PyCuda Documentation
Release 0.92

Andreas Kloeckner

February 24, 2009

1 Contents

1.1 Installation
1.2 Tutorial Introduction
1.3 Device Interface Reference Documentation
1.4 Built-in Utilities,
1.5 The GPUArray ArrayClass
1.6 Metaprogramming withPyCuda
1.7 Frequently Asked Questions
1.8 User-visible Changes
1.9 Acknowledgments
1.L10 Licensing

2 Indices and tables

Module Index

Index

CONTENTS

....................... 21

PyCuda Documentation, Release 0.92

PyCuda gives you easy, Pythonic access to Nvidia‘s CUDA parallel computation API. Several wrappers of the CUDA
API already exist—so why the need for PyCuda?

* Object cleanup tied to lifetime of objects. This idiom, often called RAII in C++, makes it much easier to write
correct, leak- and crash-free code. PyCuda knows about dependencies, too, so (for example) it won’t detach
from a context before all memory allocated in it is also freed.

* Convenience. Abstractions like pycuda.driver.SourceModule and pycuda.gpuarray.GPUArray
make CUDA programming even more convenient than with Nvidia’s C-based runtime.

* Completeness. PyCuda puts the full power of CUDA’s driver API at your disposal, if you wish.
* Automatic Error Checking. All CUDA errors are automatically translated into Python exceptions.
» Speed. PyCuda’s base layer is written in C++, so all the niceties above are virtually free.

* Helpful Documentation. You’re looking at it. ;)
Here’s an example, to given you an impression:

import pycuda.autoinit
import pycuda.driver as drv
import numpy

mod = drv.SourceModule ("""
__global___ void multiply_them(float =*dest, float =xa, float =xb)
{
const int 1 = threadIdx.x;
dest[1] = al[i] * b[i];
}

nn H)

multiply_them = mod.get_function("multiply_them")

a = numpy.random.randn (400) .astype (numpy.float32)
b numpy . random.randn (400) .astype (numpy.float32)

dest = numpy.zeros_like (a)

multiply_them(
drv.Out (dest), drv.In(a), drv.In(b),
block=(400,1,1))

print dest-axb

(You can find this example as examples/hello_gpu.py in the PyCuda source distribution.)

On the surface, this program will print a screenful of zeros. Behind the scenes, a lot more interesting stuff is going on:

* PyCuda has compiled the CUDA source code and uploaded it to the card.
Note: This code doesn’t have to be a constant—you can easily have Python generate the code you want to
compile. See Metaprogramming with PyCuda.

* PyCuda’s numpy interaction code has automatically allocated space on the device, copied the numpy arrays a
and b over, launched a 400x1x1 single-block grid, and copied dest back.
Note that you can just as well keep your data on the card between kernel invocations—no need to copy data all
the time.

» See how there’s no cleanup code in the example? That’s not because we were lazy and just skipped it. It simply
isn’t needed. PyCuda will automatically infer what cleanup is necessary and do it for you.

CONTENTS 1

http://nvidia.com
http://nvidia.com/cuda/
http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

PyCuda Documentation, Release 0.92

Curious? Let’s get started.

2 CONTENTS

CHAPTER
ONE

CONTENTS

1.1 Installation

This tutorial will walk you through the process of building PyCuda. To follow, you really only need four basic things:

A UNIX-like machine with web access.
* Nvidia‘s CUDA toolkit. PyCuda was developed against version 2.0 beta. It may work with other versions, too.
* A C++ compiler, preferably a Version 4.x gcc.

* A working Python installation, Version 2.4 or newer.

1.1.1 Step 1: Install Boost

You may already have a working copy of the Boost C++ libraries. If so, make sure that it’s version 1.35.0 or newer.
If not, no problem, please follow this link to the simple build and install instructions that I wrote for Boost. Continue
here when you’re done.

1.1.2 Step 2: Download and unpack PyCuda

Download PyCuda and unpack it:

$ tar xfz pycuda-VERSION.tar.gz

1.1.3 Step 3: Install Numpy

PyCuda is designed to work in conjunction with numpy, Python’s array package.

Here’s an easy way to install it, if you do not have it already:

$ cd pycuda-VERSION

S su -c "python ez_setup.py" # this will install setuptools
$ su —c "easy_install numpy" # this will install numpy using setuptools

(If you’re not sure, repeating these commands will not hurt.)

http://nvidia.com/
http://nvidia.com/cuda/
http://www.python.org
http://www.boost.org
http://mathema.tician.de/software/install-boost
http://pypi.python.org/pypi/pycuda
http://numpy.org

PyCuda Documentation, Release 0.92

1.1.4 Step 4: Build PyCuda

Next, just type:

&

$ cd pycuda-VERSION # if you’re not there already

S python configure.py \
——-boost-inc-dir=5$HOME/pool/include/boost-1_35 \
—-boost-1ib-dir=SHOME/pool/1lib \
—-boost-python-libname=boost_python-gcc42-mt \
—-—-cuda-root=/where/ever/you/installed/cuda

$ su —-c¢ "make install"

Note that gcc42 is a compiler tag that depends on the compiler with which you built boost. Check the contents of
your boost library directory to find out what the correct tag is. Also note that you will (probably) have to change the
value of ——cuda-root.

Once that works, congratulations! You’ve successfully built PyCuda.

1.1.5 Step 5: Test PyCuda

If you’d like to be extra-careful, you can run PyCuda’s unit tests:

$ cd pycuda-VERSION/test
S python test_driver.py

If it says “OK” at the end, you’re golden.

1.1.6 Installing on Windows

First, try running configure.py as above. If that fails, create a file called siteconf.py containing the following,
adapted to match your system:

BOOST_INC_DIR = [r’C:\Program Files\boost\boost_1_36_0"]
BOOST_LIB_DIR = [r’C:\Program Files\boost\boost_1_36_0\stage\lib’]
BOOST_PYTHON_LIBNAME = [’boost_python-mgw34’]

CUDA_ROOT = r’C:\CUDA’

CUDADRV_LIB_DIR = [r’C:\CUDAlib’]

CUDADRV_LIBNAME = ['cuda’]

CXXFLAGS = []

LDFLAGS = []

Subsequently, you may build and install PyCuda by typing:

&

S python setup.py install

1.2 Tutorial Introduction

1.2.1 Getting started

Before you can use PyCuda, you have to initialize it and create a context:

4 Chapter 1. Contents

PyCuda Documentation, Release 0.92

import pycuda.driver as cuda
import pycuda.autoinit

Pretty much equivalently, you could have used the following, wordier initialization sequence:

import pycuda.driver as cuda
import pycuda.autoinit

cuda.init ()
assert cuda.Device.count () >= 1

7 = cuda.Device (0)
ctx = dev.make_context ()

1.2.2 Transferring Data

The next step in most programs is to transfer data onto the device. In PyCuda, you will mostly transfer data from
numpy arrays on the host. (But indeed, everything that satisfies the Python buffer interface will work, even a str.)
Let’s make a 4x4 array of random numbers:

import numpy
a = numpy.random.randn (4, 4)

But wait—a consists of double precision numbers, but most nVidia devices only support single precision:

a = a.astype (numpy.float32)

Finally, we need somewhere to transfer data to, so we need to allocate memory on the device:

a_gpu = cuda.mem_alloc (a.nbytes)

As a last step, we need to transfer the data to the GPU:

cuda.memcpy_htod (a_gpu, a)

1.2.3 Executing a Kernel

For this tutorial, we’ll stick to something simple: We will write code to double each entry in a_gpu. To this end, we
write the corresponding CUDA C code, and feed it into the constructor of a pycuda.driver.SourceModule:

mod = cuda.SourceModule ("""
__global__ void doublify(float =xa)
{
int idx = threadIdx.x + threadIdx.y*4;
alidx] *= 2;
}

nn ")

If there aren’t any errors, the code is now compiled and loaded onto the device. We find a reference to our
pycuda.driver.Function and call it, specifying a_gpu as the argument, and a block size of 4x4:

1.2. Tutorial Introduction 5

http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://docs.python.org/dev/library/functions.html#str

PyCuda Documentation, Release 0.92

func = mod.get_function ("doublify")
func (a_gpu, block=(4,4,1))

Finally, we fetch the data back from the GPU and display it, together with the original a:

a_doubled = numpy.empty_like (a)
cuda.memcpy_dtoh (a_doubled, a_gpu)
print a_doubled

print a

This will print something like this:

[.51360393 1.40589952 .25009012 3.02563429
-0.75841576 -1.18757617 .72269917 3.12156057
.28826082 -2.92448163 .21624792 2.86353827

.57651746 0.63500965
.25680196 0.70294976
.37920788 -0.59378809
.14413041 -1.46224082
.78825873 0.31750482

.21570683 -0.44537592
.12504506 1.51281714
.36134958 1.56078029
.60812396 1.43176913
.10785341 -0.22268796

]

|
O O O O Fr O oo
P O R P NRFEDNDDN

]
]
]
]
]
]
]
]

]

It worked! That completes our walkthrough. Thankfully, PyCuda takes over from here and does all the cleanup for
you, so you’re done. Stick around for some bonus material in the next section, though.

(You can find the code for this demo as examples/demo . py in the PyCuda source distribution.)

Shortcuts for Explicit Memory Copies

The pycuda.driver.In,pycuda.driver.Out, and pycuda.driver.InOut argument handlers can sim-
plify some of the memory transfers. For example, instead of creating a_gpu, if replacing a is fine, the following code
can be used:

func (cuda.InOut (a), block=(4, 4, 1))

Prepared Invocations

Function invocation using the built-in pycuda.driver.Function.__call__ () method incurs overhead for
type identification (see Device Interface Reference Documentation). To achieve the same effect as above without this
overhead, the function is bound to argument types (as designated by Python’s standard library st ruct module), and
then called. This also avoids having to assign explicit argument sizes using the numpy.number classes:

func.prepare ("P", block=(4,4,1))
func.prepared_call((1, 1), a_gpu)

1.2.4 Bonus: Abstracting Away the Complications

Using a pycuda.gpuarray .GPUArray, the same effect can be achieved with much less writing:

import pycuda.gpuarray as gpuarray
import pycuda.driver as cuda
import pycuda.autoinit

6 Chapter 1. Contents

http://docs.python.org/dev/library/struct.html#module-struct

PyCuda Documentation, Release 0.92

a_gpu = gpuarray.to_gpu (numpy.random.randn (4,4) .astype (numpy.float32))
a_doubled = (2%a_gpu) .get ()

print a_doubled

print a_gpu

1.2.5 Advanced Topics

Structures

(contributed by Nicholas Tung, find the code in examples/demo_struct.py)

Suppose we have the following structure, for doubling a number of variable length arrays:

mod = cuda.SourceModule ("""
struct DoubleOperation {
int datalen, __padding; // so 64-bit ptrs can be aligned
float *ptr;
i

__global__ void double_array (DoubleOperation =*a) {
a = &al[blockIdx.x];
for (int idx = threadIdx.x; 1dx < a->datalen; idx += blockDim.x) {
a->ptr[idx] *= 2;

}

wn u)

Each block in the grid (see CUDA documentation) will double one of the arrays. The for loop allows for more data
elements than threads to be doubled, though is not efficient if one can guarantee that there will be a sufficient number
of threads. Next, a wrapper class for the structure is created, and two arrays are instantiated:

class DoubleOpStruct:

mem_size = 8 + numpy.intp(0) .nbytes

def __init__ (self, array, struct_arr_ptr):
self.data = cuda.to_device (array)
self.shape, self.dtype = array.shape, array.dtype
cuda.memcpy_htod (int (struct_arr_ptr), numpy.int32 (array.size))
cuda.memcpy_htod (int (struct_arr_ptr) + 8, numpy.intp (int (self.data)))

def _ str_ (self):
return str (cuda.from_device (self.data, self.shape, self.dtype))

struct_arr = cuda.mem_alloc (2 » DoubleOpStruct.mem_size)
do2_ptr = int (struct_arr) + DoubleOpStruct.mem_size

arrayl = DoubleOpStruct (numpy.array([1l, 2, 3], dtype=numpy.float32), struct_arr)
array? = DoubleOpStruct (numpy.array ([0, 4], dtype=numpy.float32), do2_ptr)
print ("original arrays", arrayl, array2)

This code uses the pycuda.driver.to_device () and pycuda.driver.from_device () functions to al-
locate and copy values, and demonstrates how offsets to an allocated block of memory can be used. Finally, the code
can be executed; the following demonstrates doubling both arrays, then only the second:

func = mod.get_function ("double_array")
func (struct_arr, block = (32, 1, 1), grid=(2, 1))

1.2. Tutorial Introduction 7

PyCuda Documentation, Release 0.92

print ("doubled arrays", arrayl, array2)

func (numpy.intp (do2_ptr), block = (32, 1, 1), grid=(1, 1))
print ("doubled second only", arrayl, array2, "\n")

1.2.6 Where to go from here

Once you feel sufficiently familiar with the basics, feel free to dig into the Device Interface Reference Documentation.
For more examples, check the in the examples/ subdirectory of the distribution. This folder also contains several
benchmarks to see the difference between GPU and CPU based calculations. As a reference for how stuff is done,
PyCuda’s test suite in the t est / subdirectory of the distribution may also be of help.

1.3 Device Interface Reference Documentation

1.3.1 Error Reporting

exception Error
Base class of all PyCuda errors.

exception CompileError
Thrown when SourceModule compilation fails.

exception MemoryError
Thrown when mem_alloc () or related functionality fails.

exception LogicError
Thrown when PyCuda was confronted with a situation where it is likely that the programmer has made a mistake.
LogicErrors do not depend on outer circumstances defined by the run-time environment.

Example: CUDA was used before it was initialized.
exception LaunchError

Thrown when kernel invocation has failed. (Note that this will often be reported by the next call after the actual
kernel invocation.)

exception RuntimeError

Thrown when a unforeseen run-time failure is encountered that is not likely due to programmer error.

Example: A file was not found.

1.3.2 Constants

class ctx_flags ()
Flags for Device.make_context (). CUDA 2.0 and above only.

SCHED_AUTO
If there are more contexts than processors, yield, otherwise spin while waiting for CUDA calls to complete.

SCHED_SPIN
Spin while waiting for CUDA calls to complete.

SCHED_YIELD
Yield to other threads while waiting for CUDA calls to complete.

SCHED_MASK
Mask of valid flags in this bitfield.

8 Chapter 1. Contents

PyCuda Documentation, Release 0.92

SCHED_FLAGS_MASK
Mask of valid scheduling flags in this bitfield.

class device attribute ()

MAX THREADS_ PER_ BLOCK
MAX BLOCK_DIM X

MAX BLOCK DIM Y

MAX BLOCK DIM Z

MAX GRID_DIM X

MAX GRID_DIM Y

MAX GRID_DIM Z
TOTAL_CONSTANT_ MEMORY
WARP_SIZE

MAX PITCH

CLOCK_RATE
TEXTURE_ALIGNMENT
GPU_OVERLAP

MULTIPROCESSOR_COUNT
CUDA 2.0 and above only.

SHARED_MEMORY_PER_BLOCK
Deprecated as of CUDA 2.0. See below for replacement.

MAX SHARED_MEMORY_PER_BLOCK
CUDA 2.0 and above only.

REGISTERS_PER BLOCK
Deprecated as of CUDA 2.0. See below for replacement.

MAX REGISTERS_PER_ BLOCK
CUDA 2.0 and above only.

class array_format ()

UNSIGNED_INTS8
UNSIGNED_INT16
UNSIGNED_INT32
SIGNED_INTS8
SIGNED_INT16
SIGNED_INT32
HALF

FLOAT

class address_mode ()

WRAP
CLAMP
MIRROR

1.3. Device Interface Reference Documentation 9

PyCuda Documentation, Release 0.92

class filter mode ()

POINT
LINEAR

class memory_type ()

HOST
DEVICE
ARRAY

1.3.3 Devices and Contexts

get_version ()
Obtain the version of CUDA against which PyCuda was compiled. Returns a 3-tuple of integers as (major,
minor, revision).

init (flags=0)
Initialize CUDA.

Warning: This must be called before any other function in this module.

See also pycuda.autoinit.

class Device (number)
A handle to the number‘th CUDA device. See also pycuda.autoinit.

static count ()
Return the number of CUDA devices found.

name ()
Return the name of this CUDA device.

compute_cabability ()
Return a 2-tuple indicating the compute capability version of this device.

total_memory ()
Return the total amount of memory on the device in bytes.

get_attribute (atir)
Return the (numeric) value of the attribute attr, which may be one of the device_attribute values.

get_attributes ()
Return all device attributes in a dict, with keys from device_attribute.

make_context (flags=ctx_flags. SCHED_AUTO)
Create a Context on this device, with flags taken from the ctx_f1lags values.
Also make the newly-created context the current context.

__hash__ ()
—eq_ ()
ne_ ()
class Context ()

An equivalent of a UNIX process on the compute device. Create instances of this class using
Device.make_context (). See also pycuda.autoinit.

detach ()
Decrease the reference count on this context. If the reference count hits zero, the context is deleted.

10 Chapter 1. Contents

http://docs.python.org/dev/library/stdtypes.html#dict

PyCuda Documentation, Release 0.92

push ()
Make self the active context, pushing it on top of the context stack. CUDA 2.0 and above only.

pop ()
Remove self from the top of the context stack, deactivating it. CUDA 2.0 and above only.

static get_device ()
Return the device that the current context is working on.

static synchronize ()
Wait for all activity in the current context to cease, then return.

1.3.4 Concurrency and Streams

class Stream (flags=0)
A handle for a queue of operations that will be carried out in order.

synchronize ()
Wait for all activity on this stream to cease, then return.

is_done ()
Return True iff all queued operations have completed.

class Event (flags=0)

record ()
Insert a recording point for self into the global device execution stream.

record_in_stream (stream)
Insert a recording point for self into the St ream stream

synchronize ()
‘Wait until the device execution stream reaches this event.

query ()
Return True if the device execution stream has reached this event.

time_since (event)
Return the time in milliseconds that has passed between self and event.

time_till (event)
Return the time in milliseconds that has passed between event and self.

1.3.5 Memory

Global Device Memory

mem_get_info ()
Return a tuple (free, total) indicating the free and total memory in the current context, in bytes.

mem_alloc (bytes)
Return a DeviceAllocation object representing a linear piece of device memory.

to_device (buffer)
Allocate enough device memory for buffer, which adheres to the Python buf fer interface. Copy the contents
of buffer onto the device. Return a DeviceAllocation object representing the newly-allocated memory.

from_device (devptr, shape, dtype, order="C")
Make a new numpy .ndarray from the data at devptr on the GPU, interpreting them using shape, dtype and
order.

1.3. Device Interface Reference Documentation 11

http://docs.python.org/dev/library/functions.html#buffer
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PyCuda Documentation, Release 0.92

from_device_like (devptr, other_ary)
Make anew numpy . ndarray from the data at devptr on the GPU, interpreting them as having the same shape,
dtype and order as other_ary.

mem_alloc_pitch (width, height, access_size)
Allocates a linear piece of device memory at least width bytes wide and height rows high that an be accessed
using a data type of size access_size in a coalesced fashion.

Returns a tuple (dev_alloc, actual_pitch) giving a DeviceAllocation and the actual width of each row in
bytes.

class DeviceAllocation ()
An object representing an allocation of linear device memory. Once this object is deleted, its associated device
memory is freed.

Objects of this type can be cast to int to obtain a linear index into this Context ‘s memory.

free ()
Release the held device memory now instead of when this object becomes unreachable. Any further use
of the object is an error and will lead to undefined behavior.

Pagelocked Host Memory

pagelocked_empty (shape, dtype, order="C")
Allocate a pagelocked numpy .ndarray of shape, dtype and order. For the meaning of these parameters,
please refer to the numpy documentation.

pagelocked_zeros (shape, dtype, order="C")
Allocate a pagelocked numpy . ndarray of shape, dtype and order that is zero-initialized.

For the meaning of these parameters, please refer to the numpy documentation.

pagelocked_empty_ 1like (array)
Allocate a pagelocked numpy . ndarray with the same shape, dtype and order as array.

pagelocked_zeros_like (array)
Allocate a pagelocked numpy . ndarray with the same shape, dtype and order as array. Initialize it to 0.

The numpy . ndarray instances returned by these functions have an attribute base that references an object of type

class HostAllocation ()
An object representing an allocation of pagelocked host memory. Once this object is deleted, its associated
device memory is freed.

free ()
Release the held memory now instead of when this object becomes unreachable. Any further use of the
object (or its associated numpy array) is an error and will lead to undefined behavior.

Arrays and Textures

class ArrayDescriptor ()

width
height

format
A value of type array_format.

num_channels

12 Chapter 1. Contents

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.python.org/dev/library/functions.html#int
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy

PyCuda Documentation, Release 0.92

class ArrayDescriptor3D ()

width
height
depth

format
A value of type array_format. CUDA 2.0 and above only.

num_channels

class Array (descriptor)
A 2D or 3D memory block that can only be accessed via texture references.

descriptor can be of type ArrayDescriptor or ArrayDescriptor3D.

free ()
Release the array and its device memory now instead of when this object becomes unreachable. Any
further use of the object is an error and will lead to undefined behavior.

get_descriptor ()
Return a ArrayDescriptor object for this 2D array, like the one that was used to create it.

get_descriptor_3d()
Return a ArrayDescriptor3D object for this 3D array, like the one that was used to create it. CUDA
2.0 and above only.

class TextureReference ()
A handle to a binding of either linear memory or an Array to a texture unit.

set_array (array)
Bind self to the Array array.
As long as array remains bound to this texture reference, it will not be freed—the texture reference keeps a
reference to the array.

set_address (devptr; bytes)
Bind self to the a chunk of linear memory starting at the integer address devptr, encompassing a number
of bytes.

Unlike for Array objects, no life support is provided for linear memory bound to texture references.

set_format (fimt, num_components)
Set the texture to have array_format fmt and to have num_components channels.

set_address_mode (dim, am)
Set the address mode of dimension dim to am, which must be one of the address_mode values.

set_flags (flags)
Set the flags to a combination of the TRSF_XXX values.

get_array ()
Get back the Array to which self is bound.

get_address_mode (dim)
get_filter mode ()

get_format ()
Return a tuple (fint, num_components), where fmt is of type array_format, and num_components is
the number of channels in this texture.

(Version 2.0 and above only.)
get_flags()
TRSA_OVERRIDE_FORMAT
TRSF_READ_AS_INTEGER

1.3. Device Interface Reference Documentation 13

PyCuda Documentation, Release 0.92

TRSF_NORMALIZED_ COORDINATES
TR _DEFAULT

matrix_to_array (matrix, order)
Turn the two-dimensional numpy . ndarray object matrix into an Array. The order argument can be either
“C”or “F”.Ifitis “C”, then tex2D(x,y) is going to fetch matrix[y,x], and vice versa for for “F”.

make_multichannel_2d_array (matrix, order)
Turn the three-dimensional numpy . ndarray object matrix into an 2D Array with multiple channels.

Depending on order, the matrix‘s shape is interpreted as

*height, width, num_channels for order == “C”,

enum_channels, width, height for order == “F”.

Initializing Device Memory

memset_d8 (dest, data, count)
memset_d16 (dest, data, count)

memset_d32 (dest, data, count)

Note: count is the number of elements, not bytes.
memset_d2d8 (dest, pitch, data, width, height)
memset_d2d16 (dest, pitch, data, width, height)
memset_d2d32 (dest, pitch, data, width, height)

Unstructured Memory Transfers

memcpy_htod (dest, src, stream=None)
Copy from the Python buffer src to the device pointer dest (an int or a DeviceAllocation). The size of
the copy is determined by the size of the buffer.

Optionally execute asynchronously, serialized via stream. In this case, src must be page-locked.

memcpy_dtoh (dest, src, stream=None)
Copy from the device pointer src (an int or a DeviceAllocation) to the Python buffer dest. The size of
the copy is determined by the size of the buffer.

Optionally execute asynchronously, serialized via stream. In this case, dest must be page-locked.
memcpy_dtod (dest, src, size)
memcpy_dtoa (ary, index, src, len)
memcpy_atod (dest, ary, index, len)
memcpy_htoa (ary, index, src)
memcpy_atoh (dest, ary, index)

memcpy_atoa (dest, dest_index, src, src_index, len)

Structured Memory Transfers

class Memcpy2D ()

14 Chapter 1. Contents

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.python.org/dev/library/functions.html#int
http://docs.python.org/dev/library/functions.html#int

PyCuda Documentation, Release 0.92

src_x_in_bytes

X Offset of the origin of the copy. (initialized to 0)
src_y

Y offset of the origin of the copy. (initialized to 0)
src_pitch

Size of a row in bytes at the origin of the copy.

set_src_host (buffer)
Set the buffer, which must be a Python object adhering to the buffer interface, to be the origin of the copy.

set_src_array (array)
Set the Array array to be the origin of the copy.
set_src_device (devptr)
Set the device address devptr (an int or a DeviceAllocation) as the origin of the copy.

dst_x_in_ bytes
X offset of the destination of the copy. (initialized to 0)

dst_y
Y offset of the destination of the copy. (initialized to 0)

dst_pitch
Size of a row in bytes at the destination of the copy.

set_dst_host (buffer)
Set the buffer, which must be a Python object adhering to the buffer interface, to be the destination of the
copy.

set_dst_array (array)
Set the Array array to be the destination of the copy.

set_dst_device (devptr)
Set the device address devptr (an int or a DeviceAllocation) as the destination of the copy.
width_in bytes
Number of bytes to copy for each row in the transfer.
height
Number of rows to copy.
__call__ ([aligned=True])

Perform the specified memory copy, waiting for it to finish. If aligned is False, tolerate misalignment that
may lead to severe loss of copy bandwidth.

__call__ (stream)
Perform the memory copy asynchronously, serialized via the St ream stream. Any host memory involved
in the transfer must be page-locked.

class Memcpy3D ()

Memcpy 3D has the same members as Memcpy 2D, and additionally all of the following:
src_height

Ignored when source is an Array. May be 0 if Depth==1.
src_z

Z offset of the origin of the copy. (initialized to 0)
dst_height

Ignored when destination is an Array. May be 0 if Depth==1.
dst_z

Z offset of the destination of the copy. (initialized to 0)
depth

Memcpy 3D is supported on CUDA 2.0 and above only.

1.3. Device Interface Reference Documentation 15

http://docs.python.org/dev/library/functions.html#int
http://docs.python.org/dev/library/functions.html#int

PyCuda Documentation, Release 0.92

1.3.6 Code on the Device: Modules and Functions

class Module ()
Handle to a CUBIN module loaded onto the device. Can be created with module from_ file () and
module_from_buffer ().

get_function (name)
Return the Funct ion name in this module.

Warning: While you can obtain different handles to the same function using this method, these
handles all share the same state that is set through the set_ XXX methods of Funct ion. This means
that you can’t obtain two different handles to the same function and Function.prepare () them
in two different ways.

get_global (name)
Return the device address of the global name as an int.

get_texref (name)
Return the TextureReference name from this module.

module_from_file (filename)
Create a Module by loading the CUBIN file filename.

module_from_buffer (buffer)
Create a Module by loading a CUBIN from buffer, which must support the Python buffer interface. (For
example, st r and numpy . ndarray do.)

class Function ()
Handle to a __global__ function in a Module. Create using Module.get_function ().

__call__ (argl, .., argn, block=block_size, [grid=(1, 1), [stream=None, [shared=0, [texrefs=,

[time_kernel=False]]]]])
Launch self, with a thread block size of block. block must be a 3-tuple of integers.

argl through argn are the positional C arguments to the kernel. See param_set () for details. See
especially the warnings there.

grid specifies, as a 2-tuple, the number of thread blocks to launch, as a two-dimensional grid. stream, if
specified, is a St ream instance serializing the copying of input arguments (if any), execution, and the
copying of output arguments (again, if any). shared gives the number of bytes available to the kernel in
extern __shared__ arrays. texrefs is a 1ist of TextureReference instances that the function will
have access to.

The function returns either None or the number of seconds spent executing the kernel, depending on
whether time_kernel is True.

This is a convenience interface that can be used instead of the param_x () and launch_x () meth-
ods below. For a faster (but mildly less convenient) way of invoking kernels, see prepare () and
prepared_call ().

param_set (argl, ... argn)
Set up argl through argn as positional C arguments to self. They are allowed to be of the following types:
*Subclasses of numpy.number. These are sized number types such as numpy.uint32 or
nunmpy .float32.
*DeviceAllocation instances, which will become a device pointer to the allocated memory.

eInstances of ArgumentHandler subclasses. These can be used to automatically transfer numpy
arrays onto and off of the device.

*Objects supporting the Python buffer interface. These chunks of bytes will be copied into the
parameter space verbatim.

*GPUArray instances.

16 Chapter 1. Contents

[

http://docs.python.org/dev/library/functions.html#int
http://docs.python.org/dev/library/functions.html#str
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.python.org/dev/library/functions.html#list
http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://docs.python.org/dev/library/functions.html#buffer

PyCuda Documentation, Release 0.92

Warning: You cannot pass values of Python’s native int or f1oat types to param_set. Since there
is no unambiguous way to guess the size of these integers or floats, it complains with a TypeError.

Note: This method has to guess the types of the arguments passed to it, which can make it somewhat
slow. For a kernel that is invoked often, this can be inconvenient. For a faster (but mildly less convenient)
way of invoking kernels, see prepare () and prepared_call ().

set_block_shape (x, y, 2)
Set the thread block shape for this function.

set_shared_size (bytes)
Set shared to be the number of bytes available to the kernel in extern __shared__ arrays.

param_set_size (byfes)
Size the parameter space to bytes.

param_seti (offset, value)
Set the integer at offset in the parameter space to value.

param_setf (offset, value)
Set the float at offset in the parameter space to value.

param_set_texref (texref)
Make the TextureReference texref available to the function.

launch ()
Launch a single thread block of self.

launch_grid (width, height)
Launch a width*height grid of thread blocks of self.

launch_grid_async (width, height, stream)
Launch a width*height grid of thread blocks of self, sequenced by the St ream stream.

prepare (arg_types, block, shared=None, texrefs=, [])
Prepare the invocation of this function by

esetting up the argument types as arg_types. arg_types is expected to be an iterable containing type
characters understood by the st ruct module or numpy . dt ype objects.

esetting the thread block shape for this function to block.

*Registering the texture references fexrefs for use with this functions. The TextureReference
objects in texrefs will be retained, and whatever these references are bound to at invocation time will
be available through the corresponding texture references within the kernel.

Return self.

prepared_call (grid, *args)
Invoke self using 1aunch_grid (), with args and a grid size of grid. Assumes that prepare () was
called on self. The texture references given to prepare () are set up as parameters, as well.

prepared_timed_call (grid, stream, *args)
Invoke self using 1aunch_grid (), with args and a grid size of grid. Assumes that prepare () was
called on self. The texture references given to prepare () are set up as parameters, as well.

Return a 0-ary callable that can be used to query the GPU time consumed by the call, in seconds. Once
called, this callable will block until completion of the invocation.

prepared_async_call (grid, stream, *args)
Invoke self using launch_grid_async (), with args and a grid size of grid, serialized into the
pycuda.driver.Stream stream. If stream is None, do the same as prepared_call (). As-
sumes that prepare () was called on self. The texture references given to prepare () are set up as
parameters, as well.
Return a 0-ary callable that can be used to query the GPU time consumed by the call, in seconds. Once
called, this callable will block until completion of the invocation.

. Device Interface Reference Documentation 17

http://docs.python.org/dev/library/functions.html#int
http://docs.python.org/dev/library/functions.html#float
http://docs.python.org/dev/library/exceptions.html#exceptions.TypeError
http://docs.python.org/dev/library/struct.html#module-struct
http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype

PyCuda Documentation, Release 0.92

lmem
The number of bytes of local memory used by this function. Only available if this function is part of a
SourceModule.

smem
The number of bytes of shared memory used by this function. Only available if this function is part of a
SourceModule.

registers
The number of 32-bit registers used by this function. Only available if this function is part of a
SourceModule.

class ArgumentHandler (array)

class In (array)

Inherits from ArgumentHandler. Indicates that buffer array should be copied to the compute device
before invoking the kernel.

class Out (array)

Inherits from ArgumentHandler. Indicates that buffer array should be copied off the compute device
after invoking the kernel.

class InOut (array)

Inherits from ArgumentHandler. Indicates that buffer array should be copied both onto the compute
device before invoking the kernel, and off it afterwards.

class SourceModule (source, nvcc="nvcc", options=, [], keep=False, no_extern_c=False, arch=None,

code=None, cache_dir=None)
Create a Modu le from the CUDA source code source. The Nvidia compiler nvcc is assumed to be on the PATH

if no path to it is specified, and is invoked with options to compile the code. If keep is True, the compiler output
directory is kept, and a line indicating its location in the file system is printed for debugging purposes.

Unless no_extern_c is True, the given source code is wrapped in extern “C” { ... } to prevent C++ name
mangling.

arch and code specify the values to be passed for the —arch and —code options on the nvee command line.
If arch is None, it defaults to the current context’s device’s compute capability. If code is None, it will not be
specified.

cache_dir gives the directory used for compiler caching. It has a sensible per-user default. If it is set to False,
caching is disabled.

This class exhibits the same public interface as Module, but does not inherit from it.

1.4 Built-in Utilities

1.4.1 Automatic Initialization

This module, when imported, automatically performs all the steps necessary to get CUDA ready for sub-
mission of compute kernels. When imported, this module will automatically initialize CUDA and create a
pycuda.driver.Context on the device.

device

An instance of pycuda.driver.Device that was used for automatic initialization. The appropriate device
is found by calling pycuda.tools.get_default_device ().

context

A default-constructed instance of pycuda.driver.Context on device.

18

Chapter 1. Contents

http://docs.python.org/dev/library/functions.html#buffer
http://docs.python.org/dev/library/functions.html#buffer
http://docs.python.org/dev/library/functions.html#buffer

PyCuda Documentation, Release 0.92

1.4.2 Choice of Device

get_default_device (default=0)
Return a pycuda.driver.Device instance chosen according to the following rules:
oIf the environment variable CUDA_DEVICE is set, its integer value is used as the device number.

oIf the file . cuda—device is present in the user’s home directory, the integer value of its contents is used
as the device number.

*Otherwise, default is used as the device number.

1.4.3 Device Metadata and Occupancy

class DeviceData (dev=None)
Gives access to more information on a device than is available through
pycuda.driver.Device.get_attribute (). If dev is None, it defaults to the device returned
by pycuda.driver.Context.get_device ().

max_threads
warp_size
warps_per_mp

thread blocks_per_mp
registers
shared_memory

smem_granularity
The number of threads that participate in banked, simultaneous access to shared memory.

align_bytes (word_size=4)
The distance between global memory base addresses that allow accesses of word-size word_size bytes to
get coalesced.

align (bytes, word_size=4)
Round up bytes to the next alignment boundary as given by align_bytes ().

align_words (word_size)
Return self.align_bytes(word_size)/word_size, while checking that the division did not yield a remainder.

align_dtype (elements, dtype_size)
Round up elements to the next alignment boundary as given by align_bytes (), where each element
is assumed to be dtype_size bytes large.

static make_valid tex_channel_ count (size)
Round up size to a valid texture channel count.

class OccupancyRecord (devdata, threads, shared_mem=0, registers=0)
Calculate occupancy for a given kernel workload characterized by
sthread count of threads
eshared memory use of shared_mem bytes
eregister use of registers 32-bit registers
tb_per_ mp
How many thread blocks execute on each multiprocessor.

limited_ by
What thb_per_mp is limited by. One of “device”, “warps”, “regs”, “smem”.

1.4. Built-in Utilities 19

PyCuda Documentation, Release 0.92

warps_per_mp
How many warps execute on each multiprocessor.

occupancy
A float value between 0 and 1 indicating how much of each multiprocessor’s scheduling capability is
occupied by the kernel.

1.4.4 Memory Pools

The functions pycuda.driver.mem_alloc () and pycuda.driver.pagelocked_empty () can con-
sume a fairly large amount of processing time if they are invoked very frequently. For example, code based on
pycuda.gpuarray.GPUArray can easily run into this issue because a fresh memory area is allocated for each
intermediate result. Memory pools are a remedy for this problem based on the observation that often many of the
block allocations are of the same sizes as previously used ones.

Then, instead of fully returning the memory to the system and incurring the associated reallocation overhead, the pool
holds on to the memory and uses it to satisfy future allocations of similarly-sized blocks. The pool reacts appropriately
to out-of-memory conditions as long as all memory allocations are made through it. Allocations performed from
outside of the pool may run into spurious out-of-memory conditions due to the pool owning much or all of the available
memory.

Device-based Memory Pool

class PooledDeviceAllocation ()
An object representing a DeviceMemoryPool-based allocation of linear device memory. Once this object is
deleted, its associated device memory is freed. PooledDeviceAllocation instances can be cast to int
(and 1ong), yielding the starting address of the device memory allocated.

free ()
Explicitly return the memory held by self to the associated memory pool.

len_ ()
Return the size of the allocated memory in bytes.

class DeviceMemoryPool ()
A memory pool for linear device memory as allocated using pycuda .driver.mem_alloc (). (see Memory
Pools)

held blocks
The number of unused blocks being held by this pool.

active_blocks
The number of blocks in active use that have been allocated through this pool.

allocate (size)
Return a PooledDeviceAllocation of size bytes.

free_held()
Free all unused memory that the pool is currently holding.

stop_holding ()
Instruct the memory to start immediately freeing memory returned to it, instead of holding it for future
allocations. Implicitly calls free_held (). This is useful as a cleanup action when a memory pool falls
out of use.

Memory Pool for pagelocked memory

class PooledHostAllocation ()
An object representing a PageLockedMemoryPool-based allocation of linear device memory. Once this

20 Chapter 1. Contents

http://docs.python.org/dev/library/functions.html#int
http://docs.python.org/dev/library/functions.html#long

PyCuda Documentation, Release 0.92

object is deleted, its associated device memory is freed.

free ()
Explicitly return the memory held by self to the associated memory pool.

len_ ()
Return the size of the allocated memory in bytes.

class PageLockedMemoryPool ()
A memory pool for pagelocked host memory as allocated using pycuda .driver.pagelocked_empty ().
(see Memory Pools)

held blocks
The number of unused blocks being held by this pool.

active_blocks
The number of blocks in active use that have been allocated through this pool.

allocate (shape, dtype, order="C")
Return an uninitialized (“empty”) numpy . ndarray with the given shape, dtype, and order. This array
will be backed by a PooledHostAllocation, which can be found as the . base attribute of the array.

free_held()
Free all unused memory that the pool is currently holding.

stop_holding ()
Instruct the memory to start immediately freeing memory returned to it, instead of holding it for future
allocations. Implicitly calls free_held (). This is useful as a cleanup action when a memory pool falls
out of use.

1.5 The GPUArray Array Class

class GPUArray (shape, dtype, stream=None)
A numpy.ndarray work-alike that stores its data and performs its computations on the compute device.
shape and dtype work exactly as in numpy. Arithmetic methods in GPUArray support the broadcasting of
scalars. (e.g. array+5) If the pycuda.driver.Stream stream is specified, all computations on self are
sequenced into it.

gpudata
The pycuda.driver.DeviceAllocation instance created for the memory that backs this
GPUArray.

shape
The tuple of lengths of each dimension in the array.
dtype
The numpy numpy . dtype of the items in the GPU array.
size
The number of meaningful entries in the array. Can also be computed by multiplying up the numbers in
shape.

mem_size
The total number of entries, including padding, that are present in the array. Padding may arise for example
because of pitch adjustment by pycuda.driver.mem_alloc_pitch ().

nbytes
The size of the entire array in bytes. Computed as size times dtype.itemsize.

set (ary, stream=None)
Transfer the contents the numpy . ndarray object ary onto the device, optionally sequenced on stream.

ary must have the same dtype and size (not necessarily shape) as self.

1.5. The GPUArray Array Class 21

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

PyCuda Documentation, Release 0.92

get (ary=None, stream=None, pagelocked=False)
Transfer the contents of self into ary or a newly allocated numpy . ndarray. If ary is given, it must have
the right size (not necessarily shape) and dtype. If it is not given, pagelocked specifies whether the new
array is allocated page-locked.

mul_add(self, selffac, other, otherfac, add timer=None): ()
Return selffac*self + otherfac*other. add_timer, if given, is invoked with the result from
pycuda.driver.Function.prepared_timed_call ().

___add__ (other)
_ _sub__ (other)
__iadd__ (other)
__isub__ (other)
__neg___(other)
__mul__ (other)
__div__ (other)
__rdiv__ (other)

pow___(other)

__abs__ ()
Return a GPUArray containing the absolute value of each element of self.

£ill (scalar)
Fill the array with scalar.

bind_to_texref (texref)
Bind self to the TextureReference texref.

1.5.1 Constructing GPUArray Instances

to_gpu (ary, stream=None)
Return a GPUArray that is an exact copy of the numpy .ndarray instance ary. Optionally sequence on
stream.

empty (shape, dtype, stream)
A synonym for the GPUArray constructor.

zeros (shape, dtype, stream)
Same as empty (), but the GPUArray is zero-initialized before being returned.

empty_1like (other_ary)
Make a new, uninitialized GPUArray having the same properties as other_ary.

zeros_like (other_ary)
Make a new, zero-initialized GPUArray having the same properties as other_ary.

arange (start, stop, step, dtype=numpy.float32)
Create a GPUArray filled with numbers spaced step apart, starting from start and ending at stop.

For floating point arguments, the length of the result is ceil((stop - start)/step). This rule may result in the last
element of the result being greater than stop.

1.5.2 Elementwise Functions on GPUArrray Instances

The pycuda . cumath module contains elementwise workalikes for the functions contained in math.

22 Chapter 1. Contents

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.python.org/dev/library/math.html#module-math

PyCuda Documentation, Release 0.92

Rounding and Absolute Value

fabs (array)
ceil (array)

floor (array)

General Transcendental Functions

exp (array)
log (array)
loglO (array)
sqrt (array)

Trigonometric Functions

sin (array)
cos (array)
tan (array)
asin (array)
acos (array)

atan (array)

Hyperbolic Functions

sinh (array)
cosh (array)

tanh (array)

Floating Point Decomposition and Assembly
fmod (arg, mod)
Return the floating point remainder of the division arg/mod, for each element in arg and mod.

frexp (arg)
Return a tuple (significands, exponents) such that arg == significand * 2**exponent.

1ldexp (significand, exponent)
Return a new array of floating point values composed from the entries of significand and exponent, paired
together as result = significand * 2**exponent.

modf (arg)
Return a tuple (fracpart, intpart) of arrays containing the integer and fractional parts of arg.

1.5.3 Generating Arrays of Random Numbers

rand (shape, dtype=numpy.float32)
Return an array of shape filled with random values of dtype in the range [0,1).

1.5. The GPUArray Array Class 23

PyCuda Documentation, Release 0.92

1.5.4 Single-pass Expression Evaluation

Warning: The following functionality is included in this documentation in the hope that it may be useful, but its
interface may change in future revisions. Feedback is welcome.

Evaluating involved expressions on GPUArray instances can be somewhat inefficient, because a new temporary
is created for each intermediate result. The functionality in the module pycuda.elementwise contains tools to
help generate kernels that evaluate multi-stage expressions on one or several operands in a single pass.

class ElementwiseKernel (arguments, operation, name="kernel", keep=False, options=, [])
Generate a kernel that takes a number of scalar or vector arguments and performs the scalar operation on each
entry of its arguments, if that argument is a vector.

arguments is specified as a string formatted as a C argument list. operation is specified as a C assignment
statement, without a semicolon. Vectors in operation should be indexed by the variable i.

name specifies the name as which the kernel is compiled, keep and options are passed unmodified to
pycuda.driver.SourceModule.

__call__ (*args)
Invoke the generated scalar kernel. The arguments may either be scalars or GPUArray instances.

Here’s a usage example:

import pycuda.gpuarray as gpuarray

import pycuda.driver as cuda

import pycuda.autoinit

import numpy

from pycuda.curandom import rand as curand

= curand((50,))
= curand((50,))

from pycuda.elementwise import ElementwiseKernel

1lin _comb = ElementwiseKernel (
"float a, float *x, float b, float =y, float xz",
"z[1] = axx[1] + bxy[i]",

"linear_combination")

c_gpu = gpuarray.empty_like (a_gpu)

lin_comb (5, a_gpu, 6, b_gpu, c_gpu)

import numpy.linalg as la
assert la.norm((c_gpu - (5xa_gpu+t6*b_gpu)).get()) < le-5

(You can find this example as examples/demo_elementwise.py in the PyCuda distribution.)

1.6 Metaprogramming with PyCuda

In ‘conventional’ programming, one writes a program that accomplishes a task. In metaprogramming, one writes a
program that writes a program that accomplishes a task.

That sounds pretty complicated—so first of all, we’ll look at why it may be a good idea nonetheless.

24 Chapter 1. Contents

PyCuda Documentation, Release 0.92

1.6.1 Why Metaprogramming?
Automated Tuning

A sizable part of a CUDA programmer’s time is typically spent tuning code. This tuning answers questions like:

* What’s the optimal number of threads per block?
* How much data should I work on at once?

* What data should be loaded into shared memory, and how big should the corresponding blocks be?

If you are lucky, you’ll be able to find a pattern in the execution time of your code and come up with a heuristic that
will allow you to reliably pick the fastest version. Unfortunately, this heuristic may become unreliable or even fail
entirely with new hardware generations. The solution to this problem that PyCuda tries to promote is:

Forget heuristics. Benchmark at run time and use whatever works fastest.

This is an important advantage of PyCuda over the CUDA runtime API: It lets you make these decisions while your
code is running. A number of prominent computing packages make use of a similar technique, among them ATLAS
and FFTW. And while those require rather complicated optimization driver routines, you can drive PyCuda from the
comfort of Python.

Data Types

Your code may have to deal with different data types at run time. It may, for example, have to work on both single
and double precision floating point numbers. You could just precompile versions for both, but why? Just generate
whatever code is needed right when it is needed.

Specialize Code for the Given Problem

If you are writing a library, then your users will ask your library to perform a number of tasks. Imagine how liberating
it would be if you could generate code purposely for the problem you’re being asked to solve, instead of having to
keep code unnecessarily generic and thereby slow. PyCuda makes this a reality.

Constants are Faster than Variables

If your problem sizes vary from run to run, but you perform a larger number of kernel invocations on data of identical
size, you may want to consider compiling data size into your code as a constant. This can have significant performance
benefits, resulting mainly from decreased fetch times and less register pressure. In particular, multiplications by
constans are much more efficiently carried out that general variable-variable multiplications.

Loop Unrolling

The CUDA programming guide says great things about nvee and how it will unroll loops for you. As of Version
2.1, that’s simply not true, and #pragma unroll is simply a no-op, at least according to my experience. With
metaprogramming, you can dynamically unroll your loops to the needed size in Python.

1.6. Metaprogramming with PyCuda 25

PyCuda Documentation, Release 0.92

1.6.2 Metaprogramming using a Templating Engine

If your metaprogramming needs are rather simple, perhaps the easiest way to generate code at run time is through a
templating engine. Many templating engines for Python exist, two of the most prominent ones are Jinja 2 and Cheetah.

The following is a simple metaprogram that performs vector addition on configurable block sizes. It illustrates the
templating-based metaprogramming technique:

from jinja2 import Template

tpl = Template ("""
typedef {{ type_name }} value_type;

__global__ void add(value_type =*result, value_type xopl, value_type =*op2)

{
int idx = threadIdx.x + {{ thread_block_size }} * {{block_size}} % blockIdx.x;

#for i in range (block_size)
#set offset = ixthread_block_size
result[idx + {{ offset }}] = opl[idx + {{ offset }}] + op2[idx + {{ offset }}];
#endfor
}

nnn
’

line_statement_prefix="#"

rendered_tpl = tpl.render (
type_name="float",
block_size=block_size,
thread block size=thread_block_size)

mod = cuda.SourceModule (rendered_tpl)

This snippet in a working context can be found in examples/demo_meta_template.py.

1.6.3 Metaprogramming using codepy

For more complicated metaprograms, it may be desirable to have more programmatic control over the assembly of
the source code than a templating engine can provide. The codepy package provides a means of generating CUDA
source code from a Python data structure.

The following example demonstrates the use of codepy for metaprogramming. It accomplishes exactly the same as
the above program:

from codepy.cgen import FunctionBody, FunctionDeclaration, \
Typedef, POD, Value, Pointer, Module, Block, Initializer, Assign

from codepy.cgen.cuda import CudaGlobal
mod = Module ([
Typedef (POD (dtype, "value_type")),
FunctionBody (
CudaGlobal (FunctionDeclaration (
Value ("void", "add"),
[Pointer (POD (dtype, name)) for name in ["result", "opl", "op2"]1])),
Block ([
Initializer(
POD (numpy.int32, "idx"),
"threadldx.x + %d+blockIdx.x" % (thread_block_size*block_size)),

26 Chapter 1. Contents

http://jinja.pocoo.org/
http://www.cheetahtemplate.org/
http://documen.tician.de/codepy/index.html#module-codepy
http://documen.tician.de/codepy/index.html#module-codepy

PyCuda Documentation, Release 0.92

I+
Assign("result[idx+%d]" % (o*thread_block_size),
"opl [1dx+%d] + op2[idx+%d]" % (
oxthread_block_size,
oxthread_block_size))
for o in range (block_size)
1)

1)

mod = cuda.SourceModule (mod)

This snippet in a working context can be found in examples/demo_meta_codepy.py.

1.7 Frequently Asked Questions

1.7.1 How about multiple GPUs?

Two ways:

e Allocate two contexts, juggle (pycuda.driver.Context .push () and
pycuda.driver.Context.pop ()) them from that one process.

* Work with several threads. As of Version 0.90.2, PyCuda will actually release the GIL while it is waiting for
CUDA operations to finish.

1.7.2 My program terminates after a launch failure. Why?

You’re probably seeing something like this:

Traceback (most recent call last):
File "fail.py", line 32, in <module>
cuda.memcpy_dtoh (a_doubled, a_gpu)
RuntimeError: cuMemcpyDtoH failed: launch failed
terminate called after throwing an instance of ’std::runtime_error’
what () : cuMemFree failed: launch failed
zsh: abort python fail.py

What’s going on here? First of all, recall that launch failures in CUDA are asynchronous. So the actual traceback does
not point to the failed kernel launch, it points to the next CUDA request after the failed kernel.

Next, as far as I can tell, a CUDA context becomes invalid after a launch failure, and all following CUDA calls in
that context fail. Now, that includes cleanup (see the cuMemF ree in the traceback?) that PyCuda tries to perform
automatically. Here, a bit of PyCuda’s C++ heritage shows through. While performing cleanup, we are processing an
exception (the launch failure reported by cuMemcpyDt oH). If another exception occurs during exception processing,
C++ gives up and aborts the program with a message.

In principle, this could be handled better. If you’re willing to dedicate time to this, I'll likely take your patch.

1.7.3 Are the CUBLAS APIs available via PyCuda?

No. I would be more than happy to make them available, but that would be mostly either-or with the rest of PyCuda,
because of the following sentence in the CUDA programming guide:

1.7. Frequently Asked Questions 27

http://en.wikipedia.org/wiki/Global_Interpreter_Lock

PyCuda Documentation, Release 0.92

[CUDA] is composed of two APIs:

¢ A low-level API called the CUDA driver API,

* A higher-level API called the CUDA runtime API that is implemented on top of the CUDA driver
APL

These APIs are mutually exclusive: An application should use either one or the other.
PyCuda is based on the driver API. CUBLAS uses the high-level API. Once can violate this rule without crashing

immediately. But sketchy stuff does happen. Instead, for BLAS-1 operations, PyCuda comes with a class called
pycuda.gpuarray.GPUArray that essentially reimplements that part of CUBLAS.

If you dig into the history of PyCuda, you’ll find that, at one point, I did have rudimentary CUBLAS wrappers. |
removed them because of the above issue. If you would like to make CUBLAS wrappers, feel free to use these rudi-
ments as a starting point. That said, Arno Péhler’s python-cuda has complete ct ypes-based wrappers for CUBLAS.
I don’t think they interact natively with numpy, though.

1.7.4 I've found some nice undocumented function in PyCuda. Can | use it?

Of course you can. But don’t come whining if it breaks or goes away in a future release. Being open-source, neither
of these two should be show-stoppers anyway, and we welcome fixes for any functionality, documented or not.

The rule is that if something is documented, we will in general make every effort to keep future version backward
compatible with the present interface. If it isn’t, there’s no such guarantee.

1.7.5 | have <insert random compilation problem> with gcc 4.1 or older. Help!
Try adding:

CXXFLAGS = [’-DBOOST_PYTHON_NO_PY_ SIGNATURES’]

to your pycuda/siteconf.py or SHOME/ .aksetup-defaults.py.

1.8 User-visible Changes

1.8.1 Version 0.92

Note: If you’re upgrading from prior versions, you may delete the directory SHOME / . pycuda-compiler—cache
to recover now-unused disk space.

Note: During this release time frame, I had the honor of giving a talk on PyCuda for a class that a group around
Nicolas Pinto was teaching at MIT. If you’re interested, the slides for it are available.

Warning: Version 0.92 is currently a release candidate and therefore has a somewhat higher likelihood of bugs.

e Make pycuda.tools.DeviceMemoryPool official functionality, after numerous improvements. Add
pycuda.tools.PageLockedMemoryPool for pagelocked memory, too.

* Properly deal with automatic cleanup in the face of several contexts.
* Fix compilation on Python 2.4.

* Fix 3D arrays. (Nicolas Pinto)

28 Chapter 1. Contents

http://docs.python.org/dev/library/ctypes.html#module-ctypes
http://sites.google.com/site/cudaiap2009/
http://mathema.tician.de/dl/pub/pycuda-mit.pdf

PyCuda Documentation, Release 0.92

 Improve error message when nvee is not found.
* Automatically run Python GC before throwing out-of-memory errors.

* Allow explicit release of memory wusing pycuda.driver.DeviceAllocation.free(),
pycuda.driver.HostAllocation.free(), pycuda.driver.Array.free (),
pycuda.tools.PooledDeviceAllocation.free(),pycuda.tools.PooledHostAllocation.free().

* Make configure switch . /configure.py -cuda-trace to enable API tracing.
* Add a documentation chapter and examples on Metaprogramming with PyCuda.
e Add pycuda.gpuarray.empty_like () and pycuda.gpuarray.zeros_like ().

¢ Add and document pycuda.gpuarray.GPUArray.mem_size in anticipation of stride/pitch support in
pycuda.gpuarray.GPUArray.

* Merge Jozef Vesely’s MD5-based RNG.

¢ Document pycuda.driver.from_device () and pycuda.driver.from_device_like ().
e Add pycuda.elementwise.ElementwiseKernel.

* Various documentation improvements. (many of them from Nicholas Tung)

* Move PyCuda’s compiler cache to the system temporary directory, rather than the users home directory.

1.8.2 Version 0.91

* Add support for compiling on CUDA 1.1. Added version query pycuda.driver.get_version (). Up-
dated documentation to show 2.0-only functionality.

* Support for Windows and MacOS X, in addition to Linux. (Gert Wohlgemuth, Cosmin Stejerean, Znah on the
Nvidia forums, and David Gadling)

 Support more arithmetic operators on pycuda.gpuarray .GPUArray. (Gert Wohlgemuth)
* Add pycuda.gpuarray.arange (). (Gert Wohlgemuth)

* Add pycuda.curandom. (Gert Wohlgemuth)

* Add pycuda.cumath. (Gert Wohlgemuth)

* Add pycuda.autoinit.

* Add pycuda.tools.

¢ Add pycuda.tools.DeviceData and pycuda.tools.OccupancyRecord.

* pycuda.gpuarray.GPUArray parallelizes properly on GTX200-generation devices.

e Make pycuda.driver.Function resource usage available to the program. (See, e.g.
pycuda.driver.Function.registers.)

* Cache kernels compiled by pycuda.driver.SourceModule. (Tom Annau)
* Allow for faster, prepared kernel invocation. See pycuda.driver.Function.prepare ().

¢ Added memory pools, at pycuda.tools.DeviceMemoryPool as experimental, undocumented function-
ality. For some workloads, this can cure the slowness of pycuda.driver.mem_alloc ().

* Fix the memset family of functions.

1.8. User-visible Changes 29

PyCuda Documentation, Release 0.92

e Improve Error Reporting.

e Add order parameter to pycuda.driver.matrix_to_array () and
pycuda.driver.make_multichannel_2d_array ().

1.9 Acknowledgments

e Gert Wohlgemuth ported PyCuda to MacOS X and contributed large parts of
pycuda.gpuarray.GPUArray.

* Znah on the Nvidia forums contributed fixes for Windows XP.

* Cosmin Stejerean provided multiple patches for PyCuda’s build system.

* Tom Annau contributed an alternative SourceModule compiler cache as well as Windows build insight.
* Nicholas Tung improved PyCuda’s documentation.

¢ Jozef Vesely contributed a massively improved random number generator derived from the RSA Data Security,
Inc. MDS5 Message Digest Algorithm.

1.10 Licensing

PyCuda is licensed to you under the MIT/X Consortium license:
Copyright (c) 2009 Andreas Kléckner and Contributors.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Note that this guide will not explain CUDA programming and technology. Please refer to Nvidia’s programming
documentation for that.

PyCuda also has its own web site, where you can find updates, new versions, documentation, and support.

30 Chapter 1. Contents

http://www.nvidia.com/object/cuda_learn.html
http://www.nvidia.com/object/cuda_learn.html
http://mathema.tician.de/software/pycuda

CHAPTER
TWO

INDICES AND TABLES

e Index
e Module Index

» Search Page

31

PyCuda Documentation, Release 0.92

32

Chapter 2. Indices and tables

pycuda.
pycuda.
pycuda.
pycuda.
pycuda.
pycuda.
pycuda.

autoinit, 18
cumath, 22
curandom, 23
driver, 8
elementwise, 24
gpuarray, 21
tools, 19

MODULE INDEX

33

PyCuda Documentation, Release 0.92

34

Module Index

Symbols

__abs__() (pycuda.gpuarray.GPUArray method), 22
__add__() (pycuda.gpuarray.GPUArray method), 22
__call__() (pycuda.driver.Function method), 16
__call__() (pycuda.driver.Memcpy2D method), 15
call () (pycuda.elementwise.ElementwiseKernel
method), 24
__div__() (pycuda.gpuarray.GPUArray method), 22
__eq__() (pycuda.driver.Device method), 10
__hash__() (pycuda.driver.Device method), 10
__iadd__() (pycuda.gpuarray. GPUArray method), 22
__isub__() (pycuda.gpuarray.GPUArray method), 22

len () (pycuda.tools.PooledDeviceAllocation
method), 20

__len__() (pycuda.tools.PooledHostAllocation method),
21

__mul__() (pycuda.gpuarray.GPUArray method), 22
__ne__() (pycuda.driver.Device method), 10

__neg__() (pycuda.gpuarray.GPUArray method), 22
__pow__() (pycuda.gpuarray.GPUArray method), 22
__rdiv__() (pycuda.gpuarray.GPUArray method), 22

__sub__() (pycuda.gpuarray.GPUArray method), 22

A

acos() (in module pycuda.cumath), 23

active_blocks (pycuda.tools.DeviceMemoryPool at-
tribute), 20

active_blocks (pycuda.tools.PageL.ockedMemoryPool at-
tribute), 21

address_mode (class in pycuda.driver), 9

align() (pycuda.tools.DeviceData method), 19

align_bytes() (pycuda.tools.DeviceData method), 19

align_dtype() (pycuda.tools.DeviceData method), 19

align_words() (pycuda.tools.DeviceData method), 19

allocate() (pycuda.tools.DeviceMemoryPool method), 20

allocate() (pycuda.tools.Pagel.ockedMemoryPool
method), 21

arange() (in module pycuda.gpuarray), 22

ArgumentHandler (class in pycuda.driver), 18

Array (class in pycuda.driver), 13

ARRAY (pycuda.driver.memory_type attribute), 10

INDEX

array_format (class in pycuda.driver), 9
ArrayDescriptor (class in pycuda.driver), 12
ArrayDescriptor3D (class in pycuda.driver), 12
asin() (in module pycuda.cumath), 23

atan() (in module pycuda.cumath), 23

B

bind_to_texref() (pycuda.gpuarray. GPUArray method),
22

C

ceil() (in module pycuda.cumath), 23

CLAMP (pycuda.driver.address_mode attribute), 9

CLOCK_RATE (pycuda.driver.device_attribute at-
tribute), 9

CompileError, 8

compute_cabability() (pycuda.driver.Device method), 10

Context (class in pycuda.driver), 10

context (in module pycuda.autoinit), 18

cos() (in module pycuda.cumath), 23

cosh() (in module pycuda.cumath), 23

count() (pycuda.driver.Device static method), 10

ctx_flags (class in pycuda.driver), 8

CUDA_DEVICE, 19

D

depth (pycuda.driver.ArrayDescriptor3D attribute), 13
depth (pycuda.driver.Memcpy3D attribute), 15
detach() (pycuda.driver.Context method), 10

Device (class in pycuda.driver), 10

device (in module pycuda.autoinit), 18

DEVICE (pycuda.driver.memory_type attribute), 10
device_attribute (class in pycuda.driver), 9
DeviceAllocation (class in pycuda.driver), 12
DeviceData (class in pycuda.tools), 19
DeviceMemoryPool (class in pycuda.tools), 20
dst_height (pycuda.driver.Memcpy3D attribute), 15
dst_pitch (pycuda.driver. Memcpy2D attribute), 15
dst_x_in_bytes (pycuda.driver.Memcpy2D attribute), 15
dst_y (pycuda.driver.Memcpy?2D attribute), 15

dst_z (pycuda.driver.Memcpy3D attribute), 15

dtype (pycuda.gpuarray. GPUArray attribute), 21

35

PyCuda Documentation, Release 0.92

E

ElementwiseKernel (class in pycuda.elementwise), 24
empty() (in module pycuda.gpuarray), 22
empty_like() (in module pycuda.gpuarray), 22
environment variable

CUDA_DEVICE, 19

PATH, 18
Error, 8
Event (class in pycuda.driver), 11
exp() (in module pycuda.cumath), 23

F

fabs() (in module pycuda.cumath), 23

fill() (pycuda.gpuarray.GPUArray method), 22

filter_mode (class in pycuda.driver), 9

FLOAT (pycuda.driver.array_format attribute), 9

floor() (in module pycuda.cumath), 23

fmod() (in module pycuda.cumath), 23

format (pycuda.driver.ArrayDescriptor attribute), 12

format (pycuda.driver.ArrayDescriptor3D attribute), 13

free() (pycuda.driver.Array method), 13

free() (pycuda.driver.DeviceAllocation method), 12

free() (pycuda.driver.HostAllocation method), 12

free() (pycuda.tools.PooledDeviceAllocation method), 20

free() (pycuda.tools.PooledHostAllocation method), 21

free_held() (pycuda.tools.DeviceMemoryPool method),
20

free_held() (pycuda.tools.PageL.ockedMemoryPool
method), 21

frexp() (in module pycuda.cumath), 23

from_device() (in module pycuda.driver), 11

from_device_like() (in module pycuda.driver), 11

Function (class in pycuda.driver), 16

G

get() (pycuda.gpuarray. GPUArray method), 21
get_address_mode() (pycuda.driver. TextureReference
method), 13
get_array() (pycuda.driver. TextureReference method), 13
get_attribute() (pycuda.driver.Device method), 10
get_attributes() (pycuda.driver.Device method), 10
get_default_device() (in module pycuda.tools), 19
get_descriptor() (pycuda.driver.Array method), 13
get_descriptor_3d() (pycuda.driver.Array method), 13
get_device() (pycuda.driver.Context static method), 11
get_filter_mode() (pycuda.driver. TextureReference
method), 13
get_flags() (pycuda.driver.TextureReference method), 13
get_format() (pycuda.driver. TextureReference method),
13
get_function() (pycuda.driver.Module method), 16
get_global() (pycuda.driver.Module method), 16
get_texref() (pycuda.driver.Module method), 16

get_version() (in module pycuda.driver), 10

GPU_OVERLAP (pycuda.driver.device_attribute at-
tribute), 9

GPUArray (class in pycuda.gpuarray), 21

gpudata (pycuda.gpuarray.GPUArray attribute), 21

H

HALF (pycuda.driver.array_format attribute), 9

height (pycuda.driver.ArrayDescriptor attribute), 12

height (pycuda.driver.ArrayDescriptor3D attribute), 13

height (pycuda.driver.Memcpy2D attribute), 15

held_blocks (pycuda.tools.DeviceMemoryPool attribute),
20

held_blocks (pycuda.tools.PageLockedMemoryPool at-
tribute), 21

HOST (pycuda.driver.memory_type attribute), 10

HostAllocation (class in pycuda.driver), 12

In (class in pycuda.driver), 18

init() (in module pycuda.driver), 10

InOut (class in pycuda.driver), 18

is_done() (pycuda.driver.Stream method), 11

L

launch() (pycuda.driver.Function method), 17
launch_grid() (pycuda.driver.Function method), 17
launch_grid_async() (pycuda.driver.Function method), 17
LaunchError, 8

ldexp() (in module pycuda.cumath), 23

limited_by (pycuda.tools.OccupancyRecord attribute), 19
LINEAR (pycuda.driver.filter_mode attribute), 10

Imem (pycuda.driver.Function attribute), 17

log() (in module pycuda.cumath), 23

log10() (in module pycuda.cumath), 23

LogicError, 8

M

make_context() (pycuda.driver.Device method), 10

make_multichannel_2d_array() (in module py-
cuda.driver), 14
make_valid_tex_channel_count() (py-

cuda.tools.DeviceData static method), 19
matrix_to_array() (in module pycuda.driver), 14
MAX_BLOCK_DIM_X (pycuda.driver.device_attribute

attribute), 9
MAX_BLOCK_DIM_Y (pycuda.driver.device_attribute

attribute), 9
MAX_BLOCK_DIM_Z (pycuda.driver.device_attribute

attribute), 9
MAX_GRID_DIM_X (pycuda.driver.device_attribute at-

tribute), 9
MAX_GRID_DIM_Y (pycuda.driver.device_attribute at-

tribute), 9

36

Index

PyCuda Documentation, Release 0.92

MAX_GRID_DIM_Z (pycuda.driver.device_attribute at-

tribute), 9

MAX_PITCH (pycuda.driver.device_attribute attribute),
9

MAX_REGISTERS_PER_BLOCK (py-
cuda.driver.device_attribute attribute), 9

MAX_SHARED_MEMORY_PER_BLOCK (py-

cuda.driver.device_attribute attribute), 9
max_threads (pycuda.tools.DeviceData attribute), 19
MAX_THREADS_PER_BLOCK

cuda.driver.device_attribute attribute), 9
mem_alloc() (in module pycuda.driver), 11
mem_alloc_pitch() (in module pycuda.driver), 12
mem_get_info() (in module pycuda.driver), 11
mem_size (pycuda.gpuarray. GPUArray attribute), 21
Memcpy?2D (class in pycuda.driver), 14
Memcpy3D (class in pycuda.driver), 15
memcpy_atoa() (in module pycuda.driver), 14
memcpy_atod() (in module pycuda.driver), 14
memcpy_atoh() (in module pycuda.driver), 14
memcpy_dtoa() (in module pycuda.driver), 14
memcpy_dtod() (in module pycuda.driver), 14
memcpy_dtoh() (in module pycuda.driver), 14
memcpy_htoa() (in module pycuda.driver), 14
memcpy_htod() (in module pycuda.driver), 14
memory_type (class in pycuda.driver), 10
MemoryError, 8
memset_d16() (in module pycuda.driver), 14
memset_d2d16() (in module pycuda.driver), 14
memset_d2d32() (in module pycuda.driver), 14
memset_d2d8() (in module pycuda.driver), 14
memset_d32() (in module pycuda.driver), 14
memset_d8() (in module pycuda.driver), 14
MIRROR (pycuda.driver.address_mode attribute), 9
modf() (in module pycuda.cumath), 23
Module (class in pycuda.driver), 16
module_from_buffer() (in module pycuda.driver), 16
module_from_file() (in module pycuda.driver), 16
MULTIPROCESSOR_COUNT

cuda.driver.device_attribute attribute), 9

(py-

(py-

N

name() (pycuda.driver.Device method), 10

nbytes (pycuda.gpuarray. GPUArray attribute), 21

num_channels (pycuda.driver.ArrayDescriptor attribute),
12

num_channels (pycuda.driver.ArrayDescriptor3D at-
tribute), 13

O

occupancy (pycuda.tools.OccupancyRecord attribute), 20
OccupancyRecord (class in pycuda.tools), 19
Out (class in pycuda.driver), 18

P

pagelocked_empty() (in module pycuda.driver), 12

pagelocked_empty_like() (in module pycuda.driver), 12

pagelocked_zeros() (in module pycuda.driver), 12

pagelocked_zeros_like() (in module pycuda.driver), 12

PageLockedMemoryPool (class in pycuda.tools), 21

param_set() (pycuda.driver.Function method), 16

param_set_size() (pycuda.driver.Function method), 17

param_set_texref() (pycuda.driver.Function method), 17

param_setf() (pycuda.driver.Function method), 17

param_seti() (pycuda.driver.Function method), 17

PATH, 18

POINT (pycuda.driver.filter_mode attribute), 10

PooledDeviceAllocation (class in pycuda.tools), 20

PooledHostAllocation (class in pycuda.tools), 20

pop() (pycuda.driver.Context method), 11

prepare() (pycuda.driver.Function method), 17

prepared_async_call() (pycuda.driver.Function method),
17

prepared_call() (pycuda.driver.Function method), 17

prepared_timed_call() (pycuda.driver.Function method),
17

push() (pycuda.driver.Context method), 10

pycuda.autoinit (module), 18

pycuda.cumath (module), 22

pycuda.curandom (module), 23

pycuda.driver (module), 8

pycuda.elementwise (module), 24

pycuda.gpuarray (module), 21

pycuda.tools (module), 19

Q

query() (pycuda.driver.Event method), 11

R

rand() (in module pycuda.curandom), 23
record() (pycuda.driver.Event method), 11
record_in_stream() (pycuda.driver.Event method), 11
registers (pycuda.driver.Function attribute), 18
registers (pycuda.tools.DeviceData attribute), 19
REGISTERS_PER_BLOCK
cuda.driver.device_attribute attribute), 9
RuntimeError, 8

S

SCHED_AUTO (pycuda.driver.ctx_flags attribute), 8
SCHED_FLAGS_MASK (pycuda.driver.ctx_flags
attribute), 8
SCHED_MASK (pycuda.driver.ctx_flags attribute), 8
SCHED_SPIN (pycuda.driver.ctx_flags attribute), 8
SCHED_YIELD (pycuda.driver.ctx_flags attribute), 8
set() (pycuda.gpuarray.GPUArray method), 21
set_address() (pycuda.driver.TextureReference method),
13

(py-

Index

37

PyCuda Documentation, Release 0.92

set_address_mode()
method), 13

set_array() (pycuda.driver.TextureReference method), 13

set_block_shape() (pycuda.driver.Function method), 17

set_dst_array() (pycuda.driver.Memcpy2D method), 15

set_dst_device() (pycuda.driver. Memcpy2D method), 15

set_dst_host() (pycuda.driver.Memcpy2D method), 15

set_flags() (pycuda.driver.TextureReference method), 13

set_format() (pycuda.driver.TextureReference method),
13

set_shared_size() (pycuda.driver.Function method), 17

set_src_array() (pycuda.driver.Memcpy2D method), 15

set_src_device() (pycuda.driver.Memcpy2D method), 15

set_src_host() (pycuda.driver.Memcpy2D method), 15

shape (pycuda.gpuarray. GPUArray attribute), 21

shared_memory (pycuda.tools.DeviceData attribute), 19

SHARED_MEMORY_PER_BLOCK (py-
cuda.driver.device_attribute attribute), 9

SIGNED_INT16 (pycuda.driver.array_format attribute),
9

SIGNED_INT32 (pycuda.driver.array_format attribute),
9

SIGNED_INTS (pycuda.driver.array_format attribute), 9

sin() (in module pycuda.cumath), 23

sinh() (in module pycuda.cumath), 23

size (pycuda.gpuarray. GPUArray attribute), 21

smem (pycuda.driver.Function attribute), 18

smem_granularity (pycuda.tools.DeviceData attribute),
19

SourceModule (class in pycuda.driver), 18

sqrt() (in module pycuda.cumath), 23

src_height (pycuda.driver.Memcpy3D attribute), 15

src_pitch (pycuda.driver.Memcpy?2D attribute), 15

src_x_in_bytes (pycuda.driver.Memcpy2D attribute), 14

src_y (pycuda.driver.Memcpy?2D attribute), 15

src_z (pycuda.driver. Memcpy3D attribute), 15

stop_holding() (pycuda.tools.DeviceMemoryPool
method), 20

stop_holding() (pycuda.tools.PageLockedMemoryPool
method), 21

Stream (class in pycuda.driver), 11

synchronize() (pycuda.driver.Context static method), 11

synchronize() (pycuda.driver.Event method), 11

synchronize() (pycuda.driver.Stream method), 11

T

tan() (in module pycuda.cumath), 23

tanh() (in module pycuda.cumath), 23

tb_per_mp (pycuda.tools.OccupancyRecord attribute), 19

TEXTURE_ALIGNMENT (py-
cuda.driver.device_attribute attribute), 9

TextureReference (class in pycuda.driver), 13

thread_blocks_per_mp (pycuda.tools.DeviceData at-
tribute), 19

(pycuda.driver.TextureReference

time_since() (pycuda.driver.Event method), 11
time_till() (pycuda.driver.Event method), 11
to_device() (in module pycuda.driver), 11
to_gpu() (in module pycuda.gpuarray), 22

TOTAL_CONSTANT_MEMORY (py-
cuda.driver.device_attribute attribute), 9
total_memory() (pycuda.driver.Device method), 10
TR_DEFAULT (in module pycuda.driver), 14
TRSA_OVERRIDE_FORMAT (in module py-

cuda.driver), 13
TRSF_NORMALIZED_COORDINATES (in module py-
cuda.driver), 14
TRSF_READ_AS_INTEGER (in module pycuda.driver),
13

U

UNSIGNED_INT16 (pycuda.driver.array_format at-

tribute), 9

UNSIGNED_INT32 (pycuda.driver.array_format at-
tribute), 9

UNSIGNED_INT8 (pycuda.driver.array_format at-
tribute), 9

W

WARP_SIZE (pycuda.driver.device_attribute attribute), 9
warp_size (pycuda.tools.DeviceData attribute), 19
warps_per_mp (pycuda.tools.DeviceData attribute), 19
warps_per_mp (pycuda.tools.OccupancyRecord at-
tribute), 19
width (pycuda.driver.ArrayDescriptor attribute), 12
width (pycuda.driver.ArrayDescriptor3D attribute), 13
width_in_bytes (pycuda.driver.Memcpy2D attribute), 15
WRAP (pycuda.driver.address_mode attribute), 9

Z

zeros() (in module pycuda.gpuarray), 22
zeros_like() (in module pycuda.gpuarray), 22

38

Index

	Contents
	Installation
	Tutorial Introduction
	Device Interface Reference Documentation
	Built-in Utilities
	The GPUArray Array Class
	Metaprogramming with PyCuda
	Frequently Asked Questions
	User-visible Changes
	Acknowledgments
	Licensing

	Indices and tables
	Module Index
	Index

