff, but it
must be simultaneous with it, so we need angle brackets round the two. Missing these out would
generate an error in the log file. It’s a common mistake which you’ll make sooner or later! Try
copying the final example at the end of this section, remove these angle brackets, and compile
it to see what errors it generates.

<< % PianoStaff and Pedal Staff must be simultaneous
\new PianoStaff <<
\new Staff = "ManualOne" <<
\new Voice { \ManualOneVoiceOneMusic }
\new Voice { \ManualOneVoiceTwoMusic }

>> % end ManualOne Staff context

Chapter 3: Fundamental concepts 72

\new Staff = "ManualTwo" <<
\new Voice { \ManualTwoMusic }

>> % end ManualTwo Staff context
>> % end PianoStaff context
\new Staff = "PedalOrgan" <<
\new Voice { \PedalOrganMusic }

>>
>>

It is not strictly necessary to use the simultaneous construct << >> for the manual two staff
and the pedal organ staff, since they contain only one music expression, but it does no harm
and always using angle brackets after \new Staff is a good habit to cultivate in case there are
multiple voices.

Let’s add this structure to the score block, and adjust the indenting. We also add the
appropriate clefs, ensure the second voice stems point down with \voiceTwo and enter the time
signature and key to each staff using our predefined variable, \TimeKey.

\score {
<< % PianoStaff and Pedal Staff must be simultaneous
\new PianoStaff <<
\new Staff = "ManualOne" <<
\TimeKey % set time signature and key
\clef "treble"
\new Voice { \ManualOneVoiceOneMusic }
\new Voice { \voiceTwo \ManualOneVoiceTwoMusic }

>> % end ManualOne Staff context
\new Staff = "ManualTwo" <<
\TimeKey
\clef "bass"
\new Voice { \ManualTwoMusic }

>> % end ManualTwo Staff context
>> % end PianoStaff context
\new Staff = "PedalOrgan" <<
\TimeKey
\clef "bass"
\new Voice { \PedalOrganMusic }

>> % end PedalOrgan Staff
>>

} % end Score context

That completes the structure. Any three-staff organ music will have a similar structure,
although the number of voices may vary. All that remains now is to add the music, and combine
all the parts together.

\version "2.11.38"
\header {
title = "Jesu, meine Freude"
composer = "J S Bach"

}
TimeKey = { \time 4/4 \key c \minor }
ManualOneVoiceOneMusic = \relative g' {
g4 g f ees | d2 c2 |

}
ManualOneVoiceTwoMusic = \relative c' {
ees16 d ees8~ ees16 f ees s c8 d~ d c~ |

Chapter 3: Fundamental concepts 73

c c4 b8 c8. g16 c b c d |
}
ManualTwoMusic = \relative c' {
c16 b c8~ c16 b c g a8 g~ g16 g aes ees |
f ees f d g aes g f ees d e8~ ees16 f ees d |

}
PedalOrganMusic = \relative c {
r8 c16 d ees d ees8~ ees16 a, b g c b c8 |
r16 g ees f g f g8 c,2 |
}

\score {
<< % PianoStaff and Pedal Staff must be simultaneous
\new PianoStaff <<
\new Staff = "ManualOne" <<
\TimeKey % set time signature and key
\clef "treble"
\new Voice { \ManualOneVoiceOneMusic }
\new Voice { \voiceTwo \ManualOneVoiceTwoMusic }

>> % end ManualOne Staff context
\new Staff = "ManualTwo" <<
\TimeKey
\clef "bass"
\new Voice { \ManualTwoMusic }

>> % end ManualTwo Staff context
>> % end PianoStaff context
\new Staff = "PedalOrgan" <<
\TimeKey
\clef "bass"
\new Voice { \PedalOrganMusic }

>> % end PedalOrgan Staff
>>

} % end Score context

Jesu, meine Freude
J S Bach

��

�

�

�

�� ��
�

��
�

�

�
�

�

�
�

�

�

�
�

� ���

�
�

�

�
�

�� �

�� �

� �

��� �
� ���

�

� �

�
��

�

�
�

�

�
�

�

Chapter 3: Fundamental concepts 74

�

�

�
�

�

�

�

2

� ��

���

�

�

�
��

�

���

� ���
�

� ��
�

�

�
� �

�
�

��
�

�

�
��
�
�

�

�
�

�
��

�

Chapter 4: Tweaking output 75

4 Tweaking output

This chapter discusses how to modify output. LilyPond is extremely configurable; virtually
every fragment of output may be changed.

4.1 Tweaking basics

4.1.1 Introduction to tweaks

‘Tweaking’ is a LilyPond term for the various methods available to the user for modifying the
actions taken during interpretation of the input file and modifying the appearance of the printed
output. Some tweaks are very easy to use; others are more complex. But taken together the
methods available for tweaking permit almost any desired appearance of the printed music to
be achieved.

In this section we cover the basic concepts required to understand tweaking. Later we give a
variety of ready-made commands which can simply be copied to obtain the same effect in your
own scores, and at the same time we show how these commands may be constructed so that you
may learn how to develop your own tweaks.

Before starting on this Chapter you may wish to review the section Section 3.3 [Contexts
and engravers], page 55, as Contexts, Engravers, and the Properties contained within them are
fundamental to understanding and constructing Tweaks.

4.1.2 Objects and interfaces

Tweaking involves modifying the internal operation and structures of the LilyPond program, so
we must first introduce some terms which are used to describe those internal operations and
structures.

The term ‘Object’ is a generic term used to refer to the multitude of internal structures built
by LilyPond during the processing of an input file. So when a command like \new Staff is
encountered a new object of type Staff is constructed. That Staff object then holds all the
properties associated with that particular staff, for example, its name and its key signature,
together with details of the engravers which have been assigned to operate within that staff’s
context. Similarly, there are objects to hold the properties of all other contexts, such as Voice
objects, Score objects, Lyrics objects, as well as objects to represent all notational elements
such as bar lines, note heads, ties, dynamics, etc. Every object has its own set of property
values.

Some types of object are given special names. Objects which represent items of notation on
the printed output such as note heads, stems, slurs, ties, fingering, clefs, etc are called ‘Layout
objects’, often known as ‘Graphical Objects’, or ‘Grobs’ for short. These are still objects in
the generic sense above, and so they too all have properties associated with them, such as their
position, size, color, etc.

Some layout objects are still more specialised. Phrasing slurs, crescendo hairpins, ottavo
marks, and many other grobs are not localised in a single place – they have a starting point, an
ending point, and maybe other properties concerned with their shape. Objects with an extended
shape like these are called ‘Spanners’.

It remains to explain what ‘Interfaces’ are. Many objects, even though they are quite dif-
ferent, share common features which need to be processed in the same way. For example, all
grobs have a color, a size, a position, etc, and all these properties are processed in the same way
during LilyPond’s interpretation of the input file. To simplify these internal operations these
common actions and properties are grouped together in an object called a grob-interface.
There are many other groupings of common properties like this, each one given a name ending

Chapter 4: Tweaking output 76

in -interface. In total there are over 100 such interfaces. We shall see later why this is of
interest and use to the user.

These, then, are the main terms relating to objects which we shall use in this chapter.

4.1.3 Naming conventions of objects and properties

We met some object naming conventions previously, in Section 3.3 [Contexts and engravers],
page 55. Here for reference is a list of the most common object and property types together
with the conventions for naming them and a couple of examples of some real names. We have
used A to stand for any capitalised alphabetic character and aaa to stand for any number of
lower-case alphabetic characters. Other characters are used verbatim.

Object/property type Naming convention Example
Contexts Aaaa or AaaaAaaaAaaa Staff, GrandStaff
Layout Objects Aaaa or AaaaAaaaAaaa Slur, NoteHead
Engravers Aaaa aaa engraver Clef engraver,

Note heads engraver
Interfaces aaa-aaa-interface grob-interface, break-

aligned-interface
Context Properties aaa or aaaAaaaAaaa alignAboveContext,

skipBars
Layout Object Properties aaa or aaa-aaa-aaa direction, beam-thickness

As we shall see shortly, the properties of different types of object are modified by different
commands, so it is useful to be able to recognise the type of object from the names of its
properties.

4.1.4 Tweaking methods

We have already met the commands \set and \with, used to change the properties of contexts
and to remove and add engravers, in Section 3.3.4 [Modifying context properties], page 58 and
Section 3.3.5 [Adding and removing engravers], page 61. We now must meet one more command.

The command to change the properties of layout objects is \override. Because this com-
mand has to modify internal properties deep within LilyPond its syntax is not as simple as the
commands you have met so far. It needs to know precisely which property of which object in
which context has to be modified, and what its new value is to be. Let’s see how this is done.

The general syntax of this command is:

\override context.layout_object #'layout_property = #value

This will set the property with the name layout property of the layout object with the name
layout object, which is a member of the context context, to the value value.

The context can be omitted (and usually is) when the required context is unambiguously
implied and is one of lowest level contexts, i.e., Voice, ChordNames or Lyrics, and we shall
omit it in many of the following examples. We shall see later when it must be specified.

For now, don’t worry about the #', which must precede the layout property, and the #, which
must precede the value. These must always be present in exactly this form. This is the most
common command used in tweaking, and most of the rest of this chapter will be directed to
presenting examples of how it is used.

Once overridden, the property retains its new value until it is overridden again or a \revert
command is encountered. The \revert command has the following syntax and causes the value
of the property to revert to its original default value; note, not its previous value if several
\override commands have been issued.

Chapter 4: Tweaking output 77

\revert context.layout_object #'layout_property

Again, just like context in the \override command, context is often not needed. It will be
omitted in many of the following examples.

There is another form of the override command, \overrideProperty, which is occasionally
required. We mention it here for completeness, but for details see notation reference, 〈undefined〉
[Difficult tweaks], page 〈undefined〉 .

The final tweaking command which is available is \tweak. This should be used to change
the properties of objects which occur at the same musical moment, such as the notes within
a chord. Using \override would affect all the notes within a chord, whereas \tweak affects
just the following item in the input stream. You may find the details in notation reference,
〈undefined〉 [Objects connected to the input], page 〈undefined〉 .

4.2 The Internals Reference manual

4.2.1 Properties of layout objects

Suppose you have a slur in a score which, to your mind, appears too thin and you’d like to draw
it a little heavier. How do you go about doing this? You know from the statements earlier about
the flexibility of LilyPond that such a thing should be possible, and you would probably guess
that an \override command would be needed. But is there a heaviness property for a slur,
and if there is, how might it be modified? This is where the Internals Reference manual comes
in. It contains all the information you might need to construct this and all other \override
commands.

Before we look at the Internals Reference a word of warning. This is a reference document,
which means there is little or no explanation contained within it: its purpose is to present
information precisely and concisely. This means it might look daunting at first sight. Don’t
worry! The guidance and explanation presented here will enable you to extract the information
from the Internals Reference for yourself with just a little practice.

Let’s use a concrete example with a simple fragment of real music:
{
\time 6/8
{
r4 b8 b[(g]) g |
g[(e]) e d[(f]) a |
a g

}
\addlyrics {
The man who feels love's sweet e -- mo -- tion

}
}

mo

� �
sweet

��
�

love's e

�� ��� ��� �
The

�
tion

���
8
6

whoman

�
feels

�

Suppose now that we decide we would like the slurs to be a little heavier. Is this possible?
The slur is certainly a layout object, so the question is, ‘Is there a property belonging to a slur
which controls the heaviness?’ To answer this we must look in the Internals Reference, or IR
for short.

Chapter 4: Tweaking output 78

The IR for the version of LilyPond you are using may be found on the LilyPond website
at http://lilypond.org. Go to the documentation page and click on the Internals Reference
link. For learning purposes you should use the standard html version, not the ‘one big page’ or
the PDF. For the next few paragraphs to make sense you will need to actually do this as you
read.

Under the heading Top you will see five links. Select the link to the Backend, which is where
information about layout objects is to be found. There, under the heading Backend, select the
link to All layout objects. The page that appears lists all the layout objects used in your version
of LilyPond, in alphabetic order. Select the link to Slur, and the properties of Slurs are listed.

(An alternative way of finding this page is from the Notation Reference. On one of the pages
that deals with slurs you may find a link to the Internals Reference. This link will take you
directly to this page, but often it is easier to go straight to the IR and search there.)

This Slur page in the IR tells us first that Slur objects are created by the Slur engraver.
Then it lists the standard settings. Note these are not in alphabetic order. Browse down them
looking for a property that might control the heaviness of slurs, and you should find

thickness (number)
1.2
Line thickness, generally measured in line-thickness

This looks a good bet to change the heaviness. It tells us that the value of thickness is a
simple number, that the default value is 1.2, and that the units are in another property called
line-thickness.

As we said earlier, there are few to no explanations in the IR, but we already have enough
information to try changing the slur thickness. We see that the name of the layout object is
Slur, that the name of the property to change is thickness and that the new value should be
a number somewhat larger than 1.2 if we are to make slurs thicker.

We can now construct the \override command by simply substituting the values we have
found for the names, omitting the context. Let’s use a very large value for the thickness at first,
so we can be sure the command is working. We get:

\override Slur #'thickness = #5.0

Don’t forget the #' preceding the property name and and # preceding the new value!

The final question is, ‘Where should this command be placed?’ While you are unsure and
learning, the best answer is, ‘Within the music, before the first slur and close to it.’ Let’s do
that:

{
\time 6/8
{
% Increase thickness of all following slurs from 1.2 to 5.0
\override Slur #'thickness = #5.0
r4 b8 b[(g]) g |
g[(e]) e d[(f]) a |
a g

}
\addlyrics {
The man who feels love's sweet e -- mo -- tion

}
}

http://lilypond.org

Chapter 4: Tweaking output 79�
� �� �

mo

�
man

� �� ��� �
efeels

�� ��
who tion

� �
love's

8
6

The sweet

�
and we see that the slur is indeed heavier.

So this is the basic way of constructing \override commands. There are a few more com-
plications that we shall meet in later sections, but you now know all the essentials required to
make up your own – but you will still need some practice. This is provided in the examples
which follow.

Finding the context

But first, what if we had needed to specify the Context? What should it be? We could guess
that slurs are in the Voice context, as they are clearly closely associated with individual lines of
music, but can we be sure? To find out, go back to the top of the IR page describing the Slur,
where it says ‘Slur objects are created by: Slur engraver’. So slurs will be created in whichever
context the Slur_engraver is in. Follow the link to the Slur_engraver page. At the very
bottom it tells us that Slur_engraver is part of five Voice contexts, including the standard
voice context, Voice, so our guess was correct. And because Voice is one of the lowest level
contexts which is implied unambiguously by the fact that we are entering notes, we can omit it
in this location.

Overriding once only

As you can see, all the slurs are thicker in the final example above. But what if we wanted just the
first slur to be thicker? This is achieved with the \once command. Placed immediately before
the \override command it causes it to change only the slur which begins on the immediately
following note. If the immediately following note does not begin a slur the command has no
effect at all – it is not remembered until a slur is encountered, it is simply discarded. So the
command with \once must be repositioned as follows:

{
\time 6/8
{
r4 b8
% Increase thickness of immediately following slur only
\once \override Slur #'thickness = #5.0
b[(g]) g |
g[(e]) e d[(f]) a |
a g

}
\addlyrics {
The man who feels love's sweet e -- mo -- tion

}
}

� �
man

�
love's

�
tione

� �
� �� �� ��

mosweet

8
6

feels

� � �
who

��� �
The

Now only the first slur is made heavier.
The \once command can also be used before \set and \unset, and before the command to

be introduced in the following section – revert.

Chapter 4: Tweaking output 80

Reverting

Finally, what if we wanted just the first two slurs to be heavier? Well, we could use two
commands, each preceded by \once placed immediately before each of the notes where the slurs
begin:

{
\time 6/8
{
r4 b8
% Increase thickness of immediately following slur only
\once \override Slur #'thickness = #5.0
b[(g]) g |
% Increase thickness of immediately following slur only
\once \override Slur #'thickness = #5.0
g[(e]) e d[(f]) a |
a g

}
\addlyrics {
The man who feels love's sweet e -- mo -- tion

}
}

� � �� �
8
6 �

sweetfeels

��
mo

�� �
The who

�
man

�� �� �
e

�� �
love's tion

or we could omit the \once command and use the \revert command to return the thickness
property to its default value after the second slur:

{
\time 6/8
{
r4 b8
% Increase thickness of all following slurs from 1.2 to 5.0
\override Slur #'thickness = #5.0
b[(g]) g |
g[(e])
% Revert thickness of all following slurs to default of 1.2
\revert Slur #'thickness
e d[(f]) a |
a g

}
\addlyrics {
The man who feels love's sweet e -- mo -- tion

}
}

�� � ��
�

The

�
e

��
mo

��
who

�
8
6

�
tion

�� ���
sweet

�
feelsman love's

�

Chapter 4: Tweaking output 81

The \revert command can be used to return any property changed with \override back to
its default value. You may use whichever method best suits what you want to do.

That concludes our introduction to the IR, and the basic method of tweaking. Several
examples follow in the later sections of this Chapter, partly to introduce you to some of the
additional features of the IR, and partly to give you more practice in extracting information
from it. These examples will contain progressively fewer words of guidance and explanation.

4.2.2 Properties found in interfaces

Suppose now that we wish to print the lyrics in italics. What form of \override command do
we need to do this? We first look in the IR page listing ‘All layout objects’, as before, and look
for an object that might control lyrics. We find LyricText, which looks right. Clicking on this
shows the settable properties for lyric text. These include the font-series and font-size,
but nothing that might give an italic shape. This is because the shape property is one that is
common to all font objects, so, rather than including it in every layout object, it is grouped
together with other similar common properties and placed in an Interface, the font-interface.

So now we need to learn how to find the properties of interfaces, and to discover what objects
use these interface properties.

Look again at the IR page which describes LyricText. At the bottom of the page is a list of
clickable (in the html versions of the IR) interfaces which LyricText supports. The list has seven
items, including font-interface. Clicking on this brings up the properties associated with this
interface, which are also properties of all the objects which support it, including LyricText.

Now we see all the user-settable properties which control fonts, including font-
shape(symbol), where symbol can be set to upright, italics or caps.

You will notice that that font-series and font-size are also listed there. This immediately
raises the question: Why are the common font properties font-series and font-size listed
under LyricText as well as under the interface font-interface but font-shape is not? The
answer is that font-series and font-size are changed from their global default values when
a LyricText object is created, but font-shape is not. The entries in LyricText then tell you
the values for those two properties which apply to LyricText. Other objects which support
font-interface will set these properties diferently when they are created.

Let’s see if we can now construct the \override command to change the lyrics to italics.
The object is LyricText, the property is font-shape and the value is italic. As before, we’ll
omit the context.

As an aside, although it is an important one, note that because the values of font-shape
are symbols they must be introduced with a single apostrophe, '. That is why apostrophes
are needed before thickness in the earlier example and font-shape. These are both symbols
too. Symbols are special names which are known internally to LilyPond. Some of them are the
names of properties, like thickness or font-shape, others are in effect special values that can
be given to properties, like italic. Note the distinction from arbitary text strings, which would
appear as "a text string".

Ok, so the \override command we need to print the lyrics in italics should be
\override LyricText #'font-shape = #'italic

and this should be placed just in front of and close to the lyrics which it should affect, like this:
{
\time 6/8
{
r4 b8 b[(g]) g |
g[(e]) e d[(f]) a |
a g

Chapter 4: Tweaking output 82

}
\addlyrics {
\override LyricText #'font-shape = #'italic
The man who feels love's sweet e -- mo -- tion

}
}

�
who

�
man

�
sweetThe

� ��� �
feels

�
8
6 �� ��

motion

�� �
e

�
love's

�� �

and the lyrics are all printed in italics.

Specifying context in lyric mode

In the case of lyrics, if you try specifying the context in the format given earlier the command
will fail. A syllable entered in lyricmode is terminated by either a space, a newline or a digit.
All other characters are included as part of the syllable. For this reason a space or newline
must appear before the terminating } to prevent it being included as part of the final syllable.
Similarly, spaces must be inserted before and after the period or dot, ‘.’, separating the context
name from the object name, as otherwise the two names are run together and the interpreter
cannot recognise them. So the command should be:

\override Lyrics . LyricText #'font-shape = #'italic� �
Note: In lyrics always leave whitespace between the final syllable and
the terminating brace.
 	� �
Note: In overrides in lyrics always place spaces around the dot between
the context name and the object name.
 	

4.2.3 Types of properties

So far we have seen two types of property: number and symbol. To be valid, the value given to
a property must be of the correct type and obey the rules for that type. The type of property
is always shown in brackets after the property name in the IR. Here is a list of the types you
may need, together with the rules for that type, and some examples. You must always add a
hash symbol, #, of course, to the front of these values when they are entered in the \override
command.

Property type Rules Examples
Boolean Either True or False, represented by #t

or #f
#t, #f

Dimension (in staff
space)

A positive decimal number (in units of
staff space)

2.5, 0.34

Direction A valid direction constant or its numeri-
cal equivalent

#LEFT, #CENTER, #UP, 1, -1

Integer A positive whole number 3, 1
List A bracketed set of items separated by

spaces, preceded by an apostrophe
'(left-edge staff-bar),
'(1), '(1.0 0.25 0.5)

Chapter 4: Tweaking output 83

Markup Any valid markup \markup { \italic "cresc."
}

Moment A fraction of a whole note constructed
with the make-moment function

(ly:make-moment 1 4),
(ly:make-moment 3 8)

Number Any positive or negative decimal value 3.5, -2.45
Pair (of numbers) Two numbers separated by a ‘space .

space’ and enclosed in brackets preceded
by an apostrophe

'(2 . 3.5), '(0.1 . -3.2)

Symbol Any of the set of permitted sym-
bols for that property, preceded by an
apostrophe

'italic, 'inside

Unknown A procedure or #f (to cause no action) bend::print, ly:text-
interface::print,
#f

Vector A list of three items enclosed in brackets
and preceded by a hash sign, #.

#(#t #t #f)

4.3 Appearance of objects

Let us now put what we have learnt into practice with a few examples which show how tweaks
may be used to change the appearance of the printed music.

4.3.1 Visibility and color of objects

In the educational use of music we might wish to print a score with certain elements omitted as
an exercise for the student, who is required to supply them. As a simple example, let us suppose
the exercise is to supply the missing bar lines in a piece of music. But the bar lines are normally
inserted automatically. How do we prevent them printing?

Before we tackle this, let us remember that object properties are grouped in what are called
interfaces – see Section 4.2.2 [Properties found in interfaces], page 81. This is simply to group
together those properties that are commonly required together – if one of them is required for an
object, so are the others. Some objects then need the properties in some interfaces, others need
them from other interfaces. The interfaces which contain the properties required by a particular
grob are listed in the IR at the bottom of the page describing that grob, and those properties
may be viewed by looking at those interfaces.

We explained how to find information about grobs in Section 4.2.1 [Properties of layout
objects], page 77. Using the same approach, we go to the IR to find the layout object which
prints bar lines. Going via Backend and All layout objects we find there is a layout object called
BarLine. Its properties include two that control its visibility: break-visibility and stencil.
Barline also supports a number of interfaces, including the grob-interface, where we find the
transparent and the color properties. All of these can affect the visibility of bar lines (and,
of course, by extension, many other layout objects too.) Let’s consider each of these in turn.

stencil

This property controls the appearance of the bar lines by specifying the symbol (glyph) which
should be printed. In common with many other properties, it can be set to print nothing by
setting its value to #f. Let’s try it, as before, omitting the implied Context, Voice:

{
\time 12/16
\override BarLine #'stencil = ##f
c4 b8 c d16 c d8 |
g, a16 b8 c d4 e16 |

Chapter 4: Tweaking output 84

e8
}

� � �
� �� ��� � �� �
��� �� �16

12 �� �
� ��

The bar lines are still printed. What is wrong? Go back to the IR and look again at the page
giving the properties of BarLine. At the top of the page it says “Barline objects are created
by: Bar engraver”. Go to the Bar_engraver page. At the bottom it gives a list of Contexts in
which the bar engraver operates. All of them are of the type Staff, so the reason the \override
command failed to work as expected is because Barline is not in the default Voice context.
If the context is specified wrongly, the command simply does not work. No error message is
produced, and nothing is logged in the log file. Let’s try correcting it by adding the correct
context:

{
\time 12/16
\override Staff.BarLine #'stencil = ##f
c4 b8 c d16 c d8 |
g, a16 b8 c d4 e16 |
e8

}

��� � ��� � ��� � � �� �
��� ��� ��

16
12 �

Now the bar lines have vanished.

break-visibility

We see from the BarLine properties in the IR that the break-visibility property requires a
vector of three booleans. These control respectively whether bar lines are printed at the end
of a line, in the middle of lines, and at the beginning of lines. For our example we want all
bar lines to be suppressed, so the value we need is #(#f #f #f). Let’s try that, remembering to
include the Staff context. Note also that in writing this value we have two hash signs before the
opening bracket. One is required as part of the value to introduce a vector, and one is required,
as always, to precede the value itself in the \override command.

{
\time 12/16
\override Staff.BarLine #'break-visibility = ##(#f #f #f)
c4 b8 c d16 c d8 |
g, a16 b8 c d4 e16 |
e8

}

�� ��� � �� ��� � ��� � � ��� �
�

�
�

16
12 �

And we see this too removes all the bar lines.

Chapter 4: Tweaking output 85

transparent

We see from the properties specified in the grob-interface page in the IR that the transparent
property is a boolean. This should be set to #t to make the grob transparent. In this next
example let us make the time signature invisible rather than the bar lines. To do this we need
to find the grob name for the time signature. Back to the ‘All layout objects’ page in the
IR to find the properties of the TimeSignature layout object. This is produced by the Time_
signature_engraver which you can check also lives in the Staff context and also supports the
grob-interface. So the command to make the time signature transparent is:

{
\time 12/16
\override Staff.TimeSignature #'transparent = ##t
c4 b8 c d16 c d8 |
g, a16 b8 c d4 e16 |
e8

}

���� � ��� �� �� �� ���� �� �� ���
The time signature is gone, but this command leaves a gap where the time signature should
be. Maybe this is what is wanted for an exercise for the student to fill it in, but in other
circumstances a gap might be undesirable. To remove it, the stencil for the time signature
should be set to #f instead:

{
\time 12/16
\override Staff.TimeSignature #'stencil = ##f
c4 b8 c d16 c d8 |
g, a16 b8 c d4 e16 |
e8

}

�
�� � �� ��

�
� � �� �� ��� ���� �� �

and the difference is obvious: setting the stencil to #f removes the object entirely; making the
object transparent leaves it where it is, but makes it invisible.

color

Finally we could make the bar lines invisible by coloring them white. The grob-interface
specifies that the color property value is a list, but there is no explanation of what that list
should be. The list it requires is actually a list of values in internal units, but, to avoid having
to know what these are, several ways are provided to specify colors. The first way is to use one
of the ‘normal’ colours listed in the first table in notation reference, 〈undefined〉 [List of colors],
page 〈undefined〉 . To set the bar lines to white we write:

{
\time 12/16
\override Staff.BarLine #'color = #white

Chapter 4: Tweaking output 86

c4 b8 c d16 c d8 |
g, a16 b8 c d4 e16 |
e8

}

�� � ��� � �
��

16
12 � �� �� �� � �� � � ���

and again, we see the bar lines are not visible. Note that white is not preceded by an apostrophe
– it is not a symbol, but a function. When called, it provides the list of internal values required
to set the color to white. The other colors in the normal list are functions too. To convince
yourself this is working you might like to change the color to one of the other functions in the
list.

The second way of changing the color is to use the list of X11 color names in the second list
in notation reference, 〈undefined〉 [List of colors], page 〈undefined〉 . However, these must be
preceded by another function, which converts X11 color names into the list of internal values,
x11-color, like this:

{
\time 12/16
\override Staff.BarLine #'color = #(x11-color 'white)
c4 b8 c d16 c d8 |
g, a16 b8 c d4 e16 |
e8

}

� �� �� � ���16
12 � ��� �

�� �� ��
��� ��

Note that in this case the function x11-color takes a symbol as an argument, so the symbol
must be preceded by an apostrophe and the two enclosed in brackets.

There is yet a third function, one which converts RGB values into internal colors – the rgb-
color function. This takes three arguments giving the intensities of the red, green and blue
colors. These take values in the range 0 to 1. So to set the color to red the value should be
(rgb-color 1 0 0) and to white it should be (rgb-color 1 1 1):

{
\time 12/16
\override Staff.BarLine #'color = #(rgb-color 1 1 1)
c4 b8 c d16 c d8 |
g, a16 b8 c d4 e16 |
e8

}

� ����� �� �� ��� � �� �� ��
��16

12

�� �

Chapter 4: Tweaking output 87

Finally, there is also a grey scale available as part of the X11 set of colors. These range from
black, 'grey0', to white, 'grey100, in steps of 1. Let’s illustrate this by setting all the layout
objects in our example to various shades of grey:

{
\time 12/16
\override Staff.StaffSymbol #'color = #(x11-color 'grey30)
\override Staff.TimeSignature #'color = #(x11-color 'grey60)
\override Staff.Clef #'color = #(x11-color 'grey60)
\override Voice.NoteHead #'color = #(x11-color 'grey85)
\override Voice.Stem #'color = #(x11-color 'grey85)
\override Staff.BarLine #'color = #(x11-color 'grey10)
c4 b8 c d16 c d8 |
g, a16 b8 c d4 e16 |
e8

}

� � � �
� �� �� �

�
��16

12 � � ��� �� �� �� �
Note the contexts associated with each of the layout objects. It is important to get these right,
or the commands will not work! Remember, the context is the one in which the appropriate
engraver is placed. The default context for engravers can be found by starting from the layout
object, going from there to the engraver which produces it, and on the engraver page in the IR
it tells you in which context the engraver will normally be found.

4.3.2 Size of objects

Let us begin by looking again at the earlier example see Section 3.1.3 [Nesting music expressions],
page 43) which showed how to introduce a new temporary staff, as in an 〈undefined〉 [ossia],
page 〈undefined〉.

\new Staff ="main" {
\relative g' {
r4 g8 g c4 c8 d |
e4 r8
<<
{ f c c }
\new Staff \with {
alignAboveContext = "main" }

{ f8 f c }
>>
r4 |

}
}

�
� � �

�
��

��
� �

�

� �

�
�

�
� �� �

�
�

Chapter 4: Tweaking output 88

Ossia are normally written without clef and time signature, and are usually printed slightly
smaller than the main staff. We already know now how to remove the clef and time signature –
we simply set the stencil of each to #f, as follows:

\new Staff ="main" {
\relative g' {
r4 g8 g c4 c8 d |
e4 r8
<<
{ f c c }
\new Staff \with {
alignAboveContext = "main"

}
{
\override Staff.Clef #'stencil = ##f
\override Staff.TimeSignature #'stencil = ##f
{ f8 f c }

}
>>
r4 |

}
}

� ��

��
� �� ��� ��

� �

�
�
�� �

�

where the extra pair of braces after the \with clause are required to ensure the enclosed overrrides
and music are applied to the ossia staff.

But what is the difference between modifying the staff context by using \with and modifying
the stencils of the clef and the time signature with \override? The main difference is that changes
made in a \with clause are made at the time the context is created, and remain in force as the
default values for the duration of that context, whereas \set or \override commands embedded
in the music are dynamic – they make changes synchronised with a particular point in the music.
If changes are unset or reverted using \unset or \revert they return to their default values,
which will be the ones set in the \with clause, or if none have been set there, the normal default
values.

Some context properties can be modified only in \with clauses. These are those properties
which cannot sensibly be changed after the context has been created. alignAboveContext and
its partner, alignBelowContext, are two such properties – once the staff has been created its
alignment is decided and it would make no sense to try to change it later.

The default values of layout object properties can also be set in \with clauses. Simply use
the normal \override command leaving out the context name, since this is unambiguously
defined as the context which the \with clause is modifying. If fact, an error will be generated
if a context is specified in this location.

So we could replace the example above with
\new Staff ="main" {
\relative g' {

Chapter 4: Tweaking output 89

r4 g8 g c4 c8 d |
e4 r8
<<
{ f c c }
\new Staff \with {
alignAboveContext = "main"
% Don't print clefs in this staff
\override Clef #'stencil = ##f
% Don't print time signatures in this staff
\override TimeSignature #'stencil = ##f

}
{ f8 f c }

>>
r4 |

}
}

�
�
��

�
� ��

�

�� � ���

�
�

�
�

�
�

Finally we come to changing the size of layout objects.
Some layout objects are created as glyphs selected from a typeface font. These include note

heads, accidentals, markup, clefs, time signatures, dynamics and lyrics. Their size is changed
by modifying the font-size property, as we shall shortly see. Other layout objects such as
slurs and ties – in general, spanner objects – are drawn individually, so there is no font-size
associated with them. These objects generally derive their size from the objects to which they
are attached, so usually there is no need to change their size manually. Still other properties
such as the length of stems and bar lines, thickness of beams and other lines, and the separation
of staff lines all need to be modified in special ways.

Returning to the ossia example, let us first change the font-size. We can do this in two ways.
We can either change the size of the fonts of each object type, like NoteHeads with commands
like

\override NoteHead #'font-size = #-2

or we can change the size of all fonts by setting a special property, fontSize, using \set, or
by including it in a \with clause (but without the \set).

\set fontSize = #-2

Both of these statements would cause the font size to be reduced by 2 steps from its previous
value, where each step reduces or increases the size by approximately 12%.

Let’s try it in our ossia example:
\new Staff ="main" {
\relative g' {
r4 g8 g c4 c8 d |
e4 r8
<<
{ f c c }

Chapter 4: Tweaking output 90

\new Staff \with {
alignAboveContext = "main"
\override Clef #'stencil = ##f
\override TimeSignature #'stencil = ##f
% Reduce all font sizes by ~24%
fontSize = #-2

}
{ f8 f c }

>>
r4 |

}
}

�

�� � � �� �
�

�� ��

�
�

�

��
�

� �
This is still not quite right. The note heads and flags are smaller, but the stems are too long

in proportion and the staff lines are spaced too widely apart. These need to be scaled down in
proportion to the font reduction. The next sub-section discusses how this is done.

4.3.3 Length and thickness of objects

Distances and lengths in LilyPond are generally measured in staff-spaces, the distance between
adjacent lines in the staff, (or occasionally half staff spaces) while most thickness properties
are measured in units of an internal property called line-thickness. For example, by default,
the lines of hairpins are given a thickness of 1 unit of line-thickness, while the thickness of
a note stem is 1.3. Note, though, that some thickness properties are different; for example, the
thickness of beams is measured in staff-spaces.

So how are lengths to be scaled in proportion to the font size? This can be done with the help
of a special function called magstep provided for exactly this purpose. It takes one argument,
the change in font size (#-2 in the example above) and returns a scaling factor suitable for
reducing other objects in proportion. It is used like this:

\new Staff ="main" {
\relative g' {
r4 g8 g c4 c8 d |
e4 r8
<<
{ f c c }
\new Staff \with {
alignAboveContext = "main"
\override Clef #'stencil = ##f
\override TimeSignature #'stencil = ##f
fontSize = #-2
% Reduce stem length and line spacing to match
\override StaffSymbol #'staff-space = #(magstep -2)

}
{ f8 f c }

Chapter 4: Tweaking output 91

>>
r4 |

}
}

� �� �

�

� ��
�

� �

�

�

�

� � ��
�

� �

Since the length of stems and many other length-related properties are always calculated relative
to the value of the staff-space property these are automatically scaled down in length too.
Note that this affects only the vertical scale of the ossia – the horizontal scale is determined by
the layout of the main music in order to remain synchronised with it, so it is not affected by
any of these changes in size. Of course, if the scale of all the main music were changed in this
way then the horizontal spacing would be affected. This is discussed later in the layout section.

This, then, completes the creation of an ossia. The sizes and lengths of all other objects may
be modified in analogous ways.

For small changes in scale, as in the example above, the thickness of the various drawn lines
such as bar lines, beams, hairpins, slurs, etc does not usually require global adjustment. If
the thickness of any particular layout object needs to be adjusted this can be best achieved by
overriding its thickness property. An example of changing the thickness of slurs was shown
above in Section 4.2.1 [Properties of layout objects], page 77. The thickness of all drawn objects
(i.e., those not produced from a font) may be changed in the same way.

4.4 Placement of objects

4.4.1 Automatic behaviour

There are some objects in musical notation that belong to the staff and there are other objects
that should be placed outside the staff. These are called within-staff objects and outside-staff
objects respectively.

Within-staff objects are those that are located on the staff – note heads, stems, accidentals,
etc. The positions of these are usually fixed by the music itself – they are vertically positioned
on specific lines of the staff or are tied to other objects that are so positioned. Collisions of note
heads, stems and accidentals in closely set chords are normally avoided automatically. There are
commands and overrides which can modify this automatic behaviour, as we shall shortly see.

Objects belonging outside the staff include things such as rehearsal marks, text and dynamic
markings. LilyPond’s rule for the vertical placement of outside-staff objects is to place them as
close to the staff as possible but not so close that they collide with any other object. LilyPond
uses the outside-staff-priority property to determine the order in which the objects should
be placed, as follows.

First, LilyPond places all the within-staff objects. Then it sorts the outside-staff objects
according to their outside-staff-priority. The outside-staff objects are taken one by one,
beginning with the object with the lowest outside-staff-priority, and placed so that they
do not collide with any objects that have already been placed. That is, if two outside-staff
grobs are competing for the same space, the one with the lower outside-staff-priority will
be placed closer to the staff. If two objects have the same outside-staff-priority the one
encountered first will be placed closer to the staff.

Chapter 4: Tweaking output 92

In the following example all the markup texts have the same priority (since it is not explicity
set). Note that ‘Text3’ is automatically positioned close to the staff again, nestling under ‘Text2’.

c2^"Text1"
c^"Text2"
c^"Text3"
c^"Text4"

� Text3

Text4

Text1 �
Text2

� �� �

Staves are also positioned, by default, as closely together as possible (subject to a minimum
separation). If notes project a long way towards an adjacent staff they will force the staves
further apart only if an overlap of the notation would otherwise occur. The following example
demonstrates this ‘nestling’ of the notes on adjacent staves:

<<
\new Staff {
\relative c' { c a, }

}
\new Staff {
\relative c'''' { c a, }

}
>>

�
�

�

�

�
��

�

4.4.2 Within-staff objects

We have already seen how the commands \voiceXXX affect the direction of slurs, ties, fingering
and everything else which depends on the direction of the stems. These commands are essential
when writing polyphonic music to permit interweaving melodic lines to be distinguished. But
occasionally it may be necessary to override this automatic behaviour. This can be done for whole
sections of music or even for an individual note. The property which controls this behaviour is the
direction property of each layout object. We first explain what this does, and then introduce
a number of ready-made commands which avoid your having to code explicit overrides for the
more common modifications.

Some layout objects like slurs and ties curve, bend or point either up or down; others like
stems and flags also move to right or left when they point up or down. This is controlled
automatically when direction is set.

The following example shows in bar 1 the default behaviour of stems, with those on high
notes pointing down and those on low notes pointing up, followed by four notes with all stems
forced down, four notes with all stems forced up, and finally four notes reverted back to the
default behaviour.

Chapter 4: Tweaking output 93

a4 g c a
\override Stem #'direction = #DOWN
a g c a
\override Stem #'direction = #UP
a g c a
\revert Stem #'direction
a g c a

�� � � ��� �� � � ��� �� ��
Here we use the constants DOWN and UP. These have the values -1 and +1 respectively, and

these numerical values may be used instead. The value 0 may also be used in some cases. It
is simply treated as meaning UP for stems, but for some objects it means ‘center’. There is a
constant, CENTER which has the value 0.

However, these explicit overrides are not usually used, as there are simpler equivalent pre-
defined commands available. Here is a table of the commonest. The meaning of each is stated
where it is not obvious.

Down/Left Up/Right Revert Effect
\arpeggioDown \arpeggioUp \arpeggioNeutralArrow is at bottom, at top, or no

arrow
\dotsDown \dotsUp \dotsNeutral Direction of movement to avoid staff

lines
\dynamicDown \dynamicUp \dynamicNeutral
\phrasingSlurDown \phrasingSlurUp \phrasingSlurNeutralNote: distinct from slur commands
\slurDown \slurUp \slurNeutral
\stemDown \stemUp \stemNeutral
\textSpannerDown \textSpannerUp \textSpannerNeutralText entered as spanner is be-

low/above staff
\tieDown \tieUp \tieNeutral
\tupletDown \tupletUp \tupletNeutral Tuplets are below/above notes

Note that these predefined commands may not be preceded by \once. If you wish to limit
the effect to a single note you must either use the equivalent \once \override command or
use the predefined command followed after the affected note by the corresponding \xxxNeutral
command.

Fingering

The placement of fingering is also affected by the value of its direction property, but there are
special commands which allow the fingering of individual notes of chords to be controlled, with
the fingering being placed above, below, to the left or to the right of each note.

First, here’s the effect of direction on fingering, the first bar shows the default, then the
effect of specifying DOWN and UP:

c-5 a-3 f-1 c'-5
\override Fingering #'direction = #DOWN
c-5 a-3 f-1 c'-5
\override Fingering #'direction = #UP
c-5 a-3 f-1 c'-5

Chapter 4: Tweaking output 94

� 1
3 ��

55
3

5

�� 5 ��
5

��
3

�� �
1

�
5

1�

This is how to control fingering on single notes, but the direction property is ignored for
chords. Instead, by default, the fingering is automatically placed both above and below the
notes of a chord, as shown:

<c-5 g-3>
<c-5 g-3 e-2>
<c-5 g-3 e-2 c-1>

3� �
2

�
2

�
3

� ��
1

3

5��
5

��5

Greater control over the placement of fingering of the individual notes in a chord is possible
by using the \set fingeringOrientations command. The format of this command is

\set fingeringOrientations = #'([up] [left/right] [down])

\set is used because fingeringOrientations is a property of the Voice context, created and
used by the New_fingering_engraver.

The property may be set to a list of one to three values. It controls whether fingerings may
be placed above (if up appears in the list), below (if down appears), to the left (if left appears,
or to the right (if right appears). Conversely, if a location is not listed, no fingering is placed
there. LilyPond takes these contraints and works out the best placement for the fingering of the
notes of the following chords. Note that left and right are mutually exclusive – fingering may
be placed only on one side or the other, not both.

To control the placement of the fingering of a single note using this command it is necessary
to write it as a single note chord by placing angle brackets round it.

Here are a few examples:
\set fingeringOrientations = #'(left)
<f-2>
< c-1 e-2 g-3 b-5 > 4
\set fingeringOrientations = #'(left)
<f-2>
< c-1 e-2 g-3 b-5 > 4
\set fingeringOrientations = #'(up left down)
<f-2>
< c-1 e-2 g-3 b-5 > 4
\set fingeringOrientations = #'(up left)
<f-2>
< c-1 e-2 g-3 b-5 > 4
\set fingeringOrientations = #'(right)
<f-2>
< c-1 e-2 g-3 b-5 > 4

2

2
1

3

5

5

1

�� ��
1

��� �
2 � 5� �

2

��2 2 33
2
3

2�
1

� �
5

�5 �2� � � 1

�� �� �3 2
�

Chapter 4: Tweaking output 95

If the fingering seems a little crowded the font-size could be reduced. The default value can
be seen from the Fingering object in the IR to be -5, so let’s try -7:

\override Fingering #'font-size = #-7
\set fingeringOrientations = #'(left)
<f-2>
< c-1 e-2 g-3 b-5 > 4
\set fingeringOrientations = #'(left)
<f-2>
< c-1 e-2 g-3 b-5 > 4
\set fingeringOrientations = #'(up left down)
<f-2>
< c-1 e-2 g-3 b-5 > 4
\set fingeringOrientations = #'(up left)
<f-2>
< c-1 e-2 g-3 b-5 > 4
\set fingeringOrientations = #'(right)
<f-2>
< c-1 e-2 g-3 b-5 > 4

2 22

5�
5

1

� ��
2

1

�
1

�� �1� 5
� �5

�
2
�2
�

3
� �

2

� ��2 3

�
3 �23 � �

5� 2

�3

1

� �
4.4.3 Outside staff objects

Outside-staff objects are automatically placed to avoid collisions. Objects with the lower value
of the outside-staff-priority property are placed nearer to the staff, and other outside-staff
objects are then raised as far as necessary to avoid collisions. The outside-staff-priority
is defined in the grob-interface and so is a property of all layout objects. By default it is
set to #f for all within-staff objects, and to a numerical value appropriate to each outside-staff
object when the object is created. The following table shows the default numerical values for
some of the commonest outside-staff objects which are, by default, placed in the Staff or Voice
contexts.

Layout Object Priority Controls position of:
MultiMeasureRestText 450 Text over full-bar rests
TextScript 450 Markup text
OttavaBracket 400 Ottava brackets
TextSpanner 350 Text spanners
DynamicLineSpanner 250 All dynamic markings
VoltaBracketSpanner 100 Volta brackets
TrillSpanner 50 Spanning trills

Here is an example showing the default placement of some of these.
% Set details for later Text Spanner
\override TextSpanner #'bound-details #'left #'text

= \markup { \small \bold Slower }
% Place dynamics above staff
\dynamicUp
% Start Ottava Bracket
#(set-octavation 1)
c' \startTextSpan

Chapter 4: Tweaking output 96

% Add Dynamic Text
c\pp
% Add Dynamic Line Spanner
c\<
% Add Text Script
c^Text
c c
% Add Dynamic Text
c\ff c \stopTextSpan
% Stop Ottava Bracket
#(set-octavation 0)
c, c c c

ff

�� ��
Slower

��

8va

�

Text

� � ��
pp

� ��
This example also shows how to create Text Spanners – text with extender lines above a sec-

tion of music. The spanner extends from the \startTextSpan command to the \stopTextSpan
command, and the format of the text is defined by the \override TextSpanner command. For
more details see notation reference, 〈undefined〉 [Text spanners], page 〈undefined〉 .

It also shows how ottava brackets are created.
Note that bar numbers, metronome marks and rehearsal marks are not shown. By default

these are created in the Score context and their outside-staff-priority is ignored relative
to the layout objects which are created in the Staff context. If you wish to place bar numbers,
metronome marks or rehearsal marks in accordance with the value of their outside-staff-
priority the Bar_number_engraver, Metronome_mark_engraver or Mark_engraver respec-
tively should be removed from the Score context and placed in the top Staff context. If this
is done, these marks will be given the following default outside-staff-priority values:

Layout Object Priority
RehearsalMark 1500
MetronomeMark 1000
BarNumber 100

If the default values of outside-staff-priority do not give you the placing you want, the
priority of any of the objects may be overridden. Suppose we would like the ottava bracket to
be placed below the text spanner in the example above. All we need to do is to look up the
priority of OttavaBracket in the IR or in the tables above, and reduce it to a value lower than
that of a TextSpanner, remembering that OttavaBracket is created in the Staff context:

% Set details for later Text Spanner
\override TextSpanner #'bound-details #'left #'text

= \markup { \small \bold Slower }
% Place dynamics above staff
\dynamicUp
%Place following Ottava Bracket below Text Spanners
\once \override Staff.OttavaBracket #'outside-staff-priority = #340
% Start Ottava Bracket

Chapter 4: Tweaking output 97

#(set-octavation 1)
c' \startTextSpan
% Add Dynamic Text
c\pp
% Add Dynamic Line Spanner
c\<
% Add Text Script
c^Text
c c
% Add Dynamic Text
c\ff c \stopTextSpan
% Stop Ottava Bracket
#(set-octavation 0)
c, c c c

8va

Text

� �� �� ��
pp

� �
ff

Slower

� �� ��
Changing the outside-staff-priority can also be used to control the vertical placement

of individual objects, although the results may not always be desirable. Suppose we would like
“Text3” to be placed above “Text4” in the example under Automatic behaviour, above (see
Section 4.4.1 [Automatic behaviour], page 91). All we need to do is to look up the priority of
TextScript in the IR or in the tables above, and increase the priority of “Text3” to a higher
value:

c2^"Text1"
c^"Text2"
\once \override TextScript #'outside-staff-priority = #500
c^"Text3"
c^"Text4"

��
Text2

Text1 �Text4
Text3

���

This certainly lifts “Text3” above “Text4” but it also lifts it above “Text2”, and “Text4” now
drops down. Perhaps this is not so good. What we would really like to do is to position all the
annotation at the same distance above the staff? To do this, we clearly will need to space the
notes out horizontally to make more room for the text. This is done using the textLengthOn
command.

\textLengthOn

By default, text produced by markup takes up no horizontal space as far as laying out the music
is concerned. The \textLengthOn command reverses this behaviour, causing the notes to be
spaced out as far as is necessary to accommodate the text:

Chapter 4: Tweaking output 98

\textLengthOn % Cause notes to space out to accommodate text
c2^"Text1"
c^"Text2"
c^"Text3"
c^"Text4"

� � �Text4�Text1�Text2 Text3�

The command to revert to the default behaviour is \textLengthOff. Remember \once only
works with \override, \set, \revert or unset, so cannot be used with \textLengthOn.

Markup text will also avoid notes which project above the staff. If this is not desired, the
automatic displacement upwards may be turned off by setting the priority to #f. Here’s an
example to show how markup text interacts with such notes.

% This markup is short enough to fit without collision
c2^"Tex"
c''2
R1
% This is too long to fit, so it is displaced upwards
c,,2^"Text"
c''2
R1
% Turn off collision avoidance
\once \override TextScript #'outside-staff-priority = ##f
c,,2^"Long Text "
c''2
R1
% Turn off collision avoidance
\once \override TextScript #'outside-staff-priority = ##f
\textLengthOn % and turn on textLengthOn
c,,2^"Long Text " % Spaces at end are honoured
c''2

�
�

�
Long Text

Text

Long Text

�
�Tex ���� �

�
� �

Dynamics

Dynamic markings will normally be positioned beneath the staff, but may be positioned above
with the dynamicUp command. They will be positioned vertically relative to the note to which
they are attached, and will float below (or above) all within-staff objects such as phrasing slurs
and bar numbers. This can give quite acceptable results, as this example shows:

\clef "bass"
\key aes \major
\time 9/8
\dynamicUp

Chapter 4: Tweaking output 99

bes4.~\f\< \(bes4 bes8 des4\ff\> c16 bes\! |
ees,2.~\)\mf ees4 r8 |

�
f

�
� � �
ff

�
����

�
mf

� �
8
9
� ��

�

However, if the notes and attached dynamics are close together the automatic placement will
avoid collisions by displacing later dynamic markings further away, but this may not be the
optimum placement, as this rather artificial example shows:

\dynamicUp
a4\f b\mf c\mp b\p

mp

� �� �
f p�mf �

Should a similar situation arise in ‘real’ music, it may be preferable to space out the notes a
little further, so the dynamic markings can all fit at the same vertical distance from the staff.
We were able to do this for markup text by using the \textLengthOn command, but there is
no equivalent command for dynamic marks. So we shall have to work out how to do this using
\override commands.

Grob sizing

First we must learn how grobs are sized. All grobs have a reference point defined within them
which is used to position them relative to their parent object. This point in the grob is then
positioned at a horizontal distance, X-offset, and at a vertical distance, Y-offset, from its
parent. The horizontal extent of the object is given by a pair of numbers, X-extent, which say
where the left and right edges are relative to the reference point. The vertical extent is similarly
defined by a pair of numbers, Y-extent. These are properties of all grobs which support the
grob-interface.

By default, outside-staff objects are given a width of zero so that they may overlap in the
horizontal direction. This is done by the trick of adding infinity to the leftmost extent and
minus infinity to the rightmost extent by setting the extra-spacing-width to '(+inf.0 . -
inf.0). So to ensure they do not overlap in the horizontal direction we must override this value
of extra-spacing-width to '(0 . 0) so the true width shines through. This is the command
to do this for dynamic text:

\override DynamicText #'extra-spacing-width = #'(0 . 0)

Let’s see if this works in our previous example:
\dynamicUp
\override DynamicText #'extra-spacing-width = #'(0 . 0)
a4\f b\mf c\mp b\p

f

� �pmf

���
mp�

Chapter 4: Tweaking output 100

Well, it has certainly stopped the dynamic marks being displaced, but two problems remain.
The marks should be spaced a little further apart and it would be better if they were all the
same distance from the staff. We can solve the first problem easily. Instead of making the
extra-spacing-width zero we could add a little more to it. The units are the space between
two staff lines, so moving the left edge half a unit to the left and the right edge half a unit to
the right should do it:

\dynamicUp
% Extend width by 1 staff space
\override DynamicText #'extra-spacing-width = #'(-0.5 . 0.5)
a4\f b\mf c\mp b\p

�
p�mf

� � �� mpf

This looks better, but maybe we would prefer the dynamic marks to be aligned along the same
baseline rather than going up and down with the notes. The property to do this is staff-
padding which is covered in the following section.

4.5 Collisions of objects

4.5.1 Moving objects

This may come as a surprise, but LilyPond is not perfect. Some notation elements can overlap.
This is unfortunate, but in fact rather rare. Usually the need to move objects is for clarity or
aesthetic reasons – they would look better with a little more or a little less space around them.

There are three main main approaches to resolving overlapping notation. They should be
considered in the following order:
1. The direction of one of the overlapping objects may be changed using the predefined com-

mands listed above for within-staff objects (see Section 4.4.2 [Within-staff objects], page 92).
Stems, slurs, beams, ties, dynamics, text and tuplets may be repositioned easily in this way.
The limitation is that you have a choice of only two positions, and neither may be suitable.

2. The object properties, which LilyPond uses when positioning layout objects, may be mod-
ified using \override. The advantages of making changes to this type of property are (a)
that some other objects will be moved automatically if necessary to make room and (b)
the single override can apply to all instances of the same type of object. Such properties
include:
• direction

This has already been covered in some detail – see Section 4.4.2 [Within-staff objects],
page 92.

• padding, left-padding, right-padding, staff-padding
As an object is being positioned the value of its padding property specifies the gap that
must be left between itself and the nearest edge of the object against which it is being
positioned. Note that it is the padding value of the object being placed that is used;
the padding value of the object which is already placed is ignored. Gaps specified by
padding can be applied to all objects which support the side-position-interface.
Instead of padding, the placement of groups of accidentals is controlled by
left-padding and right-padding. These properties are to be found in the
AccidentalPlacement object which, note, lives in the staff context. Because

Chapter 4: Tweaking output 101

accidentals are always positioned after and to the left of note heads only the
right-padding property has any effect.
The staff-padding property is closely related to the padding property: padding
controls the minimum amount of space between any object which supports the side-
position-interface and the nearest other object (generally the note or the staff
lines); staff-padding applies only to those objects which are always set outside the
staff – it controls the minimum amount of space that should be inserted between that
object and the staff. Note that staff-padding has no effect on objects which are
positioned relative to the note rather than the staff, even though it may be overridden
without error for such objects – it is simply ignored.
To discover which padding property is required for the object you wish to reposition,
you need to return to the IR and look up the object’s properties. Be aware that the
padding properties might not be located in the obvious object, so look in objects that
appear to be related.
All padding values are measured in staff spaces. For most objects, this value is set by
default to be around 1.0 or less (it varies with each object). It may be overridden if a
larger (or smaller) gap is required.

• self-alignment-X

This property can be used to align the object to the left, to the right, or to center it with
respect to the parent object’s reference point. It may be used with all objects which
support the self-alignment-interface. In general these are objects that contain
text. The values are LEFT, RIGHT or CENTER. Alternatively, a numerical value between
-1 and +1 may be specified, where -1 is left-aligned, +1 is right-aligned, and numbers
in between move the text progressively from left-aligned to right-aligned. Numerical
values greater than 1 may be specified to move the text even further to the left, or
less than -1 to move the text even further to the right. A change of 1 in the value
corresponds to a movement of half the text’s length.

• extra-spacing-width

This property is available for all objects which support the item-interface. It takes
two numbers, the first is added to the leftmost extent and the second is added to the
rightmost extent. Negative numbers move the edge to the left, positive to the right, so
to widen an object the first number must be negative, the second positive. Note that
not all objects honour both numbers. For example, the Accidental object only takes
notice of the first (left edge) number.

• staff-position

staff-position is a property of the staff-symbol-referencer-interface, which is
supported by objects which are positioned relative to the staff. It specifies the vertical
position of the object relative to the center line of the staff in half staff-spaces. It is
useful in resolving collisions between layout objects like multi-measure rests, ties and
notes in different voices.

• force-hshift

Closely spaced notes in a chord, or notes occuring at the same time in different voices,
are arranged in two, occasionally more, columns to prevent the note heads overlapping.
These are called note columns, and an object called NoteColumn is created to lay out
the notes in that column.
The force-hshift property is a property of a NoteColumn (actually of the note-
column-interface). Changing it permits a note column to be moved in units appro-
priate to a note column, viz. the note head width of the first voice note. It should be
used in complex situations where the normal \shiftOn commands (see Section 3.2.2

Chapter 4: Tweaking output 102

[Explicitly instantiating voices], page 50) do not resolve the note conflict. It is prefer-
able to the extra-offset property for this purpose as there is no need to work out
the distance in staff-spaces, and moving the notes into or out of a NoteColumn affects
other actions such as merging note heads.

Objects do not all have all of these properties in general. It is necessary to go to the IR to
look up which properties are available for the object in question.

3. Finally, when all else fails, objects may be manually repositioned relative to the staff center
line verically, or by displacing them by any distance to a new position. The disadvantages
are that the correct values for the repositioning have to be worked out, often by trial and
error, for every object individually, and, because the movement is done after LilyPond has
placed all other objects, the user is responsible for avoiding any collisions that might ensue.
But the main difficulty with this approach is that the repositioning values may need to be
reworked if the music is later modified. The properties that can be used for this type of
manual repositioning are:

extra-offset
This property applies to any layout object supporting the grob-interface. It
takes a pair of numbers which specify the extra displacement in the horizontal
and vertical directions. Negative numbers move the object to the left or down.
The units are staff-spaces. The extra displacement is made after the typeset-
ting of objects is finished, so an object may be repositioned anywhere without
affecting anything else.

positions
This is most useful for manually adjusting the slope and height of beams, slurs,
and tuplets. It takes a pair of numbers giving the position of the left and right
ends of the beam, slur, etc. relative to the center line of the staff. Units are
staff-spaces. Note, though, that slurs and phrasing slurs cannot be repositioned
by arbitrarily large amounts. LilyPond first generates a list of possible positions
for the slur and by default finds the slur that “looks best”. If the positions
property has been overridden the slur that is closest to the requested positions
is selected from the list.

Objects do not all have all of these properties in general. It is necessary to go to the IR to
look up which properties are available for the object in question.

Here is a list of the objects which are most likely to be involved in collisions, together with
the name of the object which should be looked up in the IR in order to discover which properties
should be used to move them.

Object type Object name
Articulations Script
Beams Beam
Dynamics (vertically) DynamicLineSpanner
Dynamics (horizontally) DynamicText
Fingerings Fingering
Rehearsal / Text marks RehearsalMark
Slurs Slur
Text e.g. ^"text" TextScript
Ties Tie
Tuplets TupletBracket

4.5.2 Fixing overlapping notation

Let’s now see how the properties in the previous section can help to resolve overlapping notation.

Chapter 4: Tweaking output 103

padding

The padding property can be set to increase (or decrease) the distance between symbols that
are printed above or below notes.

c2\fermata
\override Script #'padding = #3
b2\fermata

�
� �

�� �
% This will not work, see below:
\override MetronomeMark #'padding = #3
\tempo 4=120
c1
% This works:
\override Score.MetronomeMark #'padding = #3
\tempo 4=80
d1

�
� = 80

� �
� = 120

�
Note in the second example how important it is to figure out what context handles a certain

object. Since the MetronomeMark object is handled in the Score context, property changes in
the Voice context will not be noticed. For more details, see notation reference, 〈undefined〉
[Constructing a tweak], page 〈undefined〉 .

If the padding property of an object is increased when that object is in a stack of objects
being positioned according to their outside-staff-priority, then that object and all objects
outside it are moved.

left-padding and right-padding

TODO Example showing the utility of these properties -td

staff-padding property

staff-padding can be used to align objects such as dynamics along a baseline at a fixed height
above the staff, rather than at a height dependent on the position of the note to which they are
attached. It is not a property of DynamicText but of DynamicLineSpanner. This is because the
baseline should apply equally to all dynamics, including those created as extended spanners. So
this is the way to align the dynamic marks in the example taken from the previous section:

\dynamicUp
% Extend width by 1 unit
\override DynamicText #'extra-spacing-width = #'(-0.5 . 0.5)
% Align dynamics to a base line 2 units above staff
\override DynamicLineSpanner #'staff-padding = #2
a4\f b\mf c\mp b\p

Chapter 4: Tweaking output 104

� �
mf p

� ��
f

�
mp

self-alignment-X property

The following example shows how this can resolve the collision of a string fingering object with
a note’s stem by aligning the right edge with the reference point of the parent note:

\voiceOne
< a \2 >
\once \override StringNumber #'self-alignment-X = #RIGHT
< a \2 >

2

�
2�� �

staff-position property

Multimeasure rests in one voice can collide with notes in another. Since these rests are typeset
centered between the bar lines, it would require significant effort for LilyPond to figure out
which other notes might collide with it, since all the current collision handling between notes
and between notes and rests is done only for notes and rests that occur at the same time. Here’s
an example of a collision of this type:

<< {c c c c} \\ {R1} >>

� ���� ��

The best solution here is to move the multimeasure rest down, since the rest is in voice two.
The default in \voiceTwo (i.e. in the second voice of a <<{...} \\ {...}>> construct) is that
staff-position is set to -4 for MultiMeasureRest, so we need to move it, say, four half-staff
spaces down to -8.

<<
{c c c c}

\\
\override MultiMeasureRest #'staff-position = #-8
{R1}

>>

�� ��� � �
This is better than using, for example, extra-offset, because the ledger line above the rest

is inserted automatically.

Chapter 4: Tweaking output 105

extra-offset property

The extra-offset property provides complete control over the positioning of an object both
horizontally and vertically.

In the following example, the second fingering is moved a little to the left, and 1.8 staff space
downwards:

\stemUp
f-5
\once \override Fingering

#'extra-offset = #'(-0.3 . -1.8)
f-5

5� � 5��
force-hshift property

We can now see how to apply the final corrections to the Chopin example introduced at the end
of Section 3.2.1 [I’m hearing Voices], page 45, which was left looking like this:

\new Staff \relative c'' {
\key aes \major
<<
{ c2 aes4. bes8 } \\
{ aes2 f4 fes } \\
{ \voiceFour
<ees c>2
des2

}
>> |
<c ees aes c>1 |

}

�����
�

� �� ��� ���� �� �� � �
The lower two notes of the first chord (i.e, those in the third voice) should not be shifted away
from the note column of the higher two notes. To correct this we set force-hshift, which is
a property of NoteColumn, of these notes to zero. The lower note of the second chord is best
placed just to the right of the higher notes. We achieve this by setting force-hshift of this
note to 0.5, ie half a note head’s width to the right of the note column of the higher notes.

Here’s the final result:
\new Staff \relative c'' {
\key aes \major
<<
{ c2 aes4. bes8 } \\
{ aes2 f4 fes } \\
{ \voiceFour
\once \override NoteColumn #'force-hshift = #0 <ees c>2

Chapter 4: Tweaking output 106

\once \override NoteColumn #'force-hshift = #0.5 des2
}

>> |
<c ees aes c>1 |

}

���� � ��� �� � ��� �� ����� �

positions property

The positions property allows the position and slope of tuplets, slurs, phrasing slurs and beams
to be controlled manually. Here’s an example which has an ugly phrasing slur due to its trying
to avoid the slur on the acciaccatura.

r4 \acciaccatura e8\(d8 c ~c d c d\)

����� ��� � ��
�

We could simply move the phrasing slur above the notes, and this would be the preferred
solution:

r4
\phrasingSlurUp
\acciaccatura e8\(d8 c ~c d c d\)

� � � � ��� �� ���

but if there were some reason why this could not be done the other alternative would be to move
the left end of the phrasing slur down a little using the positions property. This also resolves
the rather nasty shape.

r4
\once \override PhrasingSlur #'positions = #'(-4 . -3)
\acciaccatura
e8\(d8 c ~c d c d\)

�� ��
� � ��� � ��

Here’s a further example taken from the opening of the left-hand staff of Chopin’s Prelude
Op 28 No. 2. We see that the beam collides with the upper notes:

Chapter 4: Tweaking output 107

{
\clef "bass"
<< {b,8 ais, b, g,} \\ {e, g e, g} >>
<< {b,8 ais, b, g,} \\ {e, g e, g} >>
}

�� �
�
�

�
�

� �
�� �

��� � ���

This can only be resolved by manually moving both ends of the beam up from their position at
2 staff-spaces above the center line to, say, 3:

{
\clef "bass"
<<
\override Beam #'positions = #'(3 . 3)
{b,8 ais, b, g,}

\\
{e, g e, g}

>>
<< {b,8 ais, b, g,} \\ {e, g e, g} >>

}

�
�

�
��
��� ��� �� ��� �� �

Note that the override continues to apply in the first voice of the second block of quavers, but
not to any of the beams in the second voice.

4.5.3 Real music example

We end this section on Tweaks by showing the steps to be taken to deal with a tricky example
which needs several tweaks to produce the desired output. The example has been deliberately
chosen to illustrate the use of the Notation Reference to resolve unusual problems with notation.
It is not representative of more usual engraving process, so please do not let these difficulties
put you off! Fortunately, difficulties like these are not very common!

The example is from Chopin’s Premi Ballade, Op. 23, bars 6 to 9, the transition from the
opening Lento to Moderato. Here, first, is what we want the output to look like, but to avoid
over-complicating the example too much we have left out the dynamics, fingering and pedalling.

�

�
���

4
6

� � �� �
�

�
�

�
4
6��

������	 �
�
 ��

� ��

�

�

� �
� �

�

�

�� �

Moderato

�

� � ��

Chapter 4: Tweaking output 108

We note first that the right hand part in the third bar requires four voices. These are the five
beamed eighth notes, the tied C, the half-note D which is merged with the eighth note D, and
the dotted quarter note F-sharp, which is also merged with the eighth note at the same pitch.
Everything else is in a single voice, so the easiest way is to introduce these four voices temporarily
at the time they are needed. If you have forgotten how to do this, look at Section 3.2.1 [I’m
hearing Voices], page 45. Let us begin by entering the notes as two variables and setting up the
staff structure in a score block, and see what LilyPond produces by default:

rhMusic = \relative c'' {
r2 c4. g8 |
bes1~ |
\time 6/4
bes2. r8
% Start polyphonic section of four voices
<<
{c,8 d fis bes a | }

\\
{c,8~ c2 | }

\\
{s8 d2 | }

\\
{s4 fis4. | }

>>
g2.

}

lhMusic = \relative c' {
r2 <c g ees>2 |
<d g, d>1 |
r2. d,,4 r4 r |
r4

}

\score {
\new PianoStaff <<
\new Staff = "RH" <<
\key g \minor
\rhMusic

>>
\new Staff = "LH" <<
\key g \minor
\clef "bass"
\lhMusic

>>
>>

}

Chapter 4: Tweaking output 109

����
�

4
6

�
�

� �� �� � ��

��
�	

4
6 	

� �
� 	�� �

		
�

��

�

�

	 �

	� �

�
���

All the notes are right, but the appearance is far from satisfactory. The tie clashes with
the change in time signature, the beaming in the third bar is wrong, the notes are not merged
together, and several notation elements are missing. Let’s first deal with the easier things. We
can correct the beaming by inserting a beam manually, and we can easily add the left hand slur
and the right hand phrasing slur, since these were all covered in the Tutorial. Doing this gives:

rhMusic = \relative c'' {
r2 c4.\(g8 |
bes1~ |
\time 6/4
bes2. r8
% Start polyphonic section of four voices
<<
{c,8[d fis bes a] | }

\\
{c,8~ c2 | }

\\
{s8 d2 | }

\\
{s4 fis4. | }

>>
g2.\)

}

lhMusic = \relative c' {
r2 <c g ees>2(|
<d g, d>1) |
r2. d,,4 r4 r |
r4

}

\score {
\new PianoStaff <<
\new Staff = "RH" <<
\key g \minor
\rhMusic

>>
\new Staff = "LH" <<
\key g \minor
\clef "bass"
\lhMusic

>>
>>

}

Chapter 4: Tweaking output 110

�
�

�
�� ��

�
��� � ���

��

�� �
��

�

�� � �
�	

4
6

� �
�	

�

�

�

�� �
�
�

4
6

�

�

The first bar is now correct. The second bar contains an arpeggio and is terminated by a
double bar line. How do we do these, as they have not been mentioned in this Learning Manual?
This is where we need to turn to the Notation Reference. Looking up ‘arpeggio’ and ‘bar line’
in the index quickly shows us that an arpeggio is produced by appending \arpeggio to a chord,
and a double bar line is produced by the \bar "||" command. That’s easily done. We next
need to correct the collision of the tie with the time signature. This is best done by moving the
tie upwards. Moving objects was covered earlier in Section 4.5.1 [Moving objects], page 100,
which says that objects positioned relative to the staff can be moved by overriding their staff-
position property, which is specified in half staff spaces relative to the center line of the staff.
So the following override placed just before the first tied note would move the tie up to 3.5 half
staff spaces above the center line:

\once \override Tie #'staff-position = #3.5

This completes bar two, giving:

rhMusic = \relative c'' {
r2 c4.\(g8 |
\once \override Tie #'staff-position = #3.5
bes1~ |
\bar "||"
\time 6/4
bes2. r8
% Start polyphonic section of four voices
<<
{c,8[d fis bes a] | }

\\
{c,8~ c2 | }

\\
{s8 d2 | }

\\
{s4 fis4. | }

>>
g2.\)

}

lhMusic = \relative c' {
r2 <c g ees>2(|
<d g, d>1)\arpeggio |
r2. d,,4 r4 r |
r4

}

\score {
\new PianoStaff <<
\new Staff = "RH" <<
\key g \minor
\rhMusic

Chapter 4: Tweaking output 111

>>
\new Staff = "LH" <<
\key g \minor
\clef "bass"
\lhMusic

>>
>>

}

�� �
��

�
�
��

�
� ��

� � �

�

��

� ���
�

	�

4
6

�� �

��

4
6 � �

�

�
� � ��

� �
��

� �

On to bar three and the start of the Moderato section. The tutorial showed how to add
embolded text with the \markup command, so adding ‘Moderato’ in bold is easy. But how
do we merge notes in different voices together? The index in the Notation Reference does
not mention merging, but a search of the text for ‘merge’ quickly leads us to the overrides
for merging differently headed and differently dotted notes in notation reference, 〈undefined〉
[Collision Resolution], page 〈undefined〉 . In our example we need to merge both types of note
for the duration of the polyphonic section in bar 3, so using the information in the Notation
Reference we add

\override Staff.NoteCollision #'merge-differently-headed = ##t
\override Staff.NoteCollision #'merge-differently-dotted = ##t

to the start of that section and
\revert Staff.NoteCollision #'merge-differently-headed
\revert Staff.NoteCollision #'merge-differently-dotted

to the end, giving:
rhMusic = \relative c'' {
r2 c4.\(g8 |
\once \override Tie #'staff-position = #3.5
bes1~ |
\bar "||"
\time 6/4
bes2.^\markup {\bold "Moderato"} r8
\override Staff.NoteCollision #'merge-differently-headed = ##t
\override Staff.NoteCollision #'merge-differently-dotted = ##t
% Start polyphonic section of four voices
<<
{c,8[d fis bes a] | }

\\
{c,8~ c2 | }

\\
{s8 d2 | }

\\
{s4 fis4. | }

>>

Chapter 4: Tweaking output 112

\revert Staff.NoteCollision #'merge-differently-headed
\revert Staff.NoteCollision #'merge-differently-dotted
g2.\)

}

lhMusic = \relative c' {
r2 <c g ees>2(|
<d g, d>1)\arpeggio |
r2. d,,4 r4 r |
r4

}

\score {
\new PianoStaff <<
\new Staff = "RH" <<
\key g \minor
\rhMusic

>>
\new Staff = "LH" <<
\key g \minor
\clef "bass"
\lhMusic

>>
>>

}

�
���

� �
��� ��

�
�

� �� ����

�

	 �
	

Moderato

��
�

4
6

�

�

� �
�

 �� ��

4
6

�
��

��

�
��

These overrides have merged the two F-sharp notes, but not the two on D. Why not? The
answer is there in the same section in the Notation Reference – notes being merged must have
stems in opposite directions and two notes cannot be merged successfully if there is a third note
in the same note column. Here the two D’s both have upward stems and there is a third note –
the C. We know how to change the stem direction using \stemDown, and the Notation Reference
also says how to move the C – apply a shift using one of the \shift commands. But which
one? The C is in voice two which has shift off, and the two D’s are in voices one and three,
which have shift off and shift on, respectively. So we have to shift the C a further level still
using \shiftOnn to avoid it interferring with the two D’s. Applying these changes gives:

rhMusic = \relative c'' {
r2 c4.\(g8 |
\once \override Tie #'staff-position = #3.5
bes1~ |
\bar "||"
\time 6/4
bes2.^\markup {\bold "Moderato"} r8

Chapter 4: Tweaking output 113

\override Staff.NoteCollision #'merge-differently-headed = ##t
\override Staff.NoteCollision #'merge-differently-dotted = ##t
% Start polyphonic section of four voices
<<
{c,8[d fis bes a] | }

\\
% Move the c2 out of the main note column so the merge will work
{c,8~ \shiftOnn c2 | }

\\
% Stem on the d2 must be down to permit merging
{s8 \stemDown d2 | }

\\
{s4 fis4. | }

>>
\revert Staff.NoteCollision #'merge-differently-headed
\revert Staff.NoteCollision #'merge-differently-dotted
g2.\)

}

lhMusic = \relative c' {
r2 <c g ees>2(|
<d g, d>1)\arpeggio |
r2. d,,4 r4 r |
r4

}

\score {
\new PianoStaff <<
\new Staff = "RH" <<
\key g \minor
\rhMusic

>>
\new Staff = "LH" <<
\key g \minor
\clef "bass"
\lhMusic

>>
>>

}

���
4
6

�
4
6�

�
�

�
�

��
�

��
�

Moderato

� ��
�

� 		

� 		

�

�
� ��
 �

���
�
�

�� �
� ����

Nearly there. Only two problems remain: The downward stem on the merged D should not
be there, and the C would be better positioned to the right of the D’s. We know how to do

Chapter 4: Tweaking output 114

both of these from the earlier tweaks: we make the stem transparent, and move the C with the
force-hshift property. Here’s the final result:

rhMusic = \relative c'' {
r2
c4.\(g8 |
\once \override Tie #'staff-position = #3.5
bes1~ |
\bar "||"
\time 6/4
bes2.^\markup {\bold "Moderato"} r8
\override Staff.NoteCollision #'merge-differently-headed = ##t
\override Staff.NoteCollision #'merge-differently-dotted = ##t
<<
{c,8[d fis bes a] | }

\\
% Reposition the c2 to the right of the merged note
{c,8~ \once \override NoteColumn #'force-hshift = #1.0
% Move the c2 out of the main note column so the merge will work
\shiftOnn c2}

\\
% Stem on the d2 must be down to permit merging
{s8 \stemDown \once \override Stem #'transparent = ##t d2}

\\
{s4 fis4.}

>>
\revert Staff.NoteCollision #'merge-differently-headed
\revert Staff.NoteCollision #'merge-differently-dotted
g2.\)

}

lhMusic = \relative c' {
r2 <c g ees>2(|
<d g, d>1)\arpeggio |
r2. d,,4 r4 r |
r4

}

\score {
\new PianoStaff <<
\new Staff = "RH" <<
\key g \minor
\rhMusic

>>
\new Staff = "LH" <<
\key g \minor
\clef "bass"
\lhMusic

>>
>>

}

Chapter 4: Tweaking output 115

Moderato

��

��
��� � �� �

�

�� �

��

�

� ����

� �	

	

�

�
4
6�

		� �� �
4
6

	
��

�

� 		
�

�

4.6 Further tweaking

4.6.1 Other uses for tweaks

•

Tying notes across voices

The following example demonstrates how to connect notes in different voices using ties.
Normally, ties can be used to only to connect two notes in the same voice. By introducing
a tie in a different voice,

� �
��� ���

and blanking the first up-stem in that voice, the tie appears to cross voices:
<< {
\once \override Stem #'transparent = ##t
b8~ b8\noBeam

} \\ {
b[g8]

} >>

�� ��
�

� �
To make sure that the just-blanked stem doesn’t squeeze the tie too much, we can also
lengthen the stem, by setting the length to 8,

<< {
\once \override Stem #'transparent = ##t
\once \override Stem #'length = #8
b8~ b8\noBeam

} \\ {
b[g8]

} >>

�� � � �
��

•

Chapter 4: Tweaking output 116

Simulating a fermata

For outside-staff objects it is usually better to override the object’s stencil property rather
than its transparent property when you wish to remove it from the printed output. Setting
the stencil property of an object to #f will remove that object entirely from the printed
output. This means it has no effect on the placement of other objects placed relative to it.
For example, if we wished to change the metronome setting in order to simulate a fermata
in the MIDI output we would not want the metronome marking to appear in the printed
output, and we would not want it to influence the spacing between the two systems or the
spacing of the notes on the staff. So setting its stencil property to #f would be the best
way. We show here the effect of the two methods:

\score {
\relative c'' {
% Visible tempo marking
\tempo 4=120
a4 a a
\once \override Score.MetronomeMark #'transparent = ##t
% Invisible tempo marking to lengthen fermata note in MIDI
\tempo 4=80
a\fermata
\once \override Score.MetronomeMark #'stencil = ##f
% Invisible tempo marking to restore tempo in MIDI
\tempo 4=120
a a a a

}
\layout { }
\midi { }

}

� � ��
� = 120

� � �� ���
Both methods remove the metronome mark from the printed output, and both affect the
MIDI timing as required, but the first (transparent) metronome mark still influences the
note spacing while the second (with no stencil) does not.

4.6.2 Using variables for tweaks

Override commands are often long and tedious to type, and they have to be absolutely correct. If
the same overrides are to be used many times it may be worth defining variables to hold them.
Suppose we wish to emphasize certain words in lyrics by printing them in bold italics. The
\italic and \bold commands do not work within lyrics so we must instead use the following
\override and \revert commands:

\override Lyrics . LyricText #'font-shape = #'italic
\override Lyrics . LyricText #'font-series = #'bold

\revert Lyrics . LyricText #'font-shape
\revert Lyrics . LyricText #'font-series

These would be extremely tedious to enter if there were many words requiring emphasis. So
instead we define these as two variables, and use them as follows:

Chapter 4: Tweaking output 117

emph = {
\override Lyrics . LyricText #'font-shape = #'italic
\override Lyrics . LyricText #'font-series = #'bold

}
norm = {
\revert Lyrics . LyricText #'font-shape
\revert Lyrics . LyricText #'font-series

}

global = { \time 4/4 \partial 4 \key c \major}
SopMusic = \relative c' { c4 | e4. e8 g4 g | a a g }
AltoMusic = \relative c' { c4 | c4. c8 e4 e | f f e }
TenorMusic = \relative c { e4 | g4. g8 c4. b8 | a8 b c d e4 }
BassMusic = \relative c { c4 | c4. c8 c4 c | f8 g a b c4 }
VerseOne = \lyrics { E -- | ter -- nal \emph Fa -- ther, \norm | strong to save, }
VerseTwo = \lyricmode { O | \emph Christ, \norm whose voice the | wa -- ters heard, }
VerseThree = \lyricmode { O | \emph Ho -- ly Spi -- rit, \norm | who didst brood }
VerseFour = \lyricmode { O | \emph Tri -- ni -- ty \norm of | love and pow'r }

\score {
\new ChoirStaff <<
\new Staff <<
\clef "treble"
\new Voice = "Sop" { \voiceOne \global \SopMusic }
\new Voice = "Alto" { \voiceTwo \AltoMusic }
\new Lyrics \lyricsto "Sop" { \VerseOne }
\new Lyrics \lyricsto "Sop" { \VerseTwo }
\new Lyrics \lyricsto "Sop" { \VerseThree }
\new Lyrics \lyricsto "Sop" { \VerseFour }

>>
\new Staff <<
\clef "bass"
\new Voice = "Tenor" { \voiceOne \TenorMusic }
\new Voice = "Bass" { \voiceTwo \BassMusic }

>>
>>

}

�
�

�

E
�

ther,

��

ni

ly

whose

nal

��
�

�

��

���

�

�� �

�

�
O

�

�

�
��
ty

Spi

voice

Fa

�

�

ters

to

��

O

O

� �
Tri

Ho

Christ,

ter

�

�
love

who

wa

strong

��

���� ���
of

rit,

the

� ���

��
and

didst

�
��
pow'r

brood

heard,

save,

Chapter 4: Tweaking output 118

4.6.3 Other sources of information

The Internals Reference documentation contains a lot of information about LilyPond, but even
more information can be gathered from looking at the internal LilyPond files. To explore these,
first find the directory appropriate to your system, as follows:

• Linux: Navigate to ‘installdir/lilypond/usr/share/lilypond/current/’
• OSX: Navigate to ‘installdir/LilyPond.app/Contents/Resources/share/lilypond/current/’.

by either cd-ing into this directory from the Terminal, or control-clicking on the LilyPond
application and selecting ‘Show Package Contents’.

• Windows: Using Windows Explorer, navigate to ‘installdir/LilyPond/usr/share/lilypond/current/’

Within this directory the two interesting subdirectories are

• ‘../ly/’ - contains files in LilyPond format
• ‘../scm/’ - contains files in Scheme format

Let’s begin by looking at some files in ‘../ly/’. Open ‘../ly/property-init.ly’ in a text
editor. The one you normally use for .ly files will be fine. This file contains the definitions of
all the standard LilyPond built-in commands – like \stemUp and \slurDotted. You will see
that these are nothing more than definitions of variables containing one or a group of \override
commands. For example, /tieDotted is defined to be:

tieDotted = {
\override Tie #'dash-period = #0.75
\override Tie #'dash-fraction = #0.1

}

If you do not like the default values these built-in commands can be redefined easily, just like
any other variable, at the head of your input file.

These are the most useful files to be found in ‘../ly/’:

Filename Contents
‘../ly/engraver-init.ly’ Definitions of engraver Contexts
‘../ly/paper-defaults.ly’ Specifications of paper-related defaults
‘../ly/performer-init.ly’ Definitions of performer Contexts
‘../ly/property-init.ly’ Definitions of all common macros

Other settings (such as the definitions of markup commands) are stored as .scm (Scheme)
files. The Scheme programming language is used to provide a programmable interface into
LilyPond internal operation. Further explanation of these files is currently outside the scope of
this manual, as a knowledge of the Scheme language is required. Users should be warned that a
substantial amount of technical knowledge or time is required to understand Scheme and these
files.

If you have this knowledge, the Scheme files which may be of interest are:

Filename Contents
‘../scm/auto-beam.scm’ Sub-beaming defaults
‘../scm/define-grobs.scm’ Default settings for grob properties
‘../scm/define-markup-commands.scm’Specify all markup commands
‘../scm/midi.scm’ Default settings for MIDI output
‘../scm/output-lib.scm’ Settings that affect appearance of frets, colors, acciden-

tals, bar lines, etc
‘../scm/parser-clef.scm’ Definitions of supported clefs
‘../scm/script.scm’ Default settings for articulations

Chapter 4: Tweaking output 119

4.6.4 Advanced tweaks with Scheme

We have seen how LilyPond output can be heavily modified using commands like \override
TextScript #'extra-offset = (1 . -1). But we have even more power if we use Scheme. For
a full explantion of this, see the Appendix B [Scheme tutorial], page 157, and notation reference,
〈undefined〉 [Interfaces for programmers], page 〈undefined〉 .

We can use Scheme to simply \override commands,

TODO Check this is a valid example with skylining

padText = #(define-music-function (parser location padding) (number?)
#{
\once \override TextScript #'padding = #$padding

#})

\relative c''' {
c4^"piu mosso" b a b
\padText #1.8
c4^"piu mosso" d e f
\padText #2.6
c4^"piu mosso" fis a g

}

�
piu mosso �� �

piu mosso

� �piu mosso �
� � �� � ���

We can use it to create new commands,

TODO Check this is a valid example with skylining

tempoMark = #(define-music-function (parser location padding marktext)
(number? string?)

#{
\once \override Score . RehearsalMark #'padding = $padding
\once \override Score . RehearsalMark #'extra-spacing-width = #'(+inf.0 . -inf.0)
\mark \markup { \bold $marktext }

#})

\relative c'' {
c2 e
\tempoMark #3.0 #"Allegro"
g c

}

�
��Allegro

�� �

Chapter 4: Tweaking output 120

Even music expressions can be passed in.
pattern = #(define-music-function (parser location x y) (ly:music? ly:music?)
#{
$x e8 a b $y b a e

#})

\relative c''{
\pattern c8 c8\f
\pattern {d16 dis} { ais16-> b\p }

}

���� �� �
p

�� �� �
f

� ���� �� � � ���

4.6.5 Avoiding tweaks with slower processing

LilyPond can perform extra checks while it processes files. These commands will take extra
time, but the result may require fewer manual tweaks.

%% makes sure text scripts and lyrics are within the paper margins
\override Score.PaperColumn #'keep-inside-line = ##t
\override Score.NonMusicalPaperColumn #'keep-inside-line = ##t

In some cases (see issue 246), this must be done before \override commands can be pro-
cessed.
\new Score \with {

\override PaperColumn #'keep-inside-line = ##t
\override NonMusicalPaperColumn #'keep-inside-line = ##t

} {
..

}

Chapter 5: Working on LilyPond projects 121

5 Working on LilyPond projects

This section explains how to solve or avoid certain common problems. If you have programming
experience, many of these tips may seem obvious, but it is still advisable to read this chapter.

5.1 Suggestions for writing LilyPond files

Now you’re ready to begin writing larger LilyPond files – not just the little examples in the
tutorial, but whole pieces. But how should you go about doing it?

As long as LilyPond can understand your files and produces the output that you want, it
doesn’t matter what your files look like. However, there are a few other things to consider when
writing lilypond files.
• What if you make a mistake? The structure of a lilypond file can make certain errors easier

(or harder) to find.
• What if you want to share your files with somebody else? In fact, what if you want to alter

your own files in a few years? Some lilypond files are understandable at first glance; other
files may leave you scratching your head for an hour.

• What if you want to upgrade your lilypond file for use with a later version of lilypond? The
input syntax changes occasionally as lilypond improves. Most changes can be done auto-
matically with convert-ly, but some changes might require manual assistance. Lilypond
files can be structured in order to be easier (or harder) to update.

5.1.1 General suggestions

Here are a few suggestions that can help you to avoid or fix problems:
• Include \version numbers in every file. Note that all templates contain \version infor-

mation. We highly recommend that you always include the \version, no matter how small
your file is. Speaking from personal experience, it’s quite frustrating to try to remember
which version of LilyPond you were using a few years ago. convert-ly requires you to
declare which version of LilyPond you used.

• Include checks: notation reference, 〈undefined〉 [Bar and barnumber checks], page 〈unde-
fined〉 , notation reference, 〈undefined〉 [Octave check], page 〈undefined〉 . If you include
checks every so often, then if you make a mistake, you can pinpoint it quicker. How often is
‘every so often’? It depends on the complexity of the music. For very simple music, perhaps
just once or twice. For very complex music, perhaps every bar.

• One bar per line of text. If there is anything complicated, either in the music itself or in
the output you desire, it’s often good to write only one bar per line. Saving screen space
by cramming eight bars per line just isn’t worth it if you have to ‘debug’ your files.

• Comment your files. Use either bar numbers (every so often) or references to musical
themes (‘second theme in violins,’ ‘fourth variation,’ etc.). You may not need comments
when you’re writing the piece for the first time, but if you want to go back to change
something two or three years later, or if you pass the source over to a friend, it will be much
more challenging to determine your intentions or how your file is structured if you didn’t
comment the file.

• Indent your braces. A lot of problems are caused by an imbalance in the number of { and
}.

• Explicitly add durations at the beginnings of sections and variables. If you specify c4 d e
at the beginning of a phrase (instead of just c d e) you can save yourself some problems if
you rearrange your music later.

• Separate tweaks from music definitions. See Section 5.1.4 [Saving typing with variables and
functions], page 122, and Section 5.1.5 [Style sheets], page 124.

Chapter 5: Working on LilyPond projects 122

5.1.2 Typesetting existing music

If you are entering music from an existing score (i.e., typesetting a piece of existing sheet music),
• Enter one manuscript (the physical copy) system at a time (but still only one bar per line

of text), and check each system when you finish it. You may use the showLastLength
command to speed up processing – see notation reference, 〈undefined〉 [Skipping corrected
music], page 〈undefined〉 .

• Define mBreak = { \break } and insert \mBreak in the input file whenever the manuscript
has a line break. This makes it much easier to compare the LilyPond music to the original
music. When you are finished proofreading your score, you may define mBreak = { } to
remove all those line breaks. This will allow LilyPond to place line breaks wherever it feels
are best.

5.1.3 Large projects

When working on a large project, having a clear structure to your lilypond files becomes vital.
• Use an variable for each voice, with a minimum of structure inside the definition. The

structure of the \score section is the most likely thing to change; the violin definition is
extremely unlikely to change in a new version of LilyPond.

violin = \relative c'' {
g4 c'8. e16
}
...
\score {
\new GrandStaff {
\new Staff {
\violin

}
}

}

• Separate tweaks from music definitions. This point was made in previously, but for large
projects it is absolutely vital. We might need to change the definition of fthenp, but then
we only need to do this once, and we can still avoid touching anything inside violin.

fthenp = _\markup{
\dynamic f \italic \small { 2nd } \hspace #0.1 \dynamic p }

violin = \relative c'' {
g4\fthenp c'8. e16
}

5.1.4 Saving typing with variables and functions

By this point, you’ve seen this kind of thing:
hornNotes = \relative c'' { c4 b dis c }
\score {
{
\hornNotes

}
}

�� � �� ��

Chapter 5: Working on LilyPond projects 123

You may even realize that this could be useful in minimalist music:
fragA = \relative c'' { a4 a8. b16 }
fragB = \relative c'' { a8. gis16 ees4 }
violin = \new Staff { \fragA \fragA \fragB \fragA }
\score {
{
\violin

}
}

���� ��� ��� ��� �� ��� ��

However, you can also use these variables (also known as variables, macros, or (user-defined)
command) for tweaks:

dolce = \markup{ \italic \bold dolce }
padText = { \once \override TextScript #'padding = #5.0 }
fthenp=_\markup{ \dynamic f \italic \small { 2nd } \hspace #0.1 \dynamic p }
violin = \relative c'' {
\repeat volta 2 {
c4._\dolce b8 a8 g a b |
\padText
c4.^"hi there!" d8 e' f g d |
c,4.\fthenp b8 c4 c-. |

}
}
\score {
{
\violin

}
\layout{ragged-right=##t}
}

����
�

���
f 2nd p

�
�

��� � � �� � �
�

�� �

hi there!

dolce

�
�

��

These variables are obviously useful for saving typing. But they’re worth considering even if
you only use them once – they reduce complexity. Let’s look at the previous example without
any variables. It’s a lot harder to read, especially the last line.

violin = \relative c'' {
\repeat volta 2 {
c4._\markup{ \italic \bold dolce } b8 a8 g a b |
\once \override TextScript #'padding = #5.0
c4.^"hi there!" d8 e' f g d |
c,4.\markup{ \dynamic f \italic \small { 2nd }

Chapter 5: Working on LilyPond projects 124

\hspace #0.1 \dynamic p } b8 c4 c-. |
}

}

So far we’ve seen static substitution – when LilyPond sees \padText, it replaces it with the
stuff that we’ve defined it to be (ie the stuff to the right of padtext=).

LilyPond can handle non-static substitution, too (you can think of these as functions).
padText =
#(define-music-function (parser location padding) (number?)
#{
\once \override TextScript #'padding = #$padding

#})

\relative c''' {
c4^"piu mosso" b a b
\padText #1.8
c4^"piu mosso" d e f
\padText #2.6
c4^"piu mosso" fis a g

}

piu mosso��
piu mosso

piu mosso � �� �
�
� �

�
� � ���

Using variables is also a good way to reduce work if the LilyPond input syntax changes (see
Section 5.2.1 [Updating old files], page 127). If you have a single definition (such as \dolce) for
all your files (see Section 5.1.5 [Style sheets], page 124), then if the syntax changes, you only
need to update your single \dolce definition, instead of making changes throughout every .ly
file.

5.1.5 Style sheets

The output that LilyPond produces can be heavily modified; see Chapter 4 [Tweaking output],
page 75, for details. But what if you have many files that you want to apply your tweaks to?
Or what if you simply want to separate your tweaks from the actual music? This is quite easy
to do.

Let’s look at an example. Don’t worry if you don’t understand the parts with all the #().
This is explained in Section 4.6.4 [Advanced tweaks with Scheme], page 119.

mpdolce = #(make-dynamic-script (markup #:hspace 1 #:translate (cons 5 0)
#:line(#:dynamic "mp" #:text #:italic "dolce")))

tempoMark = #(define-music-function (parser location markp) (string?)
#{
\once \override Score . RehearsalMark #'self-alignment-X = #left
\once \override Score . RehearsalMark #'extra-spacing-width = #'(+inf.0 . -inf.0)
\mark \markup { \bold $markp }

#})

\relative c'' {
\tempo 4=50

Chapter 5: Working on LilyPond projects 125

a4.\mpdolce d8 cis4--\glissando a | b4 bes a2
\tempoMark "Poco piu mosso"
cis4.\< d8 e4 fis | g8(\! fis)-. e(d)-. cis2

}

��� ���� ��� ���
mp dolce

� �� ��� ���� �� = 50
Poco piu mosso

� 		� ��
�

There are some problems with overlapping output; we’ll fix those using the techniques in
Section 4.5.1 [Moving objects], page 100. But let’s also do something about the mpdolce and
tempoMark definitions. They produce the output we desire, but we might want to use them
in another piece. We could simply copy-and-paste them at the top of every file, but that’s an
annoyance. It also leaves those definitions in our music files, and I personally find all the #()
somewhat ugly. Let’s hide them in another file:

%%% save this to a file called "definitions.ly"
mpdolce = #(make-dynamic-script (markup #:hspace 1 #:translate (cons 5 0)
#:line(#:dynamic "mp" #:text #:italic "dolce")))

tempoMark = #(define-music-function (parser location markp) (string?)
#{
\once \override Score . RehearsalMark #'self-alignment-X = #left
\once \override Score . RehearsalMark #'extra-spacing-width = #'(+inf.0 . -inf.0)
\mark \markup { \bold $markp }

#})

Now let’s modify our music (let’s save this file as ‘"music.ly"’).

\include "definitions.ly"

\relative c'' {
\tempo 4=50
a4.\mpdolce d8 cis4--\glissando a | b4 bes a2
\once \override Score.RehearsalMark #'padding = #2.0
\tempoMark "Poco piu mosso"
cis4.\< d8 e4 fis | g8(\! fis)-. e(d)-. cis2

}

�� �� �� �� = 50

��
mp dolce

�� �� � ��� ��� � �	� �Poco piu mosso� � ����

That looks better, but let’s make a few changes. The glissando is hard to see, so let’s make it
thicker and closer to the note heads. Let’s put the metronome marking above the clef, instead
of over the first note. And finally, my composition professor hates ‘C’ time signatures, so we’d
better make that ‘4/4’ instead.

Don’t change ‘music.ly’, though. Replace our ‘definitions.ly’ with this:

Chapter 5: Working on LilyPond projects 126

%%% definitions.ly
mpdolce = #(make-dynamic-script (markup #:hspace 1 #:translate (cons 5 0)
#:line(#:dynamic "mp" #:text #:italic "dolce")))

tempoMark = #(define-music-function (parser location markp) (string?)
#{
\once \override Score . RehearsalMark #'self-alignment-X = #left
\once \override Score . RehearsalMark #'extra-spacing-width = #'(+inf.0 . -inf.0)
\mark \markup { \bold $markp }

#})

\layout{
\context { \Score
\override MetronomeMark #'extra-offset = #'(-9 . 0)
\override MetronomeMark #'padding = #'3

}
\context { \Staff
\override TimeSignature #'style = #'numbered

}
\context { \Voice
\override Glissando #'thickness = #3
\override Glissando #'gap = #0.1

}
}

�� �
4
4

��� �Poco piu mosso

�
� = 50

��
mp dolce

�� ���
� � ��� �� � � ����� �

That looks nicer! But now suppose that I want to publish this piece. My composition
professor doesn’t like ‘C’ time signatures, but I’m somewhat fond of them. Let’s copy the
current ‘definitions.ly’ to ‘web-publish.ly’ and modify that. Since this music is aimed at
producing a pdf which will be displayed on the screen, we’ll also increase the overall size of the
output.

%%% definitions.ly
mpdolce = #(make-dynamic-script (markup #:hspace 1 #:translate (cons 5 0)
#:line(#:dynamic "mp" #:text #:italic "dolce")))

tempoMark = #(define-music-function (parser location markp) (string?)
#{
\once \override Score . RehearsalMark #'self-alignment-X = #left
\once \override Score . RehearsalMark #'extra-spacing-width = #'(+inf.0 . -inf.0)
\mark \markup { \bold $markp }

#})

#(set-global-staff-size 23)
\layout{
\context { \Score
\override MetronomeMark #'extra-offset = #'(-9 . 0)
\override MetronomeMark #'padding = #'3

Chapter 5: Working on LilyPond projects 127

}
\context { \Staff
}
\context { \Voice
\override Glissando #'thickness = #3
\override Glissando #'gap = #0.1

}
}

�� ��
mp dolce

� � � ���� �� �� = 50

�� ��
Poco piu mosso

� � ��

� � ���4 � � �� �
Now in our music, I simply replace \include "definitions.ly" with \include

"web-publish.ly". Of course, we could make this even more convenient. We could make
a ‘definitions.ly’ file which contains only the definitions of mpdolce and tempoMark,
a ‘web-publish.ly’ file which contains only the \layout section listed above, and a
‘university.ly’ file which contains only the tweaks to produce the output that my professor
prefers. The top of ‘music.ly’ would then look like this:

\include "definitions.ly"

%%% Only uncomment one of these two lines!
\include "web-publish.ly"
%\include "university.ly"

This approach can be useful even if you are only producing one set of parts. I use half
a dozen different ‘style sheet’ files for my projects. I begin every music file with \include
"../global.ly", which contains

%%% global.ly
\version "2.11.38"
#(ly:set-option 'point-and-click #f)
\include "../init/init-defs.ly"
\include "../init/init-layout.ly"
\include "../init/init-headers.ly"
\include "../init/init-paper.ly"

5.2 When things don’t work

5.2.1 Updating old files

The LilyPond input syntax occasionally changes. As LilyPond itself improves, the syntax (input
language) is modified accordingly. Sometimes these changes are made to make the input easier
to read and write or sometimes the changes are made to accomodate new features of LilyPond.

Chapter 5: Working on LilyPond projects 128

LilyPond comes with a file that makes this updating easier: convert-ly. For details about
how to run this program, see program usage manual, 〈undefined〉 [Updating files with convert-ly],
page 〈undefined〉 .

Unfortunately, convert-ly cannot handle all input changes. It takes care of simple search-
and-replace changes (such as raggedright becoming ragged-right), but some changes are too
complicated. The syntax changes that convert-ly cannot handle are listed in program usage
manual, 〈undefined〉 [Updating files with convert-ly], page 〈undefined〉 .

For example, in LilyPond 2.4 and earlier, accents and non-English letters were entered using
LaTeX – for example, No\"el (this would print the French word for ‘Christmas’). In LilyPond 2.6
and above, the special ë must be entered directly into the LilyPond file as an UTF-8 character.
convert-ly cannot change all the LaTeX special characters into UTF-8 characters; you must
manually update your old LilyPond files.

5.2.2 Troubleshooting (taking it all apart)

Sooner or later, you will write a file that LilyPond cannot compile. The messages that LilyPond
gives may help you find the error, but in many cases you need to do some investigation to
determine the source of the problem.

The most powerful tools for this purpose are the single line comment (indicated by %) and
the block comment (indicated by %{ ... %}). If you don’t know where a problem is, start
commenting out huge portions of your input file. After you comment out a section, try compiling
the file again. If it works, then the problem must exist in the portion you just commented. If it
doesn’t work, then keep on commenting out material until you have something that works.

In an extreme case, you might end up with only
\score {
<<
% \melody
% \harmony
% \bass

>>
\layout{}

}

(in other words, a file without any music)
If that happens, don’t give up. Uncomment a bit – say, the bass part – and see if it works.

If it doesn’t work, then comment out all of the bass music (but leave \bass in the \score
uncommented.

bass = \relative c' {
%{
c4 c c c
d d d d

%}
}

Now start slowly uncommenting more and more of the bass part until you find the problem
line.

Another very useful debugging technique is constructing Section 5.2.3 [Minimal examples],
page 128.

5.2.3 Minimal examples

A minimal example is an example which is as small as possible. These examples are much easier
to understand than long examples. Minimal examples are used for

Chapter 5: Working on LilyPond projects 129

• Bug reports
• Sending a help request to mailists
• Adding an example to the LilyPond Snippet Repository

To construct an example which is as small as possible, the rule is quite simple: remove
anything which is not necessary. When trying to remove unnecessary parts of a file, it is a very
good idea to comment out lines instead of deleting them. That way, if you discover that you
actually do need some lines, you can uncomment them, instead of typing them in from scratch.

There are two exceptions to the “as small as possible” rule:
• Include the \version number.
• If possible, use \paper{ ragged-right=##t } at the top of your example.

The whole point of a minimal example is to make it easy to read:
• Avoid using complicated notes, keys, or time signatures, unless you wish to demonstrate

something is about the behavior of those items.
• Do not use \override commands unless that is the point of the example.

5.3 Scores and parts

TODO: this is really old stuff from the really old tutorial. Rewrite, fix, etc. Or maybe delete
entirely. -gp Include section on tags -td and then move to section 5. Working ... -td

In orchestral music, all notes are printed twice. Once in a part for the musicians, and once in
a full score for the conductor. Variables can be used to avoid double work. The music is entered
once, and stored in a variable. The contents of that variable is then used to generate both the
part and the full score.

It is convenient to define the notes in a special file. For example, suppose that the file
‘horn-music.ly’ contains the following part of a horn/bassoon duo

hornNotes = \relative c {
\time 2/4
r4 f8 a cis4 f e d

}

Then, an individual part is made by putting the following in a file
\include "horn-music.ly"
\header {
instrument = "Horn in F"

}

{
\transpose f c' \hornNotes
}

The line
\include "horn-music.ly"

substitutes the contents of ‘horn-music.ly’ at this position in the file, so hornNotes is defined
afterwards. The command \transpose f c' indicates that the argument, being \hornNotes,
should be transposed by a fifth upwards. Sounding f is denoted by notated c', which corresponds
with the tuning of a normal French Horn in F. The transposition can be seen in the following
output

� � �
4
2 ��� � ��

http://lsr.dsi.unimi.it/

Chapter 5: Working on LilyPond projects 130

In ensemble pieces, one of the voices often does not play for many measures. This is denoted
by a special rest, the multi-measure rest. It is entered with a capital R followed by a duration
(1 for a whole note, 2 for a half note, etc.). By multiplying the duration, longer rests can be
constructed. For example, this rest takes 3 measures in 2/4 time

R2*3

When printing the part, multi-rests must be condensed. This is done by setting a run-time
variable

\set Score.skipBars = ##t

This command sets the property skipBars in the Score context to true (##t). Prepending the
rest and this option to the music above, leads to the following result

��3� �
4
2� ���� ��

The score is made by combining all of the music together. Assuming that the other voice is
in bassoonNotes in the file ‘bassoon-music.ly’, a score is made with

\include "bassoon-music.ly"
\include "horn-music.ly"

<<
\new Staff \hornNotes
\new Staff \bassoonNotes

>>

leading to

�
� � �

�
� �
�

�
�

� �
��

�

��
�
�

�
�

�
4
2

�
�

4
2

� �
�� � �

Appendix A: Templates 131

Appendix A Templates

This section of the manual contains templates with the LilyPond score already set up for you.
Just add notes, run LilyPond, and enjoy beautiful printed scores!

A.1 Single staff

A.1.1 Notes only

This very simple template gives you a staff with notes, suitable for a solo instrument or a melodic
fragment. Cut and paste this into a file, add notes, and you’re finished!

melody = \relative c' {
\clef treble
\key c \major
\time 4/4

a4 b c d
}

\score {
\new Staff \melody
\layout { }
\midi {}

}

�� � ���
A.1.2 Notes and lyrics

This small template demonstrates a simple melody with lyrics. Cut and paste, add notes, then
words for the lyrics. This example turns off automatic beaming, which is common for vocal
parts. If you want to use automatic beaming, you’ll have to change or comment out the relevant
line.

melody = \relative c' {
\clef treble
\key c \major
\time 4/4

a4 b c d
}

text = \lyricmode {
Aaa Bee Cee Dee

}

\score{
<<

\new Voice = "one" {
\autoBeamOff

Appendix A: Templates 132

\melody
}
\new Lyrics \lyricsto "one" \text

>>
\layout { }
\midi { }

}

���
Aaa CeeDee

� �
�

Bee

A.1.3 Notes and chords

Want to prepare a lead sheet with a melody and chords? Look no further!
melody = \relative c' {

\clef treble
\key c \major
\time 4/4

f4 e8[c] d4 g |
a2 ~ a2 |

}

harmonies = \chordmode {
c4:m f:min7 g:maj c:aug d2:dim b:sus

}

\score {
<<

\new ChordNames {
\set chordChanges = ##t
\harmonies

}
\new Staff \melody
>>

\layout{ }
\midi { }

}

C+

�
Fm

7

���
D
o

Cm G

�� ��
B

�
A.1.4 Notes, lyrics, and chords.

This template allows you to prepare a song with melody, words, and chords.

Appendix A: Templates 133

melody = \relative c' {
\clef treble
\key c \major
\time 4/4

a b c d
}

text = \lyricmode {
Aaa Bee Cee Dee

}

harmonies = \chordmode {
a2 c2

}

\score {
<<

\new ChordNames {
\set chordChanges = ##t
\harmonies

}
\new Voice = "one" {

\autoBeamOff
\melody

}
\new Lyrics \lyricsto "one" \text
>>
\layout { }
\midi { }

}

�
Aaa

�
Bee DeeCee

A

� ���
C

A.2 Piano templates

A.2.1 Solo piano

Here is a simple piano staff with some notes.

upper = \relative c'' {
\clef treble
\key c \major
\time 4/4

a b c d
}

Appendix A: Templates 134

lower = \relative c {
\clef bass
\key c \major
\time 4/4

a2 c
}

\score {
\new PianoStaff <<

\set PianoStaff.instrumentName = "Piano "
\new Staff = "upper" \upper
\new Staff = "lower" \lower

>>
\layout { }
\midi { }

}

Piano �
� ��

�
�

�

� �� �
A.2.2 Piano and melody with lyrics

Here is a typical song format: one staff with the melody and lyrics, with piano accompaniment
underneath.

melody = \relative c'' {
\clef treble
\key c \major
\time 4/4

a b c d
}

text = \lyricmode {
Aaa Bee Cee Dee

}

upper = \relative c'' {
\clef treble
\key c \major
\time 4/4

a b c d
}

lower = \relative c {

Appendix A: Templates 135

\clef bass
\key c \major
\time 4/4

a2 c
}

\score {
<<

\new Voice = "mel" {
\autoBeamOff
\melody

}
\new Lyrics \lyricsto mel \text

\new PianoStaff <<
\new Staff = "upper" \upper
\new Staff = "lower" \lower

>>
>>
\layout {

\context { \RemoveEmptyStaffContext }
}
\midi { }

}

�

�

�
�

�

� �

�

�

Bee

�

�

�
Aaa

� � �

�
CeeDee

�

A.2.3 Piano centered lyrics

Instead of having a full staff for the melody and lyrics, you can place the lyrics between the
piano staff (and omit the separate melody staff).

upper = \relative c'' {
\clef treble
\key c \major
\time 4/4

a b c d
}

lower = \relative c {

Appendix A: Templates 136

\clef bass
\key c \major
\time 4/4

a2 c
}

text = \lyricmode {
Aaa Bee Cee Dee

}

\score {
\new GrandStaff <<
\new Staff = upper { \new Voice = "singer" \upper }
\new Lyrics \lyricsto "singer" \text
\new Staff = lower {
\clef bass
\lower

}
>>
\layout {
\context { \GrandStaff \accepts "Lyrics" }
\context { \Lyrics \consists "Bar_engraver" }

}
\midi { }

}

�
Aaa

�� �
Bee

��

�
Cee

�

�
Dee�

�

A.2.4 Piano centered dynamics

Many piano scores have the dynamics centered between the two staves. This requires a bit of
tweaking to implement, but since the template is right here, you don’t have to do the tweaking
yourself.

upper = \relative c'' {
\clef treble
\key c \major
\time 4/4

a b c d
}

lower = \relative c {
\clef bass

Appendix A: Templates 137

\key c \major
\time 4/4

a2 c
}

dynamics = {
s2\fff\> s4
s\!\pp

}

pedal = {
s2\sustainDown s2\sustainUp

}

\score {
\new PianoStaff <<
\new Staff = "upper" \upper
\new Dynamics = "dynamics" \dynamics
\new Staff = "lower" <<
\clef bass
\lower

>>
\new Dynamics = "pedal" \pedal

>>
\layout {
\context {
\type "Engraver_group"
\name Dynamics
\alias Voice % So that \cresc works, for example.
\consists "Output_property_engraver"

\override VerticalAxisGroup #'minimum-Y-extent = #'(-1 . 1)
\override DynamicLineSpanner #'Y-offset = #0
pedalSustainStrings = #'("Ped." "*Ped." "*")
pedalUnaCordaStrings = #'("una corda" "" "tre corde")

\consists "Piano_pedal_engraver"
\consists "Script_engraver"
\consists "Dynamic_engraver"
\consists "Text_engraver"

\override TextScript #'font-size = #2
\override TextScript #'font-shape = #'italic

\consists "Skip_event_swallow_translator"

\consists "Axis_group_engraver"
}
\context {
\PianoStaff
\accepts Dynamics

Appendix A: Templates 138

}
}

}
\score {
\new PianoStaff <<
\new Staff = "upper" << \upper \dynamics >>
\new Staff = "lower" << \lower \dynamics >>
\new Dynamics = "pedal" \pedal

>>
\midi {
\context {
\type "Performer_group"
\name Dynamics
\consists "Piano_pedal_performer"

}
\context {
\PianoStaff
\accepts Dynamics

}
}

}

��
��

pp

��

�

�
fff

�

��

�

��
A.3 String quartet

A.3.1 String quartet

This template demonstrates a simple string quartet. It also uses a \global section for time and
key signatures

global= {
\time 4/4
\key c \major

}

violinOne = \new Voice { \relative c''{
\set Staff.instrumentName = "Violin 1 "

c2 d e1

\bar "|." }}
violinTwo = \new Voice { \relative c''{
\set Staff.instrumentName = "Violin 2 "

Appendix A: Templates 139

g2 f e1

\bar "|." }}
viola = \new Voice { \relative c' {
\set Staff.instrumentName = "Viola "
\clef alto

e2 d c1

\bar "|." }}
cello = \new Voice { \relative c' {
\set Staff.instrumentName = "Cello "
\clef bass

c2 b a1

\bar "|."}}

\score {
\new StaffGroup <<

\new Staff << \global \violinOne >>
\new Staff << \global \violinTwo >>
\new Staff << \global \viola >>
\new Staff << \global \cello >>

>>
\layout { }
\midi { }

}

��
��

Viola

�

�

�

Violin 2

Violin 1

Cello

�
���

��
�

�

�
�
�
�

�

�
�

A.3.2 String quartet parts

The "String quartet template" snippet produces a nice string quartet, but what if you needed
to print parts? This new template demonstrates how to use the \tag feature to easily split a
piece into individual parts.

You need to split this template into separate files; the filenames are contained in comments
at the beginning of each file. piece.ly contains all the music definitions. The other files – score.ly,
vn1.ly, vn2.ly, vla.ly, and vlc.ly – produce the appropiate part.

Appendix A: Templates 140

Do not forget to remove specified comments when using separate files!

%%%%% piece.ly
%%%%% (This is the global definitions file)

global= {
\time 4/4
\key c \major

}

Violinone = \new Voice { \relative c''{
\set Staff.instrumentName = "Violin 1 "

c2 d e1

\bar "|." }} %*********************************
Violintwo = \new Voice { \relative c''{
\set Staff.instrumentName = "Violin 2 "

g2 f e1

\bar "|." }} %*********************************
Viola = \new Voice { \relative c' {
\set Staff.instrumentName = "Viola "
\clef alto

e2 d c1

\bar "|." }} %*********************************
Cello = \new Voice { \relative c' {
\set Staff.instrumentName = "Cello "
\clef bass

c2 b a1

\bar "|."}} %**********************************

music = {
<<
\tag #'score \tag #'vn1 \new Staff { << \global \Violinone >> }
\tag #'score \tag #'vn2 \new Staff { << \global \Violintwo>> }
\tag #'score \tag #'vla \new Staff { << \global \Viola>> }
\tag #'score \tag #'vlc \new Staff { << \global \Cello>> }

>>
}

%%% These are the other files you need to save on your computer

%%%%% score.ly
%%%%% (This is the main file)

Appendix A: Templates 141

%\include "piece.ly" %%% uncomment this line when using a separate file
#(set-global-staff-size 14)
\score {
\new StaffGroup \keepWithTag #'score \music
\layout { }
\midi { }

}

%{ Uncomment this block when using separate files

%%%%% vn1.ly
%%%%% (This is the Violin 1 part file)

\include "piece.ly"
\score {
\keepWithTag #'vn1 \music
\layout { }

}

%%%%% vn2.ly
%%%%% (This is the Violin 2 part file)

\include "piece.ly"
\score {
\keepWithTag #'vn2 \music
\layout { }

}

%%%%% vla.ly
%%%%% (This is the Viola part file)

\include "piece.ly"
\score {
\keepWithTag #'vla \music
\layout { }

}

%%%%% vlc.ly
%%%%% (This is the Cello part file)

\include "piece.ly"
\score {
\keepWithTag #'vlc \music
\layout { }

}

%}

Appendix A: Templates 142

�

Cello

�
�
�

� �
Violin 1

Viola �
� � �
��

��

�

�

�

��
�Violin 2

�
�

A.4 Vocal ensembles

A.4.1 SATB vocal score

Here is a standard four-part SATB vocal score. With larger ensembles, it’s often useful to include
a section which is included in all parts. For example, the time signature and key signatures are
almost always the same for all parts. Like in the "Hymn" template, the four voices are regrouped
on only two staves.

global = {
\key c \major
\time 4/4

}

sopMusic = \relative c'' {
c4 c c8[(b)] c4

}
sopWords = \lyricmode {

hi hi hi hi
}

altoMusic = \relative c' {
e4 f d e

}
altoWords =\lyricmode {

ha ha ha ha
}

tenorMusic = \relative c' {
g4 a f g

}
tenorWords = \lyricmode {

hu hu hu hu
}

bassMusic = \relative c {
c4 c g c

}
bassWords = \lyricmode {

ho ho ho ho
}

\score {
\new ChoirStaff <<

\new Lyrics = sopranos { s1 }
\new Staff = women <<

Appendix A: Templates 143

\new Voice =
"sopranos" { \voiceOne << \global \sopMusic >> }

\new Voice =
"altos" { \voiceTwo << \global \altoMusic >> }

>>
\new Lyrics = "altos" { s1 }
\new Lyrics = "tenors" { s1 }
\new Staff = men <<

\clef bass
\new Voice =
"tenors" { \voiceOne <<\global \tenorMusic >> }

\new Voice =
"basses" { \voiceTwo <<\global \bassMusic >> }

>>
\new Lyrics = basses { s1 }

\context Lyrics = sopranos \lyricsto sopranos \sopWords
\context Lyrics = altos \lyricsto altos \altoWords
\context Lyrics = tenors \lyricsto tenors \tenorWords
\context Lyrics = basses \lyricsto basses \bassWords

>>

\layout {
\context {

% a little smaller so lyrics
% can be closer to the staff
\Staff
\override VerticalAxisGroup #'minimum-Y-extent = #'(-3 . 3)

}
}

}

ho

�
hi

��
ha

hu

�
ho

hi

��
ha

hu��

�

�
ha

�
ho

�

hi

��
ha

hu

��
ho

�
hu

hi

��

�

�

�

�

A.4.2 SATB vocal score and automatic piano reduction

This template adds an automatic piano reduction to the standard SATB vocal score demon-
strated in "Vocal ensemble template". This demonstrates one of the strengths of LilyPond –
you can use a music definition more than once. If you make any changes to the vocal notes (say,
tenorMusic), then the changes will also apply to the piano reduction.

Appendix A: Templates 144

global = {
\key c \major
\time 4/4

}

sopMusic = \relative c'' {
c4 c c8[(b)] c4

}
sopWords = \lyricmode {

hi hi hi hi
}

altoMusic = \relative c' {
e4 f d e

}
altoWords =\lyricmode {

ha ha ha ha
}

tenorMusic = \relative c' {
g4 a f g

}
tenorWords = \lyricmode {

hu hu hu hu
}

bassMusic = \relative c {
c4 c g c

}
bassWords = \lyricmode {

ho ho ho ho
}

\score {
<<
\new ChoirStaff <<
\new Lyrics = sopranos { s1 }
\new Staff = women <<
\new Voice =
"sopranos" { \voiceOne << \global \sopMusic >> }

\new Voice =
"altos" { \voiceTwo << \global \altoMusic >> }

>>
\new Lyrics = "altos" { s1 }
\new Lyrics = "tenors" { s1 }
\new Staff = men <<
\clef bass
\new Voice =
"tenors" { \voiceOne <<\global \tenorMusic >> }

\new Voice =
"basses" { \voiceTwo <<\global \bassMusic >> }

>>

Appendix A: Templates 145

\new Lyrics = basses { s1 }

\context Lyrics = sopranos \lyricsto sopranos \sopWords
\context Lyrics = altos \lyricsto altos \altoWords
\context Lyrics = tenors \lyricsto tenors \tenorWords
\context Lyrics = basses \lyricsto basses \bassWords

>>
\new PianoStaff <<
\new Staff <<
\set Staff.printPartCombineTexts = ##f
\partcombine
<< \global \sopMusic >>
<< \global \altoMusic >>

>>
\new Staff <<
\clef bass
\set Staff.printPartCombineTexts = ##f
\partcombine
<< \global \tenorMusic >>
<< \global \bassMusic >>

>>
>>
>>
\layout {
\context {
% a little smaller so lyrics
% can be closer to the staff
\Staff
\override VerticalAxisGroup #'minimum-Y-extent = #'(-3 . 3)

}
}

}

Appendix A: Templates 146

�

�� �
ho

ha

�

��
ho

hi

��
ha

hu

�

��
�

�

�
�

�

�

ho

�
hi�

�

��
�

�

�

�
�

�

�

�
hi

��
ha

hu��
ho

��
��

�

ha

hu

�

�
�

�
hu

�

hi

A.4.3 SATB with aligned contexts

This template is basically the same as the simple "Vocal ensemble" template, with the exception
that here all the lyrics lines are placed using alignAboveContext and alignBelowContext.

global = {
\key c \major
\time 4/4

}

sopMusic = \relative c'' {
c4 c c8[(b)] c4

}
sopWords = \lyricmode {
hi hi hi hi

}

altoMusic = \relative c' {
e4 f d e

}
altoWords =\lyricmode {
ha ha ha ha

}

tenorMusic = \relative c' {
g4 a f g

}
tenorWords = \lyricmode {
hu hu hu hu

}

bassMusic = \relative c {
c4 c g c

}
bassWords = \lyricmode {
ho ho ho ho

Appendix A: Templates 147

}

\score {
\new ChoirStaff <<

\new Staff = women <<
\new Voice =
"sopranos" { \voiceOne << \global \sopMusic >> }

\new Voice =
"altos" { \voiceTwo << \global \altoMusic >> }

>>
\new Lyrics \with {alignAboveContext=women} \lyricsto sopranos \sopWords
\new Lyrics \with {alignBelowContext=women} \lyricsto altos \altoWords

% we could remove the line about this with the line below, since we want
% the alto lyrics to be below the alto Voice anyway.
% \new Lyrics \lyricsto altos \altoWords

\new Staff = men <<
\clef bass
\new Voice =
"tenors" { \voiceOne <<\global \tenorMusic >> }

\new Voice =
"basses" { \voiceTwo <<\global \bassMusic >> }

>>

\new Lyrics \with {alignAboveContext=men} \lyricsto tenors \tenorWords
\new Lyrics \with {alignBelowContext=men} \lyricsto basses \bassWords

% again, we could replace the line above this with the line below.
% \new Lyrics \lyricsto basses \bassWords
>>

\layout {
\context {

% a little smaller so lyrics
% can be closer to the staff
\Staff
\override VerticalAxisGroup #'minimum-Y-extent = #'(-3 . 3)

}
}

}

\score {
\new ChoirStaff <<

\new Staff = women <<
\new Voice =
"sopranos" { \voiceOne << \global \sopMusic >> }

\new Voice =
"altos" { \voiceTwo << \global \altoMusic >> }

>>

\new Lyrics \with {alignAboveContext=women} \lyricsto sopranos \sopWords
\new Lyrics \lyricsto altos \altoWords

Appendix A: Templates 148

\new Staff = men <<
\clef bass
\new Voice =
"tenors" { \voiceOne <<\global \tenorMusic >> }

\new Voice =
"basses" { \voiceTwo <<\global \bassMusic >> }

>>

\new Lyrics \with {alignAboveContext=men} \lyricsto tenors \tenorWords
\new Lyrics \lyricsto basses \bassWords

>>

\layout {
\context {

% a little smaller so lyrics
% can be closer to the staff
\Staff
\override VerticalAxisGroup #'minimum-Y-extent = #'(-3 . 3)

}
}

}

ho ho

hu

� ��
hi

ha

��
hu

��
hi

ha

ho

��
hi

ha

��
hu

ho

�

� �

�
hi

ha

��

�

�
hu

�

�

�

�

��
hi

ha

��
hu

ho

hu

ho

hu

ho

��
hi

ha

��
ho

� �

�

��
hi

ha

��
hu

�

��
hi

ha

��

��

�

A.5 Ancient notation templates

Appendix A: Templates 149

A.5.1 Transcription of mensural music

When transcribing mensural music, an incipit at the beginning of the piece is useful to indicate
the original key and tempo. While today musicians are used to bar lines in order to faster
recognize rhythmic patterns, bar lines were not yet invented during the period of mensural
music; in fact, the meter often changed after every few notes. As a compromise, bar lines are
often printed between the staves rather than on the staves.

global = {
\set Score.skipBars = ##t

% incipit
\once \override Score.SystemStartBracket #'transparent = ##t
\override Score.SpacingSpanner #'spacing-increment = #1.0 % tight spacing
\key f \major
\time 2/2
\once \override Staff.TimeSignature #'style = #'neomensural
\override Voice.NoteHead #'style = #'neomensural
\override Voice.Rest #'style = #'neomensural
\set Staff.printKeyCancellation = ##f
\cadenzaOn % turn off bar lines
\skip 1*10
\once \override Staff.BarLine #'transparent = ##f
\bar "||"
\skip 1*1 % need this extra \skip such that clef change comes

% after bar line
\bar ""

% main
\revert Score.SpacingSpanner #'spacing-increment % CHECK: no effect?
\cadenzaOff % turn bar lines on again
\once \override Staff.Clef #'full-size-change = ##t
\set Staff.forceClef = ##t
\key g \major
\time 4/4
\override Voice.NoteHead #'style = #'default
\override Voice.Rest #'style = #'default

% FIXME: setting printKeyCancellation back to #t must not
% occur in the first bar after the incipit. Dto. for forceClef.
% Therefore, we need an extra \skip.
\skip 1*1
\set Staff.printKeyCancellation = ##t
\set Staff.forceClef = ##f

\skip 1*7 % the actual music

% let finis bar go through all staves
\override Staff.BarLine #'transparent = ##f

% finis bar
\bar "|."

}

Appendix A: Templates 150

discantusNotes = {
\transpose c' c'' {
\set Staff.instrumentName = "Discantus "

% incipit
\clef "neomensural-c1"
c'1. s2 % two bars
\skip 1*8 % eight bars
\skip 1*1 % one bar

% main
\clef "treble"
d'2. d'4 |
b e' d'2 |
c'4 e'4.(d'8 c' b |
a4) b a2 |
b4.(c'8 d'4) c'4 |
\once \override NoteHead #'transparent = ##t c'1 |
b\breve |

}
}

discantusLyrics = \lyricmode {
% incipit
IV-

% main
Ju -- bi -- |
la -- te De -- |
o, om --
nis ter -- |
ra, __ om- |
"..." |
-us. |

}

altusNotes = {
\transpose c' c'' {
\set Staff.instrumentName = "Altus "

% incipit
\clef "neomensural-c3"
r1 % one bar
f1. s2 % two bars
\skip 1*7 % seven bars
\skip 1*1 % one bar

% main
\clef "treble"
r2 g2. e4 fis g | % two bars
a2 g4 e |

Appendix A: Templates 151

fis g4.(fis16 e fis4) |
g1 |
\once \override NoteHead #'transparent = ##t g1 |
g\breve |

}
}

altusLyrics = \lyricmode {
% incipit
IV-

% main
Ju -- bi -- la -- te | % two bars
De -- o, om -- |
nis ter -- ra, |
"..." |
-us. |

}

tenorNotes = {
\transpose c' c' {
\set Staff.instrumentName = "Tenor "

% incipit
\clef "neomensural-c4"
r\longa % four bars
r\breve % two bars
r1 % one bar
c'1. s2 % two bars
\skip 1*1 % one bar
\skip 1*1 % one bar

% main
\clef "treble_8"
R1 |
R1 |
R1 |
r2 d'2. d'4 b e' | % two bars
\once \override NoteHead #'transparent = ##t e'1 |
d'\breve |

}
}

tenorLyrics = \lyricmode {
% incipit
IV-

% main
Ju -- bi -- la -- te | % two bars
"..." |
-us. |

}

Appendix A: Templates 152

bassusNotes = {
\transpose c' c' {
\set Staff.instrumentName = "Bassus "

% incipit
\clef "bass"
r\maxima % eight bars
f1. s2 % two bars
\skip 1*1 % one bar

% main
\clef "bass"
R1 |
R1 |
R1 |
R1 |
g2. e4 |
\once \override NoteHead #'transparent = ##t e1 |
g\breve |

}
}

bassusLyrics = \lyricmode {
% incipit
IV-

% main
Ju -- bi- |
"..." |
-us. |

}

\score {
\new StaffGroup = choirStaff <<
\new Voice =
"discantusNotes" << \global \discantusNotes >>

\new Lyrics =
"discantusLyrics" \lyricsto discantusNotes { \discantusLyrics }

\new Voice =
"altusNotes" << \global \altusNotes >>

\new Lyrics =
"altusLyrics" \lyricsto altusNotes { \altusLyrics }

\new Voice =
"tenorNotes" << \global \tenorNotes >>

\new Lyrics =
"tenorLyrics" \lyricsto tenorNotes { \tenorLyrics }

\new Voice =
"bassusNotes" << \global \bassusNotes >>

\new Lyrics =
"bassusLyrics" \lyricsto bassusNotes { \bassusLyrics }

>>

Appendix A: Templates 153

\layout {
\context {
\Score

% no bars in staves
\override BarLine #'transparent = ##t

% incipit should not start with a start delimiter
\remove "System_start_delimiter_engraver"

}
\context {
\Voice

% no slurs
\override Slur #'transparent = ##t

% Comment in the below "\remove" command to allow line
% breaking also at those barlines where a note overlaps
% into the next bar. The command is commented out in this
% short example score, but especially for large scores, you
% will typically yield better line breaking and thus improve
% overall spacing if you comment in the following command.
%\remove "Forbid_line_break_engraver"

}
}

}

�
IV-

�

te

�

�
bi

8

�� �

�

la

�

�

�	

� �
bi

Discantus

Altus

Tenor

�

�

Bassus

 �

� ��

�

� �

�

�

�

 ��

� ��

 �

�

Ju

IV-

�

� �

De

�

�

la

�

	
��

IV-

� Ju

�

IV-

�

te

Appendix A: Templates 154

�

...

�

�

�

...

bi

...

...

�

�
la

�
��

�

�

�

��

�

�

�
De

ter

�
om

�

�

�

��

Ju

Ju

�

	

�

�

��

�

-us.

8

�

�

�

ra,o, �ter

�
niso,

om

ra, -us.

�

�

�

bi-

�

nis

�
te

�

om-

�3

�

�

�

��

�

-us.

-us.

A.5.2 Gregorian transcription template

This example demonstrates how to do modern transcription of Gregorian music. Gregorian
music has no measure, no stems; it uses only half and quarter noteheads, and special marks,
indicating rests of different length.

\include "gregorian-init.ly"

chant = \relative c' {
\set Score.timing = ##f
f4 a2 \divisioMinima
g4 b a2 f2 \divisioMaior
g4(f) f(g) a2 \finalis

}

verba = \lyricmode {
Lo -- rem ip -- sum do -- lor sit a -- met

}

\score {
\new Staff <<
\new Voice = "melody" {
\chant

}
\new Lyrics = "one" \lyricsto melody \verba

>>

\layout {
\context {
\Staff
\remove "Time_signature_engraver"
\remove "Bar_engraver"
\override Stem #'transparent = ##t

}
\context {
\Voice
\override Stem #'length = #0

Appendix A: Templates 155

}
\context {
\Score
barAlways = ##t

}
}

}

arem

� �
sum

�� �
do

�
sit

�
ipLo lor met

�� �� �

A.6 Jazz combo

Jazz tune for combo (horns, guitar, piano, bass, drums).

Song
(tune)

Me

moderato

Swing

���

�

Solo

�

�

�

�

�

�

�

� �� �
� ��� �

�

�
� � ��

�
��
�

Trombone

Bari Sax

Alto Sax

Piano �
Guitar

�

�

Bass

Trumpet

�

�Drums ��
�

��

��
�

�
�

� �
��
��
�

�
	
B

�

�

�
 ��

	

��

	

��
�
��
��

C�m7

��

	
D

/9

��

	

�

�

	
Cm

�
�

�

�

��

	

�
	

�

�

Appendix A: Templates 156

A.7 Lilypond-book templates

These templates are for use with lilypond-book. If you’re not familiar with this program,
please refer to program usage manual, 〈undefined〉 [LilyPond-book], page 〈undefined〉 .

A.7.1 LaTeX

You can include LilyPond fragments in a LaTeX document.
\documentclass[]{article}

\begin{document}

Normal LaTeX text.

\begin{lilypond}
\relative c'' {
a4 b c d
}
\end{lilypond}

More LaTeX text.

\begin{lilypond}
\relative c'' {
d4 c b a
}
\end{lilypond}
\end{document}

A.7.2 Texinfo

You can include LilyPond fragments in Texinfo; in fact, this entire manual is written in Texinfo.
\input texinfo
@node Top

Texinfo text

@lilypond[verbatim,fragment,ragged-right]
a4 b c d
@end lilypond

More Texinfo text

@lilypond[verbatim,fragment,ragged-right]
d4 c b a
@end lilypond

@bye

Appendix B: Scheme tutorial 157

Appendix B Scheme tutorial

LilyPond uses the Scheme programming language, both as part of the input syntax, and as
internal mechanism to glue modules of the program together. This section is a very brief
overview of entering data in Scheme. If you want to know more about Scheme, see http://www
.schemers.org.

The most basic thing of a language is data: numbers, character strings, lists, etc. Here is a
list of data types that are relevant to LilyPond input.

Booleans Boolean values are True or False. The Scheme for True is #t and False is #f.

Numbers Numbers are entered in the standard fashion, 1 is the (integer) number one, while
-1.5 is a floating point number (a non-integer number).

Strings Strings are enclosed in double quotes,
"this is a string"

Strings may span several lines
"this
is
a string"

Quotation marks and newlines can also be added with so-called escape sequences.
The string a said "b" is entered as

"a said \"b\""

Newlines and backslashes are escaped with \n and \\ respectively.

In a music file, snippets of Scheme code are introduced with the hash mark #. So, the previous
examples translated in LilyPond are

##t ##f
#1 #-1.5
#"this is a string"
#"this
is
a string"

For the rest of this section, we will assume that the data is entered in a music file, so we add
#s everywhere.

Scheme can be used to do calculations. It uses prefix syntax. Adding 1 and 2 is written as
(+ 1 2) rather than the traditional 1 + 2.

#(+ 1 2)
⇒ #3

The arrow ⇒ shows that the result of evaluating (+ 1 2) is 3. Calculations may be nested;
the result of a function may be used for another calculation.

#(+ 1 (* 3 4))
⇒ #(+ 1 12)
⇒ #13

These calculations are examples of evaluations; an expression like (* 3 4) is replaced by its
value 12. A similar thing happens with variables. After defining a variable

twelve = #12

variables can also be used in expressions, here
twentyFour = #(* 2 twelve)

the number 24 is stored in the variable twentyFour. The same assignment can be done in
completely in Scheme as well,

http://www.schemers.org
http://www.schemers.org

Appendix B: Scheme tutorial 158

#(define twentyFour (* 2 twelve))

The name of a variable is also an expression, similar to a number or a string. It is entered as
#'twentyFour

The quote mark ' prevents the Scheme interpreter from substituting 24 for the twentyFour.
Instead, we get the name twentyFour.

This syntax will be used very frequently, since many of the layout tweaks involve assigning
(Scheme) values to internal variables, for example

\override Stem #'thickness = #2.6

This instruction adjusts the appearance of stems. The value 2.6 is put into the thickness
variable of a Stem object. thickness is measured relative to the thickness of staff lines, so these
stem lines will be 2.6 times the width of staff lines. This makes stems almost twice as thick
as their normal size. To distinguish between variables defined in input files (like twentyFour
in the example above) and variables of internal objects, we will call the latter ‘properties’ and
the former ‘variables.’ So, the stem object has a thickness property, while twentyFour is an
variable.

Two-dimensional offsets (X and Y coordinates) as well as object sizes (intervals with a left
and right point) are entered as pairs. A pair1 is entered as (first . second) and, like symbols,
they must be quoted,

\override TextScript #'extra-offset = #'(1 . 2)

This assigns the pair (1, 2) to the extra-offset property of the TextScript object. These
numbers are measured in staff-spaces, so this command moves the object 1 staff space to the
right, and 2 spaces up.

The two elements of a pair may be arbitrary values, for example
#'(1 . 2)
#'(#t . #f)
#'("blah-blah" . 3.14159265)

A list is entered by enclosing its elements in parentheses, and adding a quote. For example,
#'(1 2 3)
#'(1 2 "string" #f)

We have been using lists all along. A calculation, like (+ 1 2) is also a list (containing the
symbol + and the numbers 1 and 2). Normally lists are interpreted as calculations, and the
Scheme interpreter substitutes the outcome of the calculation. To enter a list, we stop the
evaluation. This is done by quoting the list with a quote ' symbol. So, for calculations do not
use a quote.

Inside a quoted list or pair, there is no need to quote anymore. The following is a pair of
symbols, a list of symbols and a list of lists respectively,

#'(stem . head)
#'(staff clef key-signature)
#'((1) (2))

1 In Scheme terminology, the pair is called cons, and its two elements are called car and cdr respectively.

Appendix C: GNU Free Documentation License 159

Appendix C GNU Free Documentation License

Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document free
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.
This License is a kind of ‘copyleft’, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by the copy-
right holder saying it can be distributed under the terms of this License. The ‘Document’,
below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as ‘you’.
A ‘Modified Version’ of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.
A ‘Secondary Section’ is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (For example, if the Document is in part a textbook
of mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.
The ‘Invariant Sections’ are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License.
The ‘Cover Texts’ are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A ‘Transparent’ copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, whose contents can be viewed
and edited directly and straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent file

Appendix C: GNU Free Documentation License 160

format whose markup has been designed to thwart or discourage subsequent modification
by readers is not Transparent. A copy that is not ‘Transparent’ is called ‘Opaque’.
Examples of suitable formats for Transparent copies include plain ascii without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML designed for human modification. Opaque formats
include PostScript, PDF, proprietary formats that can be read and edited only by propri-
etary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML produced by some word processors
for output purposes only.
The ‘Title Page’ means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, ‘Title Page’ means the text
near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the Docu-
ment’s license notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title with all words
of the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the title of
the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network location
containing a complete Transparent copy of the Document, free of added material, which
the general network-using public has access to download anonymously at no charge using
public-standard network protocols. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one
year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

Appendix C: GNU Free Documentation License 161

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has less than
five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copy-

right notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled ‘History’, and its title, and add to it an item stating at

least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section entitled ‘History’ in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the ‘History’
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. In any section entitled ‘Acknowledgments’ or ‘Dedications’, preserve the section’s ti-
tle, and preserve in the section all the substance and tone of each of the contributor
acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled ‘Endorsements’. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section as ‘Endorsements’ or to conflict in title with any
Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to

Appendix C: GNU Free Documentation License 162

the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.
You may add a section entitled ‘Endorsements’, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections entitled ‘History’ in the various original
documents, forming one section entitled ‘History’; likewise combine any sections entitled
‘Acknowledgments’, and any sections entitled ‘Dedications’. You must delete all sections
entitled ‘Endorsements.’

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not as a
whole count as a Modified Version of the Document, provided no compilation copyright is
claimed for the compilation. Such a compilation is called an ‘aggregate’, and this License
does not apply to the other self-contained works thus compiled with the Document, on
account of their being thus compiled, if they are not themselves derivative works of the
Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts
may be placed on covers that surround only the Document within the aggregate. Otherwise
they must appear on covers around the whole aggregate.

Appendix C: GNU Free Documentation License 163

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License provided that you also include the
original English version of this License. In case of a disagreement between the translation
and the original English version of this License, the original English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License ‘or any later version’ applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

http://www.gnu.org/copyleft/

Appendix C: GNU Free Documentation License 164

C.0.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the

Front-Cover Texts being list, and with the Back-Cover Texts being list.

A copy of the license is included in the section entitled ‘GNU

Free Documentation License’

.

If you have no Invariant Sections, write ‘with no Invariant Sections’ instead of saying which
ones are invariant. If you have no Front-Cover Texts, write ‘no Front-Cover Texts’ instead of
‘Front-Cover Texts being list’; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

Appendix D: LilyPond index 165

Appendix D LilyPond index

#
. 157
##f . 157
##t . 157
#'symbol . 158

<
<< \\ >> . 46

\
\\ . 46
\consists . 61
\new . 57
\once . 79
\remove . 61
\revert . 80
\set . 58
\shiftOff . 53
\shiftOn . 53
\shiftOnn . 53
\shiftOnnn . 53
\startTextSpan . 95
\stopTextSpan . 95
\textLengthOn . 97
\unset . 58
\voiceFour . 50
\voiceOne . 50
\voiceThree . 50
\voiceTwo . 50
\with . 60

A
accents . 21
accessing Scheme . 157
acciaccatura . 24
accidental . 13, 18, 19
adjusting output . 10
ambitus . 62
ambitus engraver . 62
anacrusis . 23
appoggiatura . 24
articulation . 20, 21

B
balance . 2
beam . 14, 23
beams, by hand . 23
blackness . 2
block comment . 17
brace . 27
break-visibility property . 84

C
case sensitive . 11, 16
choir staff . 27

chord . 28
chords . 28
clef . 16
color property . 85
color, rgb . 86
color, X11. 86
comments . 17
Compound music expression . 41
context properties . 58
Context, creating . 57
context, finding . 79
context, specifying in lyric mode 82
Contexts . 6
crescendo . 22

D
decrescendo . 22
default properties, reverting . 80
Distances . 90
dotted note . 14
double flat . 18
double sharp . 18
duration . 14
dynamics . 22

E
engravers . 57
Engravers, adding . 61
Engravers, removing . 61
engraving . 4
evaluating Scheme . 157
expression . 25
extender line . 30
extending lilypond . 10
extra-offset property . 102, 105
extra-spacing-width . 99
extra-spacing-width property . 101

F
FDL, GNU Free Documentation License 159
fermata, implementing in MIDI 116
fingering . 21
fingering, placement . 93
flat . 18, 19
font . 2
force-hshift property . 101, 105
foreign languages . 9

G
grace notes . 24
grand staff . 27
grob sizing . 99
Grobs . 75
grobs, properties of . 77
GUILE . 157

Appendix D: LilyPond index 166

H
half note . 14
hiding objects . 115
hyphens . 30

I
idiom . 9
index . 10
interface properties . 81
Interfaces . 75
internal documentation . 10
Internals Reference . 77
Internals Reference, example of using 77
interval . 13
invisible objects . 115

J
jargon. 9

K
key signature . 18, 19
key signature, setting . 18

L
language . 9
layers . 45
layout objects, properties of . 77
left-padding property . 100, 103
Length . 90
lilypond-internals . 10
line comment . 17
LISP . 157
LSR . 9
lyrics . 29

M
magstep . 90
major . 18
melisma . 30
middle C . 13
minor . 18
multiple voices . 28
music expression . 25
Music expression, compound . 41
musical symbols . 2

N
natural . 19
nesting music expressions . 52
nesting simultaneous constructs 52
new contexts . 57
note column . 53
note value . 23
notes, spreading out with text . 97

O
Objects . 75
objects, making invisible . 115
objects, removing . 115
octave . 13
once override . 79
optical spacing . 2
ossia . 43, 87
ottava bracket . 95
override example . 77
overriding once only . 79

P
padding property . 100, 103
partial measure . 23
PDF file . 11
phrasing . 20
phrasing slurs . 20
piano staff . 27
pickup . 23
pitch . 13, 19
Pitch names . 20
polyphony . 25
polyphony . 28, 45
positions property . 102, 106
properties . 10
properties in interfaces . 81
properties of grobs . 77
properties of layout objects . 77
properties vs. variables . 158
Property types . 82

Q
quarter note . 14
quoting in Scheme . 158

R
regular rhythms . 3
regular spacing . 3
removing objects . 115
rest . 15
revert . 80
rgb colors . 86
right-padding property . 100, 103

S
scale . 13
Scheme . 10, 157
Scheme, in-line code . 157
self-alignment-X property 101, 104
sharp . 18, 19
shift commands . 53
size, changing . 90
sizing grobs . 99
slur . 20
slurs . 20
slurs versus ties . 20
slurs, phrasing . 20
snippets . 9
songs . 29

Appendix D: LilyPond index 167

Spanners . 75
staccato . 21
staff line spacing, changing . 90
staff-padding property . 100, 103
staff-position property . 101, 104
stem down . 49
stem length, changing . 90
stem up . 49
stencil property . 83
stencil property, use of . 116

T
terminology . 9
text spanner . 95
Thickness . 90
tie . 20
ties . 20
time signature . 15
transparent property . 85
transparent property, use of . 115
transposition . 19
triplet . 23
triplets . 23
tuplets . 23
tying notes across voices . 115
typography . 3, 4

U
underscore . 30

V
variables . 10, 40, 122
variables vs. properties . 158
versioning . 35
viewing music . 11
Voice context . 45
voices, more – on a staff . 28

W
whole note . 14

X
X-extent . 99
X-offset . 99
X11 colors . 86

Y
Y-extent . 99
Y-offset . 99

	Preface
	Introduction
	Engraving
	Automated engraving
	What symbols to engrave?
	Music representation
	Example applications
	About this manual

	Tutorial
	First steps
	Compiling a file
	Simple notation
	Working on text files
	How to read the manual

	Single staff notation
	Accidentals and key signatures
	Ties and slurs
	Articulation and dynamics
	Adding text
	Automatic and manual beams
	Advanced rhythmic commands

	Multiple notes at once
	Music expressions explained
	Multiple staves
	Staff groups
	Combining notes into chords
	Single staff polyphony

	Songs
	Setting simple songs
	Aligning lyrics to a melody
	Lyrics to multiple staves

	Final touches
	Organizing pieces with variables
	Version number
	Adding titles
	Absolute note names
	After the tutorial

	Fundamental concepts
	How LilyPond files work
	Introduction to the LilyPond file structure
	Score is a (single) compound musical expression
	Nesting music expressions
	On the un-nestedness of brackets and ties

	Voices contain music
	I'm hearing Voices
	Explicitly instantiating voices
	Voices and vocals

	Contexts and engravers
	Contexts explained
	Creating contexts
	Engravers explained
	Modifying context properties
	Adding and removing engravers
	Changing a single context
	Changing all contexts of the same type

	Extending the templates
	Soprano and cello
	Four-part SATB vocal score
	Building a score from scratch

	Tweaking output
	Tweaking basics
	Introduction to tweaks
	Objects and interfaces
	Naming conventions of objects and properties
	Tweaking methods

	The Internals Reference manual
	Properties of layout objects
	Properties found in interfaces
	Types of properties

	Appearance of objects
	Visibility and color of objects
	Size of objects
	Length and thickness of objects

	Placement of objects
	Automatic behaviour
	Within-staff objects
	Outside staff objects

	Collisions of objects
	Moving objects
	Fixing overlapping notation
	Real music example

	Further tweaking
	Other uses for tweaks
	Using variables for tweaks
	Other sources of information
	Advanced tweaks with Scheme
	Avoiding tweaks with slower processing

	Working on LilyPond projects
	Suggestions for writing LilyPond files
	General suggestions
	Typesetting existing music
	Large projects
	Saving typing with variables and functions
	Style sheets

	When things don't work
	Updating old files
	Troubleshooting (taking it all apart)
	Minimal examples

	Scores and parts

	Templates
	Single staff
	Notes only
	Notes and lyrics
	Notes and chords
	Notes, lyrics, and chords.

	Piano templates
	Solo piano
	Piano and melody with lyrics
	Piano centered lyrics
	Piano centered dynamics

	String quartet
	String quartet
	String quartet parts

	Vocal ensembles
	SATB vocal score
	SATB vocal score and automatic piano reduction
	SATB with aligned contexts

	Ancient notation templates
	Transcription of mensural music
	Gregorian transcription template

	Jazz combo
	Lilypond-book templates
	LaTeX
	Texinfo

	Scheme tutorial
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents
	LilyPond index

