The syslog-ng Open Source Edition 3.1 Administrator
Guide

Second Edition

Published March 25, 2010

This manual is the primary documentation of the syslog-ng Open Source Edition 3.1 application.

The syslog-ng Open Source Edition 3.1 Administrator Guide

Product Marketing and Documentation Department

Revision History

Second Revision March 25,2010
More detailed documentation for message statistics. Minor corrections and new man pages.
First Revision January 8, 2010

Initial release

Copytight © 2006-2010 BalaBit I'T Security Led.

This guide is published under the Creative Commons Attribution-Noncommercial-No Derivative Works (by-nc-nd) 3.0 license. See Appendix 4, Creative
Ci s Attribution Non-commercial No Derivatives (by-ne-nd) — License (p. 206) for details. The latest version is always available at
http:/ /www.balabit.com/support/documentation.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/). This product includes cryp-
togtraphic software written by Eric Young (eay@cryptsoft.com)

This documentation and the product it describes are considered protected by copyright according to the applicable laws.
The syslog-ng™ name and the syslog-ng™ logo ate registered trademarks of BalaBit.

The BalaBit™ name and the BalaBit™ logo are registered trademarks of BalaBit.

Linux™ is a registered trademark of Linus Torvalds.

Debian™ is a registered trademark of Software in the Public Interest Inc.

Windows™ XP, 2003 Server, Vista, and 2008 Server are registered trademarks of Microsoft Corporation.

MySQL™ is a registered trademark of MySQL AB in the United States, the European Union and other countries.
Oracle™, JD Edwards™, PeopleSoft™, and Siebel™ are registered trademarks of Oracle Corporation and/or its affiliates.
Red Hat™, Inc., Red Hat™ Enterprise Linux™ and Red Hat™ Linux™ are trademarks of Red Hat, Inc.

SUSE™ is a trademark of SUSE AG, a Novell business.

Solaris™ is a registered trademark of Sun Microsystems, Inc.

AIX™AIX 5L.™, AS/400™, BladeCenter™, eServer™, IBM™, the IBM™ logo, IBM System i™, IBM System i5™, IBM System x™, iSeties™, i5/OS™,
Netfinity™, NetServer™, OpenPower™, OS/400™, PartnerWorld™, POWER™, ServerGuide™, ServerProven™, and xSeties™ are trademarks or registered

trademarks of International Business Machines.

Alliance Log Agent for System i™ is a registered trademark of Patrick Townsend & Associates, Inc.
All other product names mentioned herein are the trademarks of their respective owners.

Some rights reserved.

DISCLAIMER

BalaBit is not responsible for any third-party Web sites mentioned in this document. BalaBit does not endorse and is not responsible or liable for any content,
advertising, products, or other material on or available from such sites or resources. BalaBit will not be responsible or liable for any damage or loss caused or
alleged to be caused by or in connection with use of or reliance on any such content, goods, or services that are available on or through any such sites or resources.

http://www.balabit.com/support/documentation
http://www.openssl.org/

Table of Contents

Preface ceeeeeeeiei s aaaaaas X
1. SUMMALY Of COMEEIS woviiiiiiiiiiiiiiiiiiiiiii it X
2. Target audience and PLELEQUISIEES ...uuuuuuuuueeei e X
3. Products covered il this GUIAEiiiiiiiiiiiiiiiiiiiiiiiii i xi
4. Typographical CONVENTIONS ..iiiiiiiiiiiiiiiiiiiiii et eees xi
5. Contact and support INFOrMAtION eveviiiiiiiiiiiiiiiiiiiiiiiieiiieeiiei ettt xii

5.1, SALES COMEACT wuvviiiiiiiiiiiiiiiititit ettt a e xii
5.2, SUPPOLT CONMACE 1eiiiiiiiniiiiiiiiiiiii ettt e e e e e e eaaaaaaas xii
5.3. THAINING .oviiiiiiiiiiiii e e xii
6. About this dOCUMENT ...uviiiiiiiiiiiiiiiiiiii e xiii
6.1. What is new in this main edition of The syslog-ng Administrator Guide?cccoevvinnnnn. xiii
0.2. Feedback ...oviiiiiiiiiiiiiii xiii
6.3. Acknowledgmentsccccoiiiiiiiiii xiii

1. Introduction tO SYSIOZ-1NE ...cciiiiiiiiiiiiiiiiiiiiiiiiiiiiee e eeertiie e ee et e e e e e erra b e s s e e e e s s s e sa e s e e eees 1
1.1 What sySlo@-ng s ..ooooiiiiiiiiii 1
1.2. What syslog-ng IS 5Otoooiiiiiiiiii 1
1.3. Why is syslog-ng needed?cccoiiiiiiiiiiiiiiiiiii 2
1.4. What is new in syslog-ng Open Source Edition 3.17cccocoiii 2
1.5. Who uses SYslog-ngrcoooiiiiiiiiiiiiii 2
1.6. Supported PIatformsooooiiiiiiiiiiiiiiii 3

2. The concepts Of SYSIOZ-1NZ .eeciiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieeereeeereeer e eereererrrererreeeerererareeereeseesereees 4
2.1. The philoSOPhY Of SYSIOZ-11G ...euiiiiiiiiiiiiiiiiiiiiiii et enenenenes 4
2.2, Logging with SYSIO@-Nguiiiiiiiiiiiiiiii 4

2.2.1. Embedded 10g StAtEMENTS uviiiiiiiiiiiiiiiiiiiiieieiieei ettt 6
2.3. MOAES O OPELATION et e e 7
2.3.10 CHeNt MOAE .ivviiiiiiiiiiiiiiiiiic 8
2.3.2. Relay MOAE .oeiiiiiiiiiiiii e 8
2.3.3. Server MO ..ivviiiiiiiiiiiiiiiiii 9
2.4, GLODAL ODJECES ..ttt 9
2.5. TIMezone handliflguuuiimiiiiiiiiii e 10
2.6. Daylight saving Changeseuviiiiiiiiiiiiiiiiiiiiei it nenenenenenenes 11
2.7. Secure logging using TLSccoiiiiiiii 11
2.8. Formatting messages, filenames, directories, and tablenamescccccveeeiiiimiiiiiieiiiiieieeiiiieeen. 12
2.9. SEGMENTING MESSAZES .eevvvvuuunnieiiiiiiiti et e et e e e et e et it e e e s e e ae bbb s e e e e e s ebab s eeeeesaaaaaeas 12
2.10. MOIEYING MIESSAZES +.vuvvruruuriiiitiiititiiititbtitieeeeeeeee et ee et 12
2.11. Classifying log MESSAZES ..uuunenieeee e 12
2.11.1. The structure of the pattern databaseccoooeiiiiiiiiiiiiiie e, 13
2.11.2. How pattern matching WOTKSuuuiiiiiiiiiiiiiiiiiiiiiiiiiiii e 15
2.11.3. Artificial IGROTANICE oooeeeeeieee e 15
2.12. Managing incoming and outgoing messages with flow-controlcccciL 16
2.12.1. Flow-control and multiple destinationscoeeveeeiieiiieieieee e, 18

2.13. High availability SUPPOLT oeeeeiiiiiiiiiieieie e 19

2.14. Possible causes of 10SIng log MESSAZES ovviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 19
2.15. The structure of a 1o MESSAZE uvuiuiiiiiiiiiiiiiiiiiiiiiiii b 20
2.15.1. BSD-syslog or legacy-syslog MESSAZES uvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeieieie e 20
2.15.2. IETF-5ySlOog MESSAZES ..oevviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i 22

3. Installing SYSIOZ-1Z .eeuuuuiiiiiiiiiiiiiiiiciiiceeere e e e e e e s s s e e e e e sea 26
3.1. Installing syslog-ng using the .run installerccccccciiiiiiiiiiiiii 26
3.1.1. Installing syslog-ng in client of relay modeccoiiiiiiiiiiiiiiiiiiii 27

3.1.2. Installing syslog-ng in server MOdeoooiiiiiiiiiiiiiiiiiiiiii e 29
3.1.3. Installing syslog-ng without user-interactioncccccccvviiiiiiiiiiiiiiii 32

3.2. Installing syslog-ng on RPM-based platforms (Red Hat, SUSE, AIX)oocoiiiiiiiiiiniiiiiinnnn. 32
3.3. Installing syslog-ng on Debian-based platformscccccciiiiiiiiiii 33
3.4. Compiling sySlOg-Ng frOM SOULCE uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiee bbb aaaee 34
3.5. Uninstalling SYSIOZ-Ng uuuiiiiiiiiiiiiiiiiiiiiiiiiiiii i 36
3.6. Configuring Microsoft SQL Server to accept logs from syslog-ngccccccuviiiiiiiiiiiiiiiiiiiiiininn. 36
4. Configuring SYSIOZ-NGceiiiiiiiiiiiiiiiiiiiiiiii e e s e e e e e e ee 40
4.1. The syslog-ng configuration filecoooiiiiiiiiiiii 40
4.1.1. Including configuration filescccoiiiiiiiiiiiiiiiii 41

4.2. Defining global ODJECS ...oiiuiiiiiiiiiiiiiiiiiiiic e 41
4.2.1. Notes about the cONfiguration SYIAXccuuveiiiiiiiiiiiiiiiiiiiiiee e 42

4.3. Sources and SOULCE dIIVELSuviiiiiiiiiiiiiiiiiiiiii it 43
4.3.1. Collecting internal MESSAZES ...oovvviiiiiiiiiiiiiiii i 45
4.3.2. Collecting messages from text filescccooiiiiiiiiiiiiiiiiiiii 47
4.3.3. Collecting messages from named PIPES oocoeviiiiiiiiiiiiiiiiiiiiiiiiiii e 48
4.3.4. Collecting messages on Sun SOIariscoooeviiiiiiiiiiii, 49
4.3.5. Collecting messages using the IETT syslog protocolcccocciiiii, 49
4.3.6. Collecting messages from remote hosts using the BSD syslog protocolooeen. 50
4.3.7. Collecting messages from UNIX domain SOCKetsccccccoeiiiiiiiiiiiiiiiiiiii, 51

4.4. Destinations and destination dIiVerscccceiiiiiiiiiiiiiiiiiieii e 52
4.4.1. Storing messages in plain-text filesooo 53
4.4.2. Sending messages to NAMEd PIPES oooeeereeeeeeeeeeeeeee e 54
4.4.3. Sending messages to external apPlCAONS uuueuuiiuiiiiiiiiiiiiiiiiiiiiii e 55
4.4.4. Storing messages in an SQL databasecccccoiiiiiiiiii 55
4.4.5. Sending messages to a remote logserver using the IETF-syslog protocolc.coeeeeee. 59
4.4.6. Sending messages to a temote logserver using the legacy BSD-syslog protocol 60
4.4.7. Sending messages to UNIX domain SOCKEScccvviiiiiiiiiiiiiiiiii s 61
A48 USCILEY() oooeeeiiiiiii it 149

4.5, L0Z PANS coiiiiiiii e 61
4.5.1. Using embedded 10g STAtEMENTS ...uuuvuriririiiiiiiiiiiiiiiiitiiiiiiiiiiit bt 63
4.5.2. Configuring flow-CoNtrol ..o 64

4.0, FIIEEIS woiiiiiiiiiiiiii e 65
4.6.1. USING FIIEEIS wovviiiiiiiiii ittt 65
4.6.2. Optimizing regular expressions in filterscooooiiiiiiiiiiiiiii 68
4.6.3. TaG@ING MESSAZES ...ciiiiiiiiiiii ettt e ettt e e e ettt e e e e et s e e e e e e aaab s 68

4.7, Templates ANd MACIOS ...uvuvuuuriiitititititititieieeee bbb 69
4.8. PASING MESSAZES ...ciiiiiiiiiiii ittt e ettt e e e e e st et bbb e e e e e st e ab b e e e s e e aaaaaaaas 70

4.9. ClasSIfyIng MESSAZES ..eevuuuuuuuniiiiiiiiiii e ettt ettt e e e et e ettt e e e e e e et it e e e e e e eaaaiaaas 72

4.9.1. Downloading sample pattern databasesccoeoiiiiiiiiii, 73
4.9.2. Using parser results in filters and templates ... 73

4.10. REWTItNG MIESSAZES .t 75
4.11. Configuring global syslog-ng OPtONSccccoiiiiiiiiiiiiiii 76
4.12. Encrypting log messages with TLS ... 76
4.13. Mutual authentication using TLS ... 79
4.14. Configuring SySIOZ-Ng CHEMLS uuuuiuiiiiiiiiiiiiiiiiiiiiiiiiii bbb eaeaaaeaaaanes 81
4.15. Configuring SysIOg-Ng fEIAYS uuuiiiiiiiiiiiiiiiiiiiiiiiiii i 82
4.16. Configuring SYSIOZ-1Z SEIVELS uuuuuuuuuieiiiiiiiiieiiiiteieteteeeteeaa bbb aaeaeeeaeaasaaaaeaaee 83
4.17. Troubleshooting SYSIOZ-NZ uiiiiiiiiiiiiiiiiii e 84
4.17.1. Creating syslog-ng core filescoooiiiiiiiiiiiiiiii 84
4.17.2. Running a failure SCriptooooviiiiiiiiii 85
4.17.3. StoppINg SYSIOZ-NZ ..eviiiiii s 85

5. Best practices and eXampPlescoeuiiiiiiiiiiiiiiiiii e e e e e ees 86
5.1. General teCOMMENAAIONS 1eeveveiiieieieeeteeie et e e 86
5.2. Handling lots of parallel CONNECHONS uvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 86
5.3. Handling large message 1oadoooooiiiiiiiiiiiiiiii 87
5.4. Using name resolution in syslog-ngcooo 87
5.4.1. Resolving hostnames locally —..........cccccccoo 88

5.5. Collecting logs from ChIOOtcccccciiiiiiiiiiiiiii 88
5.6. Replacing klogd on LIUX ...oeiiiiiiiiiiiiiiiiiiii 89
5.7. A note on timezones and HMESTAMIPS «.eeeveiireiiiiiiiiiiiiiiiiitiiiiteieeeeeeeee ettt eeeeeeeeeeeeeees 90
5.8. DIopping MESSAZES ...ocoeviiiiiiiiiiiiiiiiiii 90
T S S 4Tt 91
0.1, SOULCE AIIVELS ..ttt 91
6.1.1.I0terNal() ooviiiiii e 91
G120 fHle() oo 91
O.1.3. PIPE() oottt 95
0.1.4. programi()ooooiiiiiiiiii 98
6.1.5. SUN-StEEAMS() ALIVEL ..vvttiiiiiiiitiiitieieieteeebebe bbbttt 102
0.1.0. SYSLOZ() +eeee i e 108
6.1.7. tep(), tep6(), udp() and UAPO() +evvvvvrririiiiiiiiiiit it 113
6.1.8. unix-stream() and UNIX-AZram() ...oooooiiiiiiiiiiiiiii 121

6.2, Destination dIIVELSoooiiiiiiiiiiiiiiiiiiiiiiiiii 127
O.2.10 IlE() oo 127
0.2.2. PIPE() woeeeiiiiiiiii it 130
0.2.3. PLOZIAM() .euuiieiiiiiiiti e e e n e e e 133
0.24. SGL0)0 corieei i 135
0.2.5. SYSLOZ() +eeeie e e 139
6.2.6. tcp(), tep6(), udp(), and udpO(), .ooovvviiiiiiiiii 142
6.2.7. unix-stream() & UNIX-AZIAM() .oovvrririiiiiiiiiiiiiiiiii it 146
0.2.8. USEILLY() uvvvviiiiiiiiiiiit e 149

6.3. Log path flagsoiiiiiiiiii 149
6.4 Flter fUNCHOMNS ..uiiiiiiiiiiiiiiii ettt e et eeeaeeans 150
0.5, MIACIOS .eiiiiii i 153

0.0. MESSAZE PATSCES ..iiiiiiiiiiiieiee ittt ettt e e e et e e e e et e e e et e e e e e e e e e e s e e e 156

0.6.1. CSV PALSErS ...oooooiiiiiiiiiiiiiiiii 156
6.6.2. Patternn databases ...ceeuuuiieiiiiieiiiii et ettt e e et e 160
0.7. REWIIHNG MIESSAZES +.vvvvviiruiiiiiitiiitittieteteeetee e et e e e e e e e s e e e e e e e e e e e s e b e s e s e s et ae e e e aesasasasasaaasaaeae 167
6.8. Regular expressions ... 168
6.9. Global OPHONS ...iiiiiiiiiiiiiiiiii 169
0.10. TS OPHOMS wovvviiiiiiiiiiiiiiiiiiiiiii it 173
1. The syslog-ng Manual PAZESceeeerererereririiiieieieieieriieirererer. 176
2. GNU General Public LiCeNSEccccuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin et e e e s s sssae s s e eeees 195
2.1 PLeamble oovieiiii ettt et e e et e e 195
2.2. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
.. 196
2210 SECHON 0 1ottt et et eaaas 196
22,20 SECHON T ettt ettt ettt eaaas 196
2230 SECHOM 2 1ottt et eeaaas 196
224, SECHON 3 1ottt ettt ettt ettt et ettt eeaaas 197
2.2.5.SCCHOM 4 oo ettt 198
2.2.0. SECHOM 5 1oie ittt ettt ettt et ettt eaaas 198
227 SECHON 0 ettt ettt et et ettt eeaaas 198
2.2.8. SECHON 7 1ottt ettt ettt et ettt et ettt eeaaas 198
2.2.9. SECHON 8 oottt ettt eaaas 199
22100 SECHON 9 oot ettt e e e et e eees 199
22110 SeCtiON TO ittt e e e 199
2.2.12. NO WARRANTY Section 11 ..ooiiiiiiiiiiiiiiiiiiiiiiiiieiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenaneeanenes 199
22130 SECHON 12 i ettt 199
2.3. How to Apply These Terms to Your New Programscccccccciiiiiiiiiiiiiiiii, 200
3. Deprecated pattern database SChEMEScccceiiiiiiiiiiiiiiiiiiiiiiiiinieeeer e 201
3.1. The syslog-ng pattern database format V1 ..., 201
3.2. The syslog-ng pattern database format V2 ..., 203
4. Creative Commons Attribution Non-commercial No Derivatives (by-nc-nd) License 206
GLOSSALY it e e 211

X et 215

List of Examples

4.1. A simple coOnfIguIation fIle ueueeeeei s 40
4.2. Using required and optional PATAMELELS ...oceeeeeeeeeeeeeeee e 42
4.3. A SIMPLE SOULCE STALEIMICIIE coeeeeeeeeeeeeeieeee et e e e ettt eeeeeeeeeaeaeaeaeaeaaaeaaaanes 43
4.4. A source statement Using tWo SOULCE AIIVELSioviuiiiiiiiiiiiiiiiiiiiiiie e 43
4.5. Setting default priotity and FACIIHEY ..ooeeeeeeeeeee e 44
4.6. Source statement on a Linux based operating SYStemM cceveveiiiiiiiiiiiiiiiiiiiiie e 44
4.7. Using the InterNal() dfIVET uuuuiiiiiiiitiiiiititi ettt 91
4.8. Using the flle() dfiVET .ooeeeeeeeee e 94
4.9. Using the PIPe() dIIVET ..euuiiiiiii s 98
4.10. Using the sun-streams() AIIVEL uuueeeeueurueieieeieeeeeeeeieeeeeeeeeaee e eeeeee e aeee e eeeeeeeeeeeeeeeseeesenenenenanene 108
4.11. Using the SYSIOZ() AIVEL ...uuuiiiiiiiiiiiiiiiiiiiiiieee ettt eeeneeee 113
4.12. Using the udp() and tep() dIIVELS uuiiuiiiiiiiiiiiiiitiiitie ettt 121
4.13. Using the unix-stream() and unix-dgram() diiverscccccooiiiummemmmemmmiiiiiiiiiiieeeeeeaeeeen 127
4.14. A simple deStiNAtion STATEIMICIIE .eeeeeeeeeeee e e e 53
4.15. Using the fle() dfIVET ...uuiiiiiiiiiiiiiiii ittt aneee 130
4.16. Using the file() driver with macros in the file name and a template for the messagecccccvvvvverennnee 130
4.17. USIng the PIPE() AEIVEL ...uuiiiiiiiiiiiiititititit ittt 133
4.18. Using the program() destination dIIVETueeeemememmmmeiietiiiiieieieieeeeieeeeeeeeeeeeeeebeeeeeeeeeeeeeeeeeeeeaeeee 135
4.19. USING the SQI() AIIVEL ...uiiiiiiiiiititiiititieitie ettt ene 137
4.20. Using the sql() driver with an Oracle databaseeeeiiiiiiiiiiiiiiiiiiiiiii e 138
4.21. Using the sql() driver with an MSSQL databaseeuviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeenes 138
4.22. Using the SYSIOZ() dIVEL ...uuuiiiiiiiiiiiiiiiiitiitieeeieie ettt eneeee 142
4.23. USING the tCP() ALIVEL ..uiiiiiiiiiiitiiititietee ettt 146
4.24. Using the unix-stream() dIIVET uueeueeuueiiiiieieitiiieieee bbb eeeeeeeeeeeeaeene 148
4.25. Using the USertty() dIVEL ..o 61
4.26. A SIMPLE 1O STALEMEIIT .o 62
4.27. Using 1og Path flags oeeiiiiiiiiiiiiiiiiiiiiee e 150
4.28. Using embedded 10g Pathscoooiiiiiiiiiiiii 64
4.29. Sizing parameters fOr flOW-CONLIOL .oooiiiiiiiiiii e 65
4.30. A SIMPle fIltEr STALEMENT ...tutitiiiiieiiiiitiieteteteeeteeetee bbbttt 66
4.31. Optimizing regular expressions i fIlEErsoooeiiiiiiiiiiiiiiiii 68
4.32. Adding tags and filtering messages With taZScoeeviiiiiiiiiiiiiii 69
4.33. USING tEMPLATES .iiiiiiiiiiiiiii it 70
4.34. Segmenting hostnames separated with a dashccccoiiiiiiiiiiiii 158
4.35. Parsing Apache 10@ fIleS uuiiiiiiiiiiiiiiiiit ittt 159
4.36. Segmenting @ Part Of & MIESSAZE ..vuvuvuuumuriiiniiitiiiiititeeitte et eeee bbbt 159
4.37. Defining pattern databasesuuuuuumuumuueeiiiiiiiieieieieieee e 72
4.38. Using classifiCation FESULLS uuuuuuuuiiiiiiiii s 73
4.39. Using classification results for filtering MESSAZES uuvuuururmruiiiiiiiiiiiiiiiiiiiiiieieieeeeie e 161
4.40. UsSINg pattern PArSErs S MACIOS eietiuuuuunsietiiiittiiaiseeettttttttai e aettttttia e e et ttattti e eesseaaaaiaaas 162
4.41. UsINg SUDSHEULION TUIES ..uuuiiiiiiiiiiiiiiiiiitiiiiiiit ittt 167
4.42. Setting message fields to a particular valueccoiiiiiiiiiiiiiiiiii e 168
4.43. USING GlODAl OPHONS ..t 76
4.44. A destination statement using TLS ... 77
4.45. A source statement using TS ... 78

4.46. Disabling mutual authentiCation ... 78
4.47. A destination statement using mutual authentication ... 80
4.48. A source statement using TS ... 81
4.49. A simple configuration for CHentscoocoiiiiii 82
4.50. A simple configuration for relaysccooiiiiiiii 83
4.51. A simple configuration for SEIVELSoooiiiiiiiiiiiiiiiiiii 83
5.1, SKIPPING MESSAZES wevvvvviiiiiiiiiiiiiiiiiiiiiii ittt 90
6.1. Using the internal() dIivVerccccccciiiiiiiiiiiiiiiiii 91
6.2. Using the file() diiver ... 94
0.3, TAING FIIES 1.oiiiiiiiiiiiiiiiiit bbb 95
0.4. Using the pIpe() dIIVErooiiiiiiiiiiiiiiiiiiic e 98
6.5. Using the program() dfiVercccciiiiiiiiiiiiiiiiiii e 102
06.6. Using the sun-streams() dEIVELcooiiiiiiiiiiiiiiiiiiiiiii e 108
6.7. Using the syslog() dIIVErcoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 113
6.8. Using the udp() and tep() driVErsooiiiiiiiiiiiiiiiiii 121
6.9. Using the unix-stream() and unix-dgram() driVersccccoooviiiiiiiiiiiiiiiii e 127
6.10. Using the file() dIiVeroiiiiiiiiiiiiiiiiiiiiiii e 130
6.11. Using the file() driver with macros in the file name and a template for the messageccoevennneeen. 130
6.12. Using the pipe() dIiVeroiiiiiiiiiiiiiiiiiiiie e 133
6.13. Using the program() destination drfiVErccccoiiiiiiiiiiiiiiiiiiiiiiiee e 135
6.14. Using the sql() dIiVereiiiiiiiiiiiiii e 137
6.15. Using the sql() driver with an Oracle databaseccccooiiiiiiiiiiiiii 138
6.16. Using the sql() driver with an MSSQL databasecccccooiiiiiiiiiiiiiiiiiiii 138
6.17. Using SQL NULL VAIUES uiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie e 139
06.18. Using the syslog() dIivercooiiiiiiiiiiiiiiiiiiiii e 142
6.19. Using the tep() dIIVEruiiiiiiiiiiiiiiiiiii e 146
6.20. Using the unix-stream() dIiVErccccviiiiiiiiiiiiiiiiiiii e 148
6.21. Using the usertty() driVErcooiiiiiiiiiiiiiiiiiiiiiiiie e 149
6.22. Using log path flagscooo 150
6.23. Segmenting hostnames separated with a dashccccciiiiii 158
6.24. Parsing Apache 10g filesiiiiiiiiiiiiiiiiiiiiii 159
6.25. Segmenting a Part Of & MESSAZE ...ceeiiiiiiiiiiiiii ittt e e e e ettt e e e e e e et eeeeeeeaaaes 159
6.26. Adding the end of the message to the 1ast COIUMN iiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeie e 159
6.27. PAterNl PALSEE SYMEAX ..iiiiiiiiiiiiii e e ettt e ettt e e e e e e e e et e e e e e et e ata s e e e e e e eeeaabii e eeeaeeeaaae 160
6.28. Using the STRING and ESTRING PAISEIS ...cccuviiiiiiiiiiiiiiiiiiiiiiiee it 161
6.29. Using classification results for filtering MEeSSAZES uuuuiiiiiiiiiiiiiiiiiii e 161
6.30. USINgG PALLELN PALSELS S MIACTOS .uuuueeiiiiiiiiiiinseeeattiitttiie e eeetttatttii e eeeeettattae e eeeetetaattii e eeaasaaans 162
6.31. A V3 pattern database containing a single rulecccciiiiiiiiii 166
6.32. USINgG SUDSHEUHON FUIES +eevvviiiiiiiiiiiiiiiiiiiiiiiiii ettt 167
6.33. Setting message fields to a Particular VAIUEeuuiiiiuiiiiiiiiiiiiiiiiiiiiitiieeee e 168
6.34. Using PosIX regular EXPIeSSIONSciiiiiiiiiiiiiiiiiiiiiiiii ettt e e e e e e e e e eeanaaas 168
6.35. Using PCRE regulatr EXPIesSIONScoiiiiiiiiiiiiiiiiiiiiiiiiiei ettt eeeeeens 169
3.1. A V1 pattern database containing a single ruleooeuiiiiiiiiiiiiiiiiiiiiiiiiiiie e 202

3.2. A V2 pattern database containing a single ruleoeiiiiiiiiiiiiiiiiiiiiiiiii 205

List of Procedures

2.1.
3.1.
3.2.
3.3.
3.4.
3.5.
3.0.
4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
5.1.
5.2.
5.3.

The route of a log message in SYSIOZ-NE oooiiiiiiiiiiiiiiiii 5
Installing syslog-ng in client of telay MOAEuuuiiiiiiiriiiiiiiiiiiiiiie e 27
Installing syslog-ng i SEIVEr MOME .oceveeeeieieie i 29
Installing syslog-ng on RPM-based SYStEMS .oeeeeeeeeeieieeeee e 32
Installing syslog-ng on Debian-based SYStEMS ...oceveeeeieiiiiiiiiee e 34
Compiling SYSIOG-NG fTOM SOULCE ..uuutuvitiiitiiiiiiitiiititieeeitieeebe bbb 34
Configuring Microsoft SQL Server to accept logs from SySIOg-Nguuuiiiimmiviiiiiiiiiiiiiiiiiiiiiiiiiiieieeees 36
Configuring TLS on the syslog-nig CHENES uuiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 77
Configuring TLS on the SYSIOZ-NZ SEIVEL tiiiiiiiiiiiiiiiiiiiiiiiiiiieteeeeeeeeeeeeeeeeeeeeaeeeeeaeeeeeeeeeeneeenenenenenene 78
Configuring TLS on the syslog-ng CHENES uuiiiiiiiiiiiiiiiiiiiitiiiiie e 79
Configuring TLS on the SYSIOZ-NZ SEIVEL iiiiiiiiiiiiiiiiitiiiiieiiteeieeee et eeeeeeaeeeesaeeeeeeeeaeeeeesenenenenene 80
Configuring syslog-ng on client hoSts ... 81
Configuring syslog-ng on relay hosts ... 82
Configuring syslog-ng on server NOSES ...t 83
Creating syslog-ng core fIles ...t 84
Resolving hostnames locallyooooiiiiiiii 88
Collecting 10gs fOM CRIOOT ...uuuiiiiiiiiiiiiiiitie bttt 89
Replacing KIogd 0n LIAUK cooeeiiiiiiiiieie e 90

Summary of contents *

Preface

Welcome to the syslog-ng Open Source Edition 3.1 Administrator Guide!

This document describes how to configure and manage syslog-ng. Background information for the technology and
concepts used by the product is also discussed.

1. Summary of contents

Chapter 1, Introduction to sysiog-ng (p. 1) describes the main functionality and purpose of syslog-ng OSE.
Chapter 2, The concepts of syslog-ng (p. 4) discusses the technical concepts and philosophies behind syslog-ng OSE.

Chapter 3, Installing syslog-ng (p. 26) describes how to install syslog-ng OSE on various UNIX-based platforms using
the precompiled binaries.

Chapter 4, Confignring syslog-ng (p. 40) provides detailed description on configuring and managing syslog-ng OSE
as a client or a server.

Chapter 5, Best practices and examples (p. 86) gives recommendations to configure special features of syslog-ng.
Chapter 6, Reference (p. 91) is a reference guide of syslog-ng OSE, describing all available parameters and options.
Appendix 1, The syslog-ng manual pages (p. 176) contains the manual pages of the syslog-ng OSE application.

Appendix 2, GNU General Public License (p. 195) includes the text of the GPLv2 licence applicable to syslog-ng Open
Source Edition.

Glossary (p. 211) provides definitions of important terms used in this guide.

Index (p. 215) provides cross-references to important terms used in this guide.
2. Target audience and prerequisites

This guide is intended for system administrators and consultants responsible for designing and maintaining logging
solutions and log centers. It is also useful for I'T decision makers looking for a tool to implement centralized logging
in heterogeneous environments.

The following skills and knowledge are necessary for a successful syslog-ng administrator:

m At least basic system administration knowledge.
B An understanding of networks, TCP/IP protocols, and general network terminology.
m Working knowledge of the UNIX or Linux operating system.

m In-depth knowledge of the logging process of various platforms and applications.

Products covered in this guide *

m An understanding of the legacy syslog (BSD-syslog) protocol (see RFC 3164, available at
http://www.ietf.org/rfc/rfc3164.txt) and the new syslog (IETF-syslog) protocol standard (see RFC
5424-5428, available at http://tools.ietf.org/html/rfc5424).

3. Products covered in this guide

This guide describes the use of the following syslog-ng version:

m syslog-ng Open Source Edition (OSE) 3.1.0 and later
4. Typographical conventions

Before you start using this guide, it is important to understand the terms and typographical conventions used in
the documentation. For more information on specialized terms and abbreviations used in the documentation, see
the Glossary at the end of this document.

The following kinds of text formatting and icons identity special information in the document.

Tip

Tips provide best practices and recommendations.

0
<

Note
Notes provide additional information on a topic and emphasize important facts and considerations.

3 Warning
Warnings mark situations where loss of data or misconfiguration of the device is possible if the instructions are not obeyed.

Command Commands you have to execute.
Empbhasis Reference items, additional readings.
/path/to/file File names.

Parameters Parameter and attribute names.

Label GUI output messages or dialog labels.
Menu A submenu in the menu bar.

Button Buttons in dialog windows.

http://www.ietf.org/rfc/rfc3164.txt
http://tools.ietf.org/html/rfc5424

Contact and support information *

5. Contact and support information

The syslog-ng Open Source Edition application is developed and maintained by BalaBit IT Security Ltd. We are
located in Budapest, Hungary. Our address is:

BalaBit IT Security Ltd.

1464 Budapest PO. BOX 1279
Hungary

Tel: +36 1 371-0540

Fax: +36 1 208-0875

E-mail: info@hbalabit.com
Web: http:/ /www.balabit.com/

5.1. Sales contact
You can directly contact us with sales related topics at the e-mail address <sales@balabit.com>.
5.2. Support contact

To subsctibe to the mailing list of the syslog-ng community, visit https://lists.balabit.hu/mailman/listinfo/syslog-ng/.
To report bugs found in syslog-ng, visit https://bugzilla.balabit.com/.

Product support, including 7x24 online support is available in various packages. For support options, visit the fol-
lowing page: http://www.balabit.com/support/packages/

Precompiled binary packages are available for free for the supported Linux and BSD platforms at
http:/ /www.balabit.com/network-security/syslog-ng/opensoutce-logging-system/upgrades/. See the following
link for the list of supported platforms:
http:/ /www.balabit.com/network-security/syslog-ng/opensource-logging-system/support/

Support e-mail address: <support@balabit.com>.
Support hotline: +36 1 371 0540 (available from 9 AM to 5 PM CET on weekdays)

The BalaBit Online Support System is available at https://boss.balabit.com/ and offers 24 hours technical support.
This system is available only for users with a valid support contract and a MyBalaBit account. To sign up for My-
BalaBit, visit the following page: http://www.balabit.com/mybalabit.

5.3. Training

BalaBit IT Security Ltd. holds courses for advanced GNU/Linux system administrators. Our expetienced system
engineers give lectures on syslog-ng administration.

http://www.balabit.com/
https://lists.balabit.hu/mailman/listinfo/syslog-ng/
https://bugzilla.balabit.com/
http://www.balabit.com/support/packages/
http://www.balabit.com/network-security/syslog-ng/opensource-logging-system/upgrades/
http://www.balabit.com/network-security/syslog-ng/opensource-logging-system/support/
https://boss.balabit.com/
http://www.balabit.com/mybalabit

About this document *

6. About this document

This guide is a work-in-progress document with new versions appearing periodically.

The latest version of this document can be downloaded from the BalaBit website at
http:/ /www.balabit.com/support/documentation/.

For news and update notifications about the syslog-ng documentation, visit the BalaBit Documentation Blog at
http://robert.blogs.balabit.com.

6.1. What is new in this main edition of The syslog-ng Administrator Guide?

The syslog-ng Open Source Edition 3.1 Administrator Guide contains the following main changes compared to
carlier editions:
m The contents of the guide have been updated for syslog-ng Open Source Edition 3.1.

m Earlier editions of the The syslog-ng Administrator Guide covered both the open source and the com-
mercial versions of syslog-ng. Starting with The syslog-ng 3.1 Administrator Guide, they are discussed
in separate documents called The syslog-ng Open Source Edition Administrator Guide, The syslog-ng
Premium Edition Administrator Guide, and The syslog-ng Agent for Windows Administrator Guide.

m The order of chapters has changed: installation and compiling information is now before the configuration
and reference chapters.

B Message statistics are desctibed in more detail.

®m Manual pages for the 1oggen, pdbtool, and syslog-ng-ctl utilities are now included.
6.2. Feedback

Any feedback is greatly appreciated. General comments, errors found in the text, and any suggestions about how
to improve the documentation is welcome at <documentation@balabit.com>.

6.3. Acknowledgments

BalaBit would like to express its gratitude to the syslog-ng users and the syslog-ng community for their invaluable
help and support.

Special thanks to Nate Campi for organizing and hosting the syslog-ng FAQ (http://campin.net/ syslog-ng/faq.html)
and for his permission to reproduce parts of his work in this guide.

http://www.balabit.com/support/documentation/
http://robert.blogs.balabit.com
http://campin.net/syslog-ng/faq.html

-) .
What syslog-ng is

Chapter 1. Introduction to syslog-ng

This chapter introduces the syslog-ng Open Source Edition application in a non-technical manner, discussing how
and why is it useful, and the benefits it offers to an existing I'T infrastructure.

1.1. What syslog-ng is

The syslog-ng application is a flexible and highly scalable system logging application that is ideal for creating cent-
ralized and trusted logging solutions. The main features of syslog-ng are summarized below.

m Reliable log transfer. The syslog-ng application enables you to send the log messages of your hosts to remote
servers using the latest protocol standards. The logs of different servers can be collected and stored
centrally on dedicated log servers. Transferring log messages using the TCP protocol ensures that no
messages are lost.

m Secure logging using TLS: Log messages may contain sensitive information that should not be accessed by
third parties. Therefore, syslog-ng uses the Transport Layer Security (TLS) protocol to encrypt the
communication. TLS also allows the mutual authentication of the host and the server using X.509 certi-
ficates.

B Direct database access: Storing your log messages in a database allows you to easily search and query the
messages and interoperate with log analyzing applications. The syslog-ng application supports the fol-
lowing databases: MSSQL, MySQL, Oracle, PostgreSQL, and SQLite.

B Heterogeneous environments: The syslog-ng application is the ideal choice to collect logs in massively hetero-
geneous environments using several different operating systems and hardware platforms, including
Linux, Unix, BSD, Sun Solaris, HP-UX, Tru64, and AIX.

m Filter and classify: The syslog-ng application can sort the incoming log messages based on their content
and vatious parameters like the source host, application, and priority. Directories, files, and database
tables can be created dynamically using macros. Complex filtering using regular expressions and boolean
operators offers almost unlimited flexibility to forward only the important log messages to the selected
destinations.

W Parse and rewrite: The syslog-ng application can segment log messages to named fields or columns, and
also modify the values of these fields.

B [Pvd and IPv6 support: The syslog-ng application can operate in both IPv4 and IPv6 network environments;
it can receive and send messages to both types of networks.

1.2. What syslog-ng is not

The syslog-ng application is not log analysis software. It can filter log messages and select only the ones matching
certain criteria. It can even convert the messages and restructure them to a predefined format, or parse the messages
and segment them into different fields. But syslog-ng cannot interpret and analyze the meaning behind the messages,
or recognize patterns in the occurrence of different messages.

Why is syslog-ng needed?

1.3. Why is syslog-ng needed?

Log messages contain information about the events happening on the hosts. Monitoring system events is essential
for security and system health monitoring reasons.

The original syslog protocol separates messages based on the priority of the message and the facility sending the
message. These two parameters alone are often inadequate to consistently classify messages, as many applications
might use the same facility — and the facility itself is not even included in the log message. To make things worse,
many log messages contain unimportant information. The syslog-ng application helps you to select only the really
interesting messages, and forward them to a central server.

Company policies or other regulations often require log messages to be archived. Storing the important messages
in a central location greatly simplifies this process.

For details on how can you use syslog-ng to comply with various regulations, see the Regulatory compliance and system
logging whitepaper available at http://www.balabit.com/support/documentation/

1.4. What is new in syslog-ng Open Source Edition 3.1?

Version 3.1 of syslog-ng Open Source Edition includes the following main features:

m syslog-ng Open Source Edition 3.1 uses a new pattern database format dubbed V3 that has several im-
provements over the older V1 format.

1.5. Who uses syslog-ng?

The syslog-ng application is used worldwide by companies and institutions who collect and manage the logs of
several hosts, and want to store them in a centralized, organized way. Using syslog-ng is particularly advantageous
for:

m Internet Service Providers;

m Financial institutions and companies requiring policy compliance;

m Server, web, and application hosting companies;

m Datacenters;

m Wide area network (WAN) operators;

m Server farm administrators.

The following is a list of public references — companies who use syslog-ng in their production environment:

m Allianz Hungary Insurance Co. (http://www.allianz.hu/)

m Navisite Inc. (http://www.navisite.com/)

m Svenska Handelsbanken AB (http://www.handelsbanken.com/)
m Swedish National Debt Office (http://www.riksgalden.se)

http://www.balabit.com/support/documentation/
http://www.allianz.hu/
http://www.navisite.com/
http://www.handelsbanken.com/
http://www.riksgalden.se

Supported platforms *

1.6. Supported platforms

The syslog-ng Open Source Edition application is highly portable and is known to run on a wide range of hardware
architectures (x86, x86_064, SUN Sparc, PowerPC 32 and 64, Alpha) and operating systems, including Linux, BSD,
Solaris, IBM AIX, HP-UX, Mac OS X, Cygwin, Tru64, and others.

m The source code of syslog-ng Open Source Edition is released under the GPLv2 license and is available
at http://www.balabit.com/network-security/syslog-ng/opensource-logging-system/upgrades/#any

m Precompiled binary packages provided by BalaBit are available for free for the supported Linux and
B S D p I a t f o r m s a ot
http://www.balabit.com/network-security/syslog-ng/opensoutce-logging-system /upgrades/ .

m For syslog-ng Open Source Edition packages for Solaris 8-10, visit http://www.sunfreeware.com/

m For syslogng Open Source Edition packages for IBM AIX 5 and later, visit
http:/ /www.perzl.org/aix/index.php?n=Main.Syslog-ng

m For syslog-ng Open Source Edition packages for HP-UX, visit
http:/ /hpux.connectorguk/hppd/ cgi-bin/searchPpackage=on&desctiption=on&term=syslog-ng&Search=Search

m Por syslog-ng Open Source Edition packages for Mac OS X, visit http://syslog-ng.darwinports.com/

m Packages for routers running OpenWRT or a similar embedded Linux distribution are available at
http://www.openwrt.org/

http://www.balabit.com/network-security/syslog-ng/opensource-logging-system/upgrades/#any
http://www.balabit.com/network-security/syslog-ng/opensource-logging-system/upgrades/
http://www.sunfreeware.com/
http://www.perzl.org/aix/index.php?n=Main.Syslog-ng
http://hpux.connect.org.uk/hppd/cgi-bin/search?package=on&description=on&term=syslog-ng&Search=Search
http://syslog-ng.darwinports.com/
http://www.openwrt.org/

The philosophy of syslog-ng

te}

Chapter 2. The concepts of syslog-ng

This chapter discusses the technical concepts of syslog-ng.
2.1. The philosophy of syslog-ng

Typically, syslog-ng is used to manage log messages and implement centralized logging, where the aim is to collect
the log messages of several devices on a single, central log server. The different devices — called syslog-ng clients
— all run syslog-ng, and collect the log messages from the various applications, files, and other sources. The clients
send all important log messages to the remote syslog-ng server, where the server sorts and stores them.

2.2. Logging with syslog-ng

The syslog-ng application reads incoming messages and forwards them to the selected destinations. The syslog-ng
application can receive messages from files, remote hosts, and other sozrces.

Log messages enter syslog-ng in one of the defined sources, and are sent to one or motre destinations.

Sources and destinations are independent objects; /og paths define what syslog-ng does with a message, connecting
the sources to the destinations. A log path consists of one or more sources and one or more destinations; messages
arriving to a source are sent to every destination listed in the log path. A log path defined in syslog-ng is called a
log statement.

Optionally, log paths can include fi/fers. Filters are rules that select only certain messages, for example, selecting only
messages sent by a specific application. If a log path includes filters, syslog-ng sends only the messages satisfying
the filter rules to the destinations set in the log path.

Other optional elements that can appear in log statements are parsers and rewriting rules. Parsers segment messages
into different fields to help processing the messages, while rewrite rules modify the messages by adding, replacing,
or removing parts of the messages.

The following procedure illustrates the route of a log message from its source on the syslog-ng client to its final
destination on the central syslog-ng server.

Logging with syslog-ng

Procedure 2.1. The route of a log message in syslog-ng

_________\

client host

application #1 application #2 application #3

\ network sources
& I

_k'

Log

messages
1 |
messages

Log paths

h—— :
f—' local
destinations

syslog-ng server

J_ v A A

etwork
logpaths | 4 filters | dfstina:ions

syslog-ng client

———————

Figure 2.1. The route of a log message
A device or application sends a log message to a source on the syslog-ng client. For example, an Apache web
server running on Linux enters a message into the /var/log/apache file.
The syslog-ng client running on the web server reads the message from its /var/log/apache source.
The syslog-ng client processes the first log statement that includes the /var/log/apache source.

The syslog-ng client performs optional operations (message filtering, parsing, and rewriting) on the message;
for example, it compares the message to the filters of the log statement (if any). If the message complies with
all filter rules, syslog-ng sends the message to the destinations set in the log statement, for example, to the
remote syslog-ng server.

Warning
Message filtering, parsing, and rewriting is performed in the order that the operations appear in the log statement.

=

Note

The syslog-ng client sends a message to @/ matching destinations by default. As a result, a message may be sent to a
destination more than once, if the destination is used in multiple log statements. To prevent such situations, use the
final flag in the destination statements. See Table 6.15, “Log statement flags” (p. 149) for details.

Embedded log statements *

5. The syslog-ng client processes the next log statement that includes the /var/log/apache soutce, repeating
Steps 3-4.

6. The message sent by the syslog-ng client arrives to a source set in the syslog-ng server.

7. The syslog-ng server reads the message from its source and processes the first log statement that includes that
source.

8. The syslog-ng server performs optional operations (message filtering, parsing, and rewriting) on the message;
for example, it compares the message to the filters of the log statement (if any). If the message complies with
all filter rules, syslog-ng sends the message to the destinations set in the log statement.

Warnin,
J g

Message filtering, parsing, and rewriting is performed in the order that the operations appear in the log statement.

9. The syslog-ng server processes the next log statement, repeating Steps 7-9.

Note

The syslog-ng application can stop reading messages from its sources if the destinations cannot process the sent messages.
This feature is called flow-control and is detailed in Section 2.12, “Managing incoming and outgoing messages with flow-
control” (p. 16).

2.2.1. Embedded log statements

Starting from version 3.0, syslog-ng can handle embedded log statements (also called log pipes). Embedded log
statements are useful for creating complex, multi-level log paths with several destinations and use filters, parsers,
and rewrite rules.

For example, if you want to filter your incoming messages based on the facility parameter, and then use further
filters to send messages arriving from different hosts to different destinations, you would use embedded log state-
ments.

Modes of operation *

LT [[| 2 destination (d1) J

i
/, 1

filter(f1 filter(f2
N source (s1) ——Ie—r(}——!--le-r(-}-p

destination (d2) J

Figure 2.2. Embedded log statement

Embedded log statements include sources — and usually filters, parsers, rewrite rules, or destinations — and other
log statements that can include filters, parsers, rewrite rules, and destinations. The following rules apply to embedded
log statements:

m Only the beginning (also called top-level) log statement can include sources.

m Embedded log statements can include multiple log statements on the same level (i.e., a top-level log
statement can include two or more log statements).

m Embedded log statements can include several levels of log statements (i.e., a top-level log statement can
include a log statement that includes another log statement, and so on).

m Only another log statement can follow an embedded log statement, filters or other rules cannot.

m Embedded log statements that are on the same level receive the same messages from the higher-level
log statement. For example, if the top-level log statement includes a filter, the lower-level log statements
receive only the messages that pass the filter.

Base log statement
A

log { source(sl)s filter(fl)3 destination(dl)s

log {filter(f2) destination(de)i I3

\j
Embedded log statement

Figure 2.3. Embedded log statements

Embedded log filters can be used to optimize the processing of log messages, for example, to re-use the results of
filtering and rewriting operations.

2.3. Modes of operation

The syslog-ng Open Source Edition application has three typical operation scenarios: Client, Server, and Relay.

Client mode *

2.3.1. Client mode

=0~ 3
A -Lb -----»m: d

syslog-ng client syslog-ng server

‘m (&

Figure 2.4. Client-mode operation

In client mode, syslog-ng collects the local logs generated by the host and forwards them through a network con-
nection to the central syslog-ng server or to a relay. Clients often also log the messages locally into files.

2.3.2. Relay mode

/ [{ > ([]-
 syslogng clent - --»@'_.."‘ e, -----»-._

L-g paths B g d';thathm
_—bw—r

syslog-ng relay syslog-ng server

Figure 2.5. Relay-mode operation

In relay mode, syslog-ng receives logs through the network from syslog-ng clients and forwards them to the central
syslog-ng server using a network connection. Relays also log the messages from the relay host into a local file, or
forward these messages to the central syslog-ng server.

Server mode *

2.3.3. Server mode

m

syslog-ng clients

1~

syslog-ng clients
‘/;.':-
' syslog-ng relays

(>

syslog-ng relays

(&

————-h ‘network sources |
- “local
Log paths _Llpl g dactinations

-
£
! applications

syslog-ng server

Figure 2.6. Server-mode operation

In server mode, syslog-ng acts as a central log-collecting server. It receives messages from syslog-ng clients and

relays over the network, and stores them locally in files, or passes them to other applications, e.g., log analyzers.

2.4. Global objects

The syslog-ng application uses the following objects:

m Source driver. A communication method used to receive log messages. For example, syslog-ng can receive

messages from a remote host via TCP/IP, or read the messages of a local application from a file.

m Source: A named collection of configured source drivers.

Destination driver: A communication method used to send log messages. For example, syslog-ng can send

messages to a remote host via TCP/IP, or write the messages into a file or database.

from a specific host.

Destination: A named collection of configured destination drivers.

Filter. An expression to select messages. For example, a simple filter can select the messages received

Macro: An identifier that refers to a part of the log message. For example, the SHOST macro returns the

name of the host that sent the message. Macros are often used in templates and filenames.

Parser: A rule that segments messages into separate columns at a predefined separator character (e.g, a

comma). Every column has a unique name that can be used as a macro.

Timezone handling *

m Rewrite rule: A rule modifies a part of the message, for example, replaces a string, or sets a field to a spe-
cified value.

B [gg paths: A combination of sources, destinations, and other objects like filters, parsers, and rewrite rules.
The syslog-ng application sends messages arriving to the sources of the log paths to the defined destin-
ations, and performs filtering, parsing, and rewriting of the messages. Log paths are also called log
statements. Log statements can include other (embedded) log statements to create complex log paths.

B Template: A template is a set of macros that can be used to restructure log messages or automatically
generate file names. For example, a template can add the hostname and the date to the beginning of
every log message.

m Option: Options set global parameters of syslog-ng, like the parameters of name resolution and timezone
handling.

For details on the above objects, see Section 4.2, “Defining global objects” (p. 41).
2.5. Timezone handling

The syslog-ng application supports messages originating from different timezones. The original syslog protocol
does not include timezone information, but syslog-ng provides a solution by extending the syslog protocol to include
the timezone in the log messages. The syslog-ng application also enables administrators to supply timezone inform-
ation for legacy devices which do not support the protocol extension.

Timezone information is associated with messages entering syslog-ng is selected using the following algorithm:

1. The sender application (e.g;, the syslog-ng client) or host specifies the timezone of the messages. If the incoming
message includes a timezone it is associated with the message. Otherwise, the local timezone is assumed.

2. Specify the _time zone ()_parameter for the source driver that reads the message. This parameter overrides

the original timezone of the message. Each source defaults to the value of the _recv time zone ()
global option.

3. Specify the timezone in the destination driver using the _time zone ()_parameter. Each destination driver

might have an associated timezone value; syslog-ng converts message timestamps to this timezone before
sending the message to its destination (file or network socket). Each destination defaults to the value of the
send time zone ()_global option.

Note
A message can be sent to multiple destination zones. The syslog-ng application converts the timezone information
properly for every individual destination zone.

>

If the timezone is not specified, the message is left unchanged.

w

When macro expansions are used in the destination filenames, the local timezone is used.

Daylight saving changes

2.6. Daylight saving changes

The syslog-ng application receives the timezone and daylight saving information from the operating system it is
installed on. If the operating system handles daylight saving correctly, so does syslog-ng,

2.7. Secure logging using TLS

The syslog-ng application can send and receive log messages securely over the network using the Transport Layer
Secutity (TLS) protocol. TLS is an enctryption protocol over the TCP/IP network protocol, so it can be used only
with TCP-based sources and destinations (tcp () and tcp6 ()).

TLS uses certificates to authenticate and encrypt the communication, as illustrated on the following figure:

1. THE CLIENT CONNECTS TO THE SERVER

CLIENT L —_—— SERVER

2. THE SERVER SEMDS THE et SERVER
\:ﬁt gngtTIFIGATE o L1 ! ! 1 [| 1 |] \E@“ CERTIFICATE
— SERVER CERTIFICATE ~—" Issued by CA2
3. THE CLIENT VERIFIES THE SERVER
CERTIFICATE USING THE CA2 CERIFICATE
=5 | CLIENT 4. THE CLIENT SENDS THE =\ CAf
% CERTIFICATE S S S S S S S — — - \é CERTIFICATE
" Issued by CA1 CLIENT CERTIFICATE TO THE SERVER et

5. THE SERVER VERIFIES THE CLIENT
CERTIFICATE USING THE CA1 CERTIFICATE

Figure 2.7. Certificate-based anthentication

The client authenticates the server by requesting its certificate and public key. Optionally, the server can also request
a certificate from the client, thus mutual authentication is also possible.

In order to use TLS encryption in syslog-ng, the following elements are required:

m A certificate on the syslog-ng server that identifies the syslog-ng server.

m The certificate of the Certificate Authority that issued the certificate of the syslog-ng server must be
available on the syslog-ng client.

When using mutual authentication to verify the identity of the clients, the following elements are required:

m A certificate must be available on the syslog-ng client. This certificate identifies the syslog-ng client.

m The certificate of the Certificate Authority that issued the certificate of the syslog-ng client must be
available on the syslog-ng server.

Mutual authentication ensures that the syslog-ng server accepts log messages only from authorized clients.

See Section 4.12, “Encrypting log messages with TLS” (p. 76) for details on configuring TLS communication in
syslog-ng.

Formatting messages, filenames, directories, and tablenames

2.8. Formatting messages, filenames, directories, and tablenames

The syslog-ng application can dynamically create filenames, directories, or names of database tables using macros
that help you organize your log messages. Macros refer to a property or a part of the log message, for example, the
SHOST macro refers to the name or IP address of the client that sent the log message, while SDAY is the day of
the month when syslog-ng has received the message. Using these macros in the path of the destination log files allows
you for example to collect the logs of every host into separate files for every day.

A set of macros can be defined as a template object and used in multiple destinations.

Another use of macros and templates is to customize the format of the syslog message, for example to add elements
of the message header to the message text. Note that if a message uses the IETF-syslog format, only the text of
the message can be customized, the structure of the header is fixed.

For details on using templates and macros, see Section 4.7, “Templates and macros” (p. 69) and Section 0.5,
“Macros” (p. 153).

2.9. Segmenting messages

The filters and default macros of syslog-ng work well on the headers and metainformation of the log messages, but
are rather limited when processing the content of the messages. Parsers can segment the content of the messages
into name-value pairs, and these names can be used as user-defined macros. Subsequent filtering or other type of
processing of the message can use these custom macros to refer to parts of the message.

Parsers are global objects most often used together with filters and rewrite rules. For details on using parsers, see
Section 4.8, “Parsing messages” (p. 70) and Section 6.6, “Message parsers” (p. 150).

2.10. Modifying messages

The syslog-ng application can rewrite parts of the messages using rewrite rules. Rewrite rules are global objects
similar to parsers and filters and can be used in log paths. The syslog-ng application has two methods to rewrite
parts of the log messages: replacing (setting) a part of the message to a fix value, and a general search-and-replace
mode.

Substitution completely replaces a specific part of the message that is referenced using a built-in or user-defined
macto.

General rewriting searches for a string in the entire message (or only a part of the message specified by a macro)
and replaces it with another string, Optionally, this replacement string can be a template that contains macros.

For details on using rewrite rules, see Section 4.10, “Rewriting messages” (p. 75) and Section 6.7, “Rewriting
messages” (p. 167).

2.11. Classifying log messages

The syslog-ng application can compare the contents of the received log messages to predefined message patterns.
By comparing the messages to the known patterns, syslog-ng is able to identify the exact type of the messages, and

The structure of the pattern database *

sort them into message classes. The message classes can be used to classify the type of the event described in the
log message. The message classes can be customized, and for example can label the messages as user login, applic-
ation crash, file transfer, etc. events.

To find the pattern that matches a particular message, syslog-ng uses a method called longest prefix match radix
tree. This means that syslog-ng creates a tree structure of the available patterns, where the different characters
available in the patterns for a given position are the branches of the tree.

To classity a message, syslog-ng selects the first character of the message (the text of message, not the header), and
selects the patterns starting with this character, other patterns are ignored for the rest of the process. After that,
the second character of the message is compared to the second character of the selected patterns. Again, matching
patterns are selected, and the others discarded. This process is repeated until a single pattern completely matches
the message, or no match is found. In the latter case, the message is classified as unknown, otherwise the class of
the matching pattern is assigned to the message.

To make the message classification more flexible and robust, the patterns can contain pattern patsers: elements
that match on a set of characters. For example, the NUMBER parser matches on any integer numbers (e.g., 1, 123,
894054, etc.). Other pattern parsers match on various strings and IP addresses. For the details of available pattern
parsers, see Section 2.11.3, “Artificial ignorance” (p. 15).

The functionality of the pattern database is similar to that of the logcheck project, but it is much easier to write and
maintain the patterns used by syslog-ng, than the regular expressions used by logcheck. Also, it is much easier to
understand syslog-ng pattens than regular expressions.

Pattern matching based on regular expressions is computationally very intensive, especially when the number of
patterns increases. The solution used by syslog-ng can be performed real-time, and is independent from the number
of patterns, so it scales much better. The following patterns describe the same message: Accepted password
for bazsi from 10.50.0.247 port 42156 sshZ2

A regular expression matching this message from the logcheck projectt Accepted \
(gssapi (—-with-mic| -keyex) ?| rsa|dsalpassword| publickey| keyboard-interactive/pam)
\ for ["[:space:]]+ from ["[:space:]]+ port [0-9]+((sshl|ssh2))?

A syslog-ng database pattern for this message: Accepted @QSTRING:auth method: (@
for@QSTRING:username: @from\ (@QSTRING:client addr: @port @NUMBER:port:@
ssh2

For details on using pattern databases to classify log messages, see Section 4.9, “Classifying messages” (p. 72) and
Section 6.6.2, “Pattern databases™ (p. 160).

2.11.1. The structure of the pattern database

The pattern database is organized as follows:

The structure of the pattern database *

Pattern database

(s

GUREEEEAE] Program pattern <=

|- Rule 1: Message pattern Class Tags
! Rule 2: Message pattern Class Tags
1
1

Rule n: Message pattern Class Tags

Ruleset n

Figure 2.8. The structure of the pattern database

m The pattern database consists of rulesets. A ruleset consists of a Program Pattern and a set of rules: the
rules of a ruleset are applied to log messages if the name of the application that sent the message matches
the Program Pattern of the ruleset. The name of the application (the content of the PROGRAM macro)
is compared to the Program Patterns of the available rulesets, and then the rules of the matching rulesets
are applied to the message.

m The Program Pattern can be a string that specifies the name of the appliation or the beginning of its
name (e.g, to match for sendmail, the program pattern can be sendmail, or just send), and the Program
Pattern can contain pattern parsers. Note that pattern parsers are completely independent from the
syslog-ng parsers used to segment messages. Additionally, every rule has a unique identifier: if a message
matches a rule, the identifier of the rule is stored together with the message.

m Rules consist of a message pattern and a class. The Message Pattern is similar to the Program Pattern,
but is applied to the message part of the log message (the content of the $MESSAGE macro). If a
message pattern matches the message, the class of the rule is assigned to the message (e.g., Security, Vi-
olation, etc.).

m Rules can also contain additional information about the matching messages, such as the description of
the rule, an URL, or free-form tags.

m Patterns can consist of literals (keywords, or rather, keycharacters) and pattern parsers.

Note
If the PROGRAM part of a message is empty, rules with an empty Program Pattern are used to classify the
message.

If the same Program Pattern is used in multiple rulesets, the rules of these rulesets are merged, and every rule
is used to classify the message. Note that message patterns must be unique within the merged rulesets, but the
currently only one ruleset is checked for uniqueness.

How pattern matching works

2.11.2. How pattern matching works

A sample log message:

<1L33>Feb 25 14:09:07 webserver syslogd: restart-

v v
Program pattern Message pattern

Figure 2.9. Applying patterns

The followings describe how patterns work. This information applies to program patterns and message patterns
alike, even though message patterns are used to illustrate the procedure.

Patterns can consist of literals (keywords, or rather, keycharacters) and pattern parsers. Pattern parsers attempt to
parse a sequence of characters according to certain rules.

Note
Wildcards and regular expressions cannot be used in patterns. The @ character must be escaped, i.e., to match for this character,
you have to write @@ in your pattern. This is required because pattern parsers of syslog-ng are enclosed between @ characters.

When a new message arrives, syslog-ng attempts to classify it using the pattern database. The available patterns are
organized alphabetically into a tree, and syslog-ng inspects the message character-by-character, starting from the
beginning. This approach ensures that only a small subset of the rules must be evaluated at any given step, resulting
in high processing speed. Note that the speed of classifying messages is practically independent from the total
number of rules.

For example, if the message begins with the App1e string, only patterns beginning with the character A are con-
sidered. In the next step, syslog-ng selects the patterns that start with Ap, and so on, until there is no more specific
pattern left.

Note that literal matches take precedence over pattern parser matches: if at a step there is a pattern that matches
the next character with a literal, and another pattern that would match it with a parser, the pattern with the literal
match is selected. Using the previous example, if at the third step there is the literal pattern Apport and a pattern
parser AD@STRINGGE, the Apport pattern is matched, even if the pattern parser would result in a better match.

If there are two parsers at the same level (e.g,, Ap@STRINGE and Ap@QSTRING@), it is random which pattern
is applied (technically, the one that is loaded first). However, if the selected parser cannot parse at least oe character
of the message, the other parser is used. But having two different parsers at the same level is extremely rare, so the
impact of this limitation is much less than it appears.

2.11.3. Artificial ignorance

Artificial ignorance is a method to detect anomalies. When applied to log analysis, it means that you ignore the
regular, common log messages - these are the result of the regular behavior of your system, and therefore are not
too interesting. However, new messages that have not appeared in the logs before can sign important events, and
should be therefore investigated. "By definition, something we have never seen before is anomalous" (Marcus J.
Ranum).

Managing incoming and outgoing messages with flow-control

The syslog-ng application can classify messages using a pattern database: messages that do not match any pattern
are classified as unknown. This provides a way to use artificial ignorance to review your log messages. You can
periodically review the unknown messages — syslog-ng can send them to a separate destination - and add patterns
for them to the pattern database. By reviewing an manually classifying the unknown messages, you can iteratively
classify more and more messages, until the only the really anomalous messages show up as unknown.

Obviously, for this to work, a large number of message patterns are required. The radix-tree matching method used
for message classification is very effective, can be performed very fast, and scales very well; basically the time required
to perform a pattern matching is independent from the number of patterns in the database.

To simplify the building of pattern databases, BalaBit has released (and will continue to release) sample databases.
Currently the following pattern databases are available at the BalaBit Download page
http://www.balabit.com/network-security/syslog-ng/log-server-appliance/:

m a database for the log messages of Cisco PIX firewalls;

m the database of the Logcheck project (http://logcheck.org/) containing message patterns for a large
number of open source applications;

m a database for the log messages of the Zorp Application Level Gateway
(http:/ /www.balabit.com/network-security/zorp-gateway/) (developed by BalaBit I'T Security).

2.12. Managing incoming and outgoing messages with flow-control

This section describes the internal message-processing model of syslog-ng, as well as the flow-control feature that
can prevent message losses. To use flow-control, the f1ow-control flag must be enabled for the particular log
path.

The syslog-ng application monitors (polls) the sources defined in its configuration file, periodically checking each
source for messages. When a log message is found in one of the sources, syslog-ng polls every source and reads
the available messages. These messages are processed and put into the output buffer of syslog-ng (also called fifo).
From the output buffer, the operating system sends the messages to the appropriate destinations.

In large-traffic environments many messages can arrive during a single poll loop, therefore syslog-ng reads only a
fixed number of messages from each source. The Jog fetch 1imit () option specifies the number of messages
read during a poll loop from a single source.

http://www.balabit.com/network-security/syslog-ng/log-server-appliance/
http://logcheck.org/
http://www.balabit.com/network-security/zorp-gateway/

Managing incoming and outgoing messages with flow-control

messages read: U

: . log_fetch_limit() .
incoming S
messages @ > source #1 Ly | " output buffer

3 log_fifo_size()
nations [~ "= &

e
[I N T
messages @ messages read: > outgoing

“ log_fetch_limit() messages

syslog-ng

Figure 2.10. Managing log messages in syslog-ng

Note
The 1og fetch limit () parameter can be set as a global option, or for every source individually.

Every destination has its own output buffer. The output buffer is needed because the destination might not be able
to accept all messages immediately. The 1og fifo size () parameter sets the size of the output buffer. The
output buffer must be larger than the Jog fetch 1imit () of the sources, to ensure that every message read
during the poll loop fits into the output buffer. If the log path sends messages to a destination from multiple sources,
the output buffer must be large enough to store the incoming messages of every source.

TCP and unix-stream sources can receive the logs from several incoming connections (e.g., many different clients
or applications). For such sources, syslog-ng reads messages from every connection, thus the
log fetch limit () parameter applies individually to every connection of the source.

" \‘l messages r\ead.'_ @

|r|cum|ng I log_fetch_limit{) i

messages @ [g - output buffer
- " message log_fifo_sizef)

I unix-stream --P - destinations I S —— .
incoming I > source)/
messages J | messages read: outgoing

* | log_fetoh_iimit(| messages
syslog-n
max_connections() Yy g-ng

Figure 2.11. Managing log messages of TCP sources in syslog-ng

The flow-control of syslog-ng introduces a control window to the source that tracks how many messages can syslog-
ng accept from the source. Every message that syslog-ng reads from the source lowers the window size by one;
every message that syslog-ng successfully sends from the output buffer increases the window size by one. If the
window is full (i.e., its size decreases to zero), syslog-ng stops reading messages from the source. The initial size of
the control window is by default 100: the Iog fifo size () mustbe larger than this value in order for flow-
control to have any effect. If a source accepts messages from multiple connections, all messages use the same
control window.

When flow-control is used, every source has its own control window. As a worst-case situation, the output buffer
of the destination must be set to accommodate all messages of every control window, that is, the
log fifo size () of the destination must be greater than number of sources*log iw size().
This applies to every source that sends logs to the particular destination. Thus if two sources having several connec-

Flow-control and multiple destinations *

tions and heavy traffic send logs to the same destination, the control window of both sources must fit into the
output buffer of the destination. Otherwise, syslog-ng does not activate the flow-control, and messages may be

lost.

The syslog-ng application handles outgoing messages the following way:

syslog-ng core

If the output qleuels full
and diskbuffet's ellabled
I -

If the diskbuff% is full
or disabled

1 — —

Remote server

—
Output queue
- Max 64 messages

Diskbuffer
- log_disk_fifo_size
- Global

Overflow queue
- log_fifo_size
- Destination-specific

Figure 2.12. Handling outgoing messages in syslog-ng PE

m Output quene: Messages from the output queue are sent to the target syslog-ng server. The syslog-ng ap-
plication puts the outgoing messages directly into the output queue, unless the output queue is full. The
output queue can hold 64 messages, this is a fixed value and cannot be modified.

m Disk buffer: If the output queue is full and disk-buffering is enabled, syslog-ng Premium Edition puts the
outgoing messages into the disk buffer of the destination.

m Overflow guene: 1f the output queue is full and the disk buffer is disabled or full, syslog-ng puts the outgoing
messages into the overflow queue of the destination. (The overflow queue is identical to the output
buffer used by other destinations.)) The 1og fifo size () parameter specifies the number of
messages stored in the overflow queue. See also Section 2.12, “Managing incoming and outgoing messages
with flow-control” (p. 16) for details on sizing the Iog fifo size () parameter.

2.12.1. Flow-control and multiple destinations

Using flow-control on a source has an important side-effect if the messages of the source are sent to multiple des-

tinations. If flow-control is in use and one of the destinations cannot accept the messages, the other destinations

do not receive any messages either, because syslog-ng stops reading the source. For example, if messages from a

source are sent to a remote server and also stored locally in a file, and the network connection to the server becomes

unavailable, neither the remote server nor the local file will receive any messages.

High availability support

Note
Creating separate log paths for the destinations that use the same flow-controlled source does not avoid the problem.

2.13. High availability support

Multiple syslog-ng servers can be run in fail-over mode. The syslog-ng application does not include any internal
support for this, as clustering support must be implemented on the operating system level. A tool that can be used
to create UNIX clusters is Heartbeat (see http://wwwlinux-ha.org/ for details).

2.14. Possible causes of losing log messages

During the course of a message from the sending application to the final destination of the message, there are a
number of locations where a message may be lost, even though syslog-ng does its best to avoid message loss.
Usually losing messages can be avoided with careful planning and proper configuration of syslog-ng and the hosts
running syslog-ng. The following list shows the possible locations where messages may be lost, and provides
methods to minimize the risk of losing messages.

p Note
/ The following list covers the main possibilities of losing messages, but does not take into account the possible use of flow-
'S control (see Section 2.12, “Managing incoming and outgoing messages with flow-control” (p. 16)). This topic will be addressed
in more detail in the future releases of this guide.

W Between the application and the syslog-ng client. Make sure to use an appropriate soutrce to receive the logs
from the application (e.g, from /dev/log). For example, use unix-stream instead of
unix-dgram whenever possible.

m When syslog-ng is sending messages: 1f syslog-ng cannot send messages to the destination and the output
buffer gets full, syslog-ng will drop messages. The number of dropped messages is displayed per destin-
ation in the log message statistics of syslog-ng (see Section 4.3.1.1, “Log statistics” (p. 45) for details).

m On the network: When transferring messages using the UDP protocol, messages may be lost without any
notice or feedback — such is the nature of the UDP protocol. Always use the TCP protocol to transfer
messages over the network whenever possible.

W [the socket receive buffer: When transferring messages using the UDP protocol, the UDP datagram (i.e.,
the message) that reaches the receiving host placed in a memory atea called the socket receive
buffer. If the host receives more messages than it can process, this area overflows, and the kernel
drops messages without letting syslog-ng know about it. Using TCP instead of UDP prevents this issue.
If you must use the UDP protocol, increase the size of the receive buffer using the so_rcvbuf ()
option.

m When syslog-ng is receiving messages: The receiving syslog-ng (e.g., the syslog-ng server or relay) may drop
messages if the fifo of the destination file gets full. The number of dropped messages is displayed per

destination in the log message statistics of syslog-ng (see Section 4.3.1.1, “Log statistics” (p. 45) for
details).

http://www.linux-ha.org/

The structure of a log message *

w When the destination cannot handle large load: When syslog-ng is sending messages at a high rate into an SQL
database, a file, or another destination, it is possible that the destination cannot handle the load, and
processes the messages slowly. As a result, the buffers of syslog-ng fill up, syslog-ng cannot process the
incoming messages, and starts to loose messages. See the previous entry for details. Use the throttle
parameter to avoid this problem.

W As a result of an unclean shutdown of the syslog-ng server. 1f the host running the syslog-ng server experiences
an unclean shutdown, it takes time until the clients realize that the connection to the syslog-ng server is
down. Messages that are put into the output TCP buffer of the clients during this period are not sent
to the server.

2.15. The structure of a log message

The following sections describe the structure of log messages. Currently there are two standard syslog message
formats:

m The old standard described in RFC 3164 (also called the BSD-syslog or the legacy-syslog protocol): see
Section 2.15.1, “BSD-syslog or legacy-syslog messages” (p. 20)

m The new standard described in RFC 5424 (also called the IETF-syslog protocol): see Section 2.15.2,
“IETF-syslog messages” (p. 22)

2.15.1. BSD-syslog or legacy-syslog messages

This section describes the format of a syslog message, according to the legacy-syslog or BSD-syslog protocol (see
RFC 3164 http:/ /www.ictf.org/rfc/rfc3164.txt). A syslog message consists of the following parts:

m PRI
m HEADER
m MSG
The total message cannot be longer than 1024 bytes.
The following is a sample syslog message: <I133>Feb 25 14:09:07 webserver syslogd: restart.

The message corresponds to the following format: <priority>timestamp hostname application:
message. The different parts of the message are explained in the following sections.

p Note
u E The syslog-ng application supports longer messages as well. For details, see the Iog msg size () option in Section 6.9,

“Global options” (p. 169). However, it is not recommended to enable messages larger than the packet size when using UDP
destinations.

2.15.1.1. The PRI message part

The PRI part of the syslog message (known as Priority value) represents the Facility and Severity of the message.
Facility represents the part of the system sending the message, while severity marks its importance. The Priority
value is calculated by first multiplying the Facility number by 8 and then adding the numerical value of the Severity.
The possible facility and severity values are presented below.

http://www.ietf.org/rfc/rfc3164.txt

BSD-syslog or legacy-syslog messages

Note
Facility codes may slightly vary between different platforms. The syslog-ng application accepts facility codes as numerical
values as well.

Numerical Code |Facility

kernel messages

user-level messages

mail system

system daemons

security/authorization messages

messages generated internally by syslogd

line printer subsystem

network news subsystem

UUCP subsystem

O 0| | | U] | L N —~] O

clock daemon

—
o

security/authorization messages
FTP daemon
NTP subsystem

—_
—_

—
\S}

—_
(O]

log audit

—_
o~

log alert

—_
ul

clock daemon

16-23 locally used facilities (local0-local7)

Table 2.1. syslog Message Facilities

The following table lists the severity values.

IETF-syslog messages

Numerical Code [Severity

Emergency: system is unusable

Alert: action must be taken immediately

Critical: critical conditions

Error: error conditions

Warning: warning conditions

Notice: normal but significant condition

Informational: informational messages

~N| | U] | V| DN~ O

Debug: debug-level messages

Table 2.2. syslog Message Severities
2.15.1.2. The HEADER message part

The HEADER part contains a timestamp and the hostname (without the domain name) or the IP address of the
device. The timestamp field is the local time in the Mmm dd hh:mm:ss format, where:

m Mmm is the English abbreviation of the month: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov,
Dec.

W Jdis the day of the month on two digits. If the day of the month is less than 10, the first digit is replaced
with a space. (E.g.,, Aug 7.)

W)h:mmess is the local time. The hour (hh) is represented in a 24-hour format. Valid entries are between
00 and 23, inclusive. The minute (mm) and second (ss) entries are between 00 and 59 inclusive.

p Note
/ The syslog-ng application supports other timestamp formats as well, like ISO, or the PIX extended format. For details, see
S the ts_format () option in Section 6.9, “Global options” (p. 169).

2.15.1.3. The MSG message part

The MSG part contains the name of the program or process that generated the message, and the text of the message
itself. The MSG part is usually in the following format: program[pid] : message text.

2.15.2. IETF-syslog messages

This section describes the format of a syslog message, according to the IETF-syslog protocol (see REC 5424-5428
http://tools.ietf.org/html/rfc5424).A syslog message consists of the following parts:

B HEADER (includes the PRI as well)
m STRUCTURED-DATA

m MSG

http://tools.ietf.org/html/rfc5424

IETF-syslog messages

The following is a sample syslog message:l

<34>1 2003-10-11T22:14:15.003Z mymachine.example.com su - ID47 - BOM'su
root' failed for lonvick on /dev/pts/S8

The message corresponds to the following format:

<priority>VERSION ISOTIMESTAMP HOSTNAME APPLICATION PID MESSAGEID
STRUCTURED-DATA MSG

In this example, the Facility has the value of 4, severity is 2, so PRI is 34. The VERSION is 1. The message was
created on 11 October 2003 at 10:14:15pm UTC, 3 milliseconds into the next second. The message originated from
a host that identifies itself as "mymachine.example.com". The APP-NAME is "su" and the PROCID is unknown.
The MSGID is "ID47". The MSG is "'su root' failed for lonvick...", encoded in UTF-8. The encoding is defined
by the BOM. There is no STRUCTURED-DATA present in the message, this is indicated by "-" in the STRUC-
TURED-DATA field. The MSG is "'su root' failed for lonvick...".

The HEADER part of the message must be in plain ASCII format, the parameter values of the STRUCTURED-
DATA part must be in UTF-8, while the MSG part should be in UTF-8. The different parts of the message are
explained in the following sections.

2.15.2.1. The PRI message part

The PRI part of the syslog message (known as Priority value) represents the Facility and Severity of the message.
Facility represents the part of the system sending the message, while severity marks its importance. The Priority
value is calculated by first multiplying the Facility number by 8 and then adding the numerical value of the Severity.
The possible facility and severity values are presented below.

p Note
/ Facility codes may slightly vary between different platforms. The syslog-ng application accepts facility codes as numerical
& values as well.

1Source: http://tools.ietf.org/html/rfc5424

IETF-syslog messages

Numerical Code

Facility

kernel messages

user-level messages

mail system

system daemons

security/authorization messages

messages generated internally by syslogd

line printer subsystem

network news subsystem

UUCP subsystem

O 0| | | U]]| QL N —~] O

clock daemon

—
(e

security/authorization messages

—_
—_

FTP daemon

—
\S}

NTP subsystem

—
(O]

log audit

—_
o

log alert

—_
ul

clock daemon

16-23

locally used facilities (local0-local7)

The following table lists the severity values.

Numerical Code

Severity

Emergency: system is unusable

Alert: action must be taken immediately

Critical: critical conditions

Ertror: error conditions

Warning: warning conditions

Notice: normal but significant condition

Informational: informational messages

~N| | | | W] DD~ O

Debug: debug-level messages

2.15.2.2. The HEADER message part

The HEADER part contains the following elements:

Table 2.3. syslog Message Facilities

Table 2.4. syslog Message Severities

m ["ERSION: Version number of the syslog protocol standard. Currently this can only be I.

IETF-syslog messages

m [SOTIMESTAMP: The time when the message was generated in the ISO 8601 compatible standard
timestamp format (yyyy-mm-ddThh:mm:ss+-ZONE), e.g: 2006-06-13T15:58:00.123+01: 00.

m HOSTNAME: The machine that originally sent the message.
m _APPLICATION: The device or application that generated the message

m PID: The process name or process ID of the syslog application that sent the message. It is not necessarily
the process ID of the application that generated the message.

B MESSAGEID: The ID number of the message.

Note
'/ The syslog-ng application supports other timestamp formats as well, like ISO, or the PIX extended format. The timestamp
6 used in the IETF-syslog protocol is derived from RFC3339, which is based on ISO8601. For details, see the ts format ()

option in Section 6.9, “Global options” (p. 169).

2.15.2.3. The STRUCTURED-DATA message part

The STRUCTURED-DATA message part may contain meta- information about the syslog message, or application-
specific information such as traffic counters or IP addresses. STRUCTURED-DATA consists of data blocks enclosed
in brackets ([]). Every block include the ID of the block, and one or more name=value pairs. The syslog-ng
application automatically parses the STRUCTURED-DATA part of syslog messages, which can be referenced in
macros (see Section 6.5, “Macros” (p. 153) for details). An example STRUCTURED-DATA block looks like:

[exampleSDID@O iut="3" eventSource="Application"
eventID="1011"] [examplePriority@0 class="high"]

2.15.2.4. The MSG message part

The MSG part contains the text of the message itself. The encoding of the text must be UTF-8 if the BOM character
is present in the message. If the message does not contain the BOM character, the encoding is treated as unknown.
Usually messages arriving from legacy sources do not include the BOM character.

Installing syslog-ng using the .run installer

Chapter 3. Installing syslog-ng

This chapter explains how to install syslog-ng Open Source Edition on various platforms using the precompiled
binary files.

Version 3.0 of syslog-ng features a unified installer package with identical look on every supported Linux platform.

Note
For instructions on compiling syslog-ng Open Source Edition from the source code, see Section 3.4, “Compiling syslog-ng
from source” (p. 34).

As of syslog-ng Open Source Edition 3.0.2, binary installation packages of syslog-ng OSE are available for free for the sup-
ported Linux and BSD platforms.

Third-party packages available for varioous other platforms are listed in Section 1.6, “Supported platforms” (p. 3).

The syslog-ng binaries include all required libraries and dependencies of syslog-ng, The components are installed
into the /opt/syslog—ng directory. It can automatically re-use existing configuration files, and also generate
a simple configuration automatically into the /opt/syslog-ng/etc/syslog-ng.conf file.

Note

There are two versions of every binary release. The one with the c1ient suffix does not include the libraries required to
log into SQL databases. If you are installing syslog-ng in client or relay mode, or you do not use the sq1 () destination, use
these binaries. That way no unnecessary components are installed to your system.

The syslog-ng application can be installed interactively following the on-screen instructions as described in Section 3.1,
“Installing syslog-ng using the .run installer” (p. 26), and also without user interaction using the silent installation
option — see Section 3.1.3, “Installing syslog-ng without user-interaction” (p. 32).

3.1. Installing syslog-ng using the .run installer

This section describes how to install the syslog-ng application interactively using the binary installer. The installer
has a simple interface: use the TAB or the arrow keys of your keyboard to navigate between the options, and Enter
to select an option.

m To install syslog-ng on clients or relays, complete Section 3.1.1, “Installing syslog-ng in client or relay
mode” (p. 27).

m To install syslog-ng on your central logserver, complete Section 3.1.2, “Installing syslog-ng in server

mode” (p. 29).

m To install syslog-ng without any user-interaction, complete Section 3.1.3, “Installing syslog-ng without
user-interaction” (p. 32).

Installing syslog-ng in client or relay mode

Note
'/ The installer stops the running syslogd application if it is running, but its components are not removed. The
E /etc/init.d/sysklogdinitscriptis automatically renamed to /etc/init.d/sysklogd.backup. Rename this
file to its original name if you want to remove syslog-ng or restart the syslogd package.

3.1.1. Installing syslog-ng in client or relay mode

Complete the following steps to install syslog-ng Open Source Edition on clients or relays. See Section 2.3, “Modes
of operation” (p. 7) for details on the different operation modes of syslog-ng;

Procedure 3.1. Installing syslog-ng in client or relay mode

1. Login to your MyBalabit account (http://www.balabit.com/mybalabit) and download the syslog-ng installer
package.

2. Enable the executable attribute for the installer using the chmod +x
syslog-ng-<edition>-<version>-<OS>-<platform>.run, then start the installer as root using the
./syslog-ng-<edition>-<version>-<OS>-<platform>.run command. (Note that the exact name of the
tile depends on the operating system and platform.) Wait until the package is uncompressed and the welcome
screen appears, then select Continue.

Helcose to the syslogng installer!

This setup progran will install syslog-ng Preniun Edition under the fopt/suslogng directory.
Your current logging application (syslogd. or a previously installed syslog—ng) will be disabled.
neaning that it will be stopped and renoved from the init sustem.

The installer automatically creates backups of files it removes or modifies into the original
directory of the file.

If you will run this syslog-ng installation in server mode, prepare your license file now.
because it will be needed during the installation.

[Gont inue)] < Exit >

Figure 3.1. The welcome screen

3. Accepting the EULA: You can install syslog-ng only if you understand and accept the terms of the End-User
License Agreement (EULA). The full text of the EULA can be displayed during installation by selecting the
Show EULA option, and is also available in this guide for convenience at Appendix 2, GNU General Public
License (p. 195). Select Accept to accept the EULA and continue the installation.

If you do not accept the terms of the EULA for some reason, select Reject to cancel installing syslog-ng.

4. Detecting platform and operating systemr: The installer attempts to automatically detect your oprating system and
platform. If the displayed information is correct, select Yes. Otherwise select Exit to abort the installation,
and verify that your platform is supported. See Section 1.6, “Supported platforms” (p. 3) for a list of supported
platforms. If your platform is supported but not detected correctly, contact your local distributor, reseller, or
the BalaBit Support Team. See Section 5, “Contact and support information” (p. xii) for contact details.

http://www.balabit.com/mybalabit

Installing syslog-ng in client or relay mode

Information
The installer detected the following parameters about your suystem:

Architecture : xB6
Distribution : Linux
05 Version : 2.6.24-19—generic

Is this information correct?

< Exit >

Figure 3.2. Platform detection

5. Upgrading. The syslog-ng installer can automatically detect if you have previously installed a version of syslog-
ng on your system. To use the configuration file of this previous installation, select Yes. To ignore the old
configuration file and create a new one, select No.

Note that if you decide to use your existing configuration file, the installer automatically checks it for syntax
error and displays a list of warnings and errors if it finds any problems.

Upgrade
The installer has detected a configuration file from a previows syslog—ng installation.
Do you want to use the old configuration file?

If you choose Ho, the installation program will generate a fresh configuration file for you.

Figure 3.3. Upgrading syslog-ng

6. Generating a new configuration file: The installer displays some questions to generate a new configuration file.

a. Remote sources: Select Yes to accept log messages from the network. TCP, UDP, and SYSLOG
messages on every interface will be automatically accepted.

Remote smerce
The installer will now generate a simple configuration file for
syslog—ng.

Do you want to receive log messages from the network?

< [Vps < NHo >

Figure 3.4. Accepting remote messages

b. Remote destinations: Enter the IP address or hostname of your logserver or relay and select OK.

Installing syslog-ng in server mode

Remote destination
To forward your log messages to a remote server, enter the
address of the server and select OK.
Otherwise, select Skip.

lia.EB.B.iBB

< Skip >

Figure 3.5. Forwarding messages to the logserver

Note
Accepting remote messages and forwarding them to a logserver means that syslog-ng will start in relay mode.

7. After the installation is finished, add the /opt/syslog-ng/binand /opt/syslog-ng/sbin ditect-
ories to your search PATH environment variable. That way you can use syslog-ng and its related tools without
having to specity the full pathname. Add the following line to your shell profile:

PATH=/opt/syslog-ng/bin:$PATH

Note

The native logrotation tools do not send a SIGHUP to syslog-ng after rotating the log files, causing syslog-ng to write into
files already rotated. To solve this problem, the syslog-ng init script links the /var/run/syslog.pid file to syslog-ng's
pid. Also, on Linux, the install. sh script symlinks the initsctipt of the original syslog daemon to syslog-ng's initscript.

3.1.2. Installing syslog-ng in server mode

Complete the following steps to install syslog-ng on logservers. See Section 2.3, “Modes of operation” (p. 7) for
details on the different operation modes of syslog-ng.

Procedure 3.2. Installing syslog-ng in server mode

1. Enable the executable attribute for the installer wusing the chmod +x
syslog-ng-<edition>-<version>-<OS>-<platform>.run, then start the installer as root using the
./syslog-ng-<edition>-<version>-<OS>-<platform>.run command. (Note that the exact name of the
file depends on the operating system and platform.) Wait until the package is uncompressed and the welcome
screen appears, then select Continue.

Installing syslog-ng in server mode

Helcome!
Helcose to the syslogng installer!
This setup progran will install syslog-ng Preniun Edition under the fopt/suslogng directory.
Your current logging application (syslogd. or a previously installed syslog—ng) will be disabled.

meaning that it will be stopped and removed from the init system.

The installer automatically creates backups of files it removes or modifies into the original
directory of the file.

If you will run this syslog-ng installation in server mode, prepare your license file now.
because it will be needed during the installation.

[<Font inued] < Exit >

Figure 3.6. The welcome screen

2. Accepting the EULA: You can install syslog-ng only if you understand and accept the terms of the End-User
License Agreement (EULA). The full text of the EULA can be displayed during installation by selecting the
Show EULA option, and is also available in this guide for convenience at Appendix 2, GNU General Public
License (p. 195). Select Accept to accept the EULA and continue the installation.

If you do not accept the terms of the EULA for some reason, select Reject to cancel installing syslog-ng.

3. Detecting platform and operating systemr: The installer attempts to automatically detect your oprating system and
platform. If the displayed information is correct, select Yes. Otherwise select Exit to abort the installation,
and verify that your platform is supported. See Section 1.6, “Supported platforms” (p. 3) for a list of supported
platforms. If your platform is supported but not detected correctly, contact your local distributor, reseller, or
the BalaBit Support Team. See Section 5, “Contact and support information” (p. xii) for contact details.

Systea Information
The installer detected the following parameters about your system:

Architecture 1 w86
Distribution i Linux
05 Version : 2.6.24-19—generic

Is this information correct?

< Exit »

Figure 3.7. Platform detection

4. Upgrading. The syslog-ng installer can automatically detect if you have previously installed a version of syslog-
ng on your system. To use the configuration file of this previous installation, select Yes. To ignore the old
configuration file and create a new one, select No.

Note that if you decide to use your existing configuration file, the installer automatically checks it for syntax
error and displays a list of warnings and errors if it finds any problems.

Upgrade
The installer has detected a configuration file from a previous syslog—ng installation.

Do you want to wse the old configwration file?

If you choose Mo, the installation program will generate a fresh configuration file for you.

Figure 3.8. Upgrading syslog-ng

5. Generating a new confignration file: The installer displays some questions to generate a new configuration file.

Installing syslog-ng in server mode

a. Remote sources: Select Yes to accept log messages from the network. TCP, UDP, and SYSLOG
messages on every interface will be automatically accepted.

Remote smerce
The installer will now generate a simple configuration file for
syslog—ng.

Do you want to receive log messages from the network?

< [Vps < Ho >

Figure 3.9. Accepting remote messages

b. Remote destinations: Enter the IP address or hostname of your logserver or relay and select OK.

Remote destination
To forward your log messages to a remote server, enter the
address of the server and select OK.
Otherwise, select Skip.

llB.SB.B.lBB

< Skip >

Figure 3.10. Forwarding messages to the logserver

Note

Accepting remote messages and forwarding them to a logserver means that syslog-ng will start in relay mode.

After the installation is finished, add the /opt/syslog-ng/binand /opt/syslog-ng/sbin direct-
ories to your search PATH environment variable. That way you can use syslog-ng and its related tools without
having to specity the full pathname. Add the following line to your shell profile:

PATH=/opt/syslog-ng/bin:$PATH

Note

The native logrotation tools do not send a SIGHUP to syslog-ng after rotating the log files, causing syslog-ng to write into
files already rotated. To solve this problem, the syslog-ng init script links the /var/run/syslog.pid file to syslog-ng's
pid. Also, on Linux, the install. sh script symlinks the initscript of the original syslog daemon to syslog-ng's initscript.

Installing syslog-ng without user-interaction

3.1.3. Installing syslog-ng without user-interaction

The syslog-ng application can be installed in silent mode without any user-interaction by specifying the required
parameters from the command line. Answers to every question of the installer can be set in advance using command-
line parameters.

./syslog-ng-<version>.run —-- [options]
3 Warning
The -- characters between the executable and the parameters are mandatory, like in the following example:
./syslog-ng-3.0.1b-solaris-10-sparc-client.run -- --accept-eula

To display the list of parameters, execute the . /syslog-ng-<version>.run -- --h command. Currently the following
options are available:

W --accept-enla or -a: Accept the EULA.

B --upgrade | -u: Perform automatic upgrade — use the configuration file from an existing installation.

W --remote <destination host>: Send logs to the specified remote server. Not available when performing an

upgrade.
m --network: Accept messages from the network. Not available when performing an upgrade.

m --confignration <file>: Use the specified configuration file.
3.2. Installing syslog-ng on RPM-based platforms (Red Hat, SUSE, AIX)

To install syslog-ng on operating systems that use the Red Hat Package Manager (RPM), complete the following
steps. Installing syslog-ng automatically replaces the original syslog service. The following supported operating
systems use RPM:

m AIX 5.2and 5.3

m CentOS 4 and 5

m openSUSE Linux Enterprise Server 10.0 and 10.1

m Red Hat Enterprise Server 4 and 5

m SUSE Linux Enterprise Server 10 and 10 SP1

Procedure 3.3. Installing syslog-ng on RPM-based systems

1. Login to your MyBalabit account (http://www.balabit.com/mybalabit) and download the syslog-ng RPM
package f or y our S ystem from
http://www.balabit.com/network-security/syslog-ng/ central-syslog-server/upgtrades/.

2. m If the host already uses syslog-ng for logging, execute the following command as root. Otherwise,
skip this step.

rpm -U syslog-ng-<version>-<0S>-<arch>.rpm

http://www.balabit.com/mybalabit
http://www.balabit.com/network-security/syslog-ng/central-syslog-server/upgrades/

Installing syslog-ng on Debian-based platforms

The syslog-ng application and all its dependencies will be installed, and the configuration of the
existing syslog-ng installation will be used.

Note
If you are upgtrading from syslog-ng version 2.1, note that the location of the configuration file has
been moved to /opt/syslog-ng/etc/syslog-ng.conf

m Execute the following command as root:
rpm -1 syslog-ng-<version>-<0S>-<arch>.rpm

The syslog-ng application and all its dependencies will be installed.

3. Answer the configuration questions of syslog-ng. These are described in detail in Section 3.1, “Installing syslog-
ng using the .run installer” (p. 26).
4. Y Warning
When performing an upgrade, the package manager might automatically execute the post-uninstall script of the upgraded

package, stopping syslog-ng and starting syslogd. If this happens, stop syslogd and start syslog-ng by issuing the fol-
lowing commands:

/etc/init.d/syslogd stop
/etc/init.d/syslog-ng start

This behavior has been detected on CentOS 4 systems, but may occur on other rpm-based platforms as well.

5. Optional step for ALX systems: To redirect the messages of the AIX Error log into syslog, create a file (e.g.,
/tmp/syslog-ng.add) with the following contents:

errnotify:
en name = "syslogl"
en persistenceflg = 1

en method = "logger Msg from Error Log: "errpt -1 $1 | grep -v 'ERROR ID
TIMESTAMP' "

Then execute the following command as root: odmadd /tmp/syslog-ng.add.

3.3. Installing syslog-ng on Debian-based platforms

To install syslog-ng on operating systems that use the Debian Software Package (deb) format, complete the following
steps. The following supported operating systems use this format:

m Debian etch

Compiling syslog-ng from source

Procedure 3.4. Installing syslog-ng on Debian-based systems

1. Login to your MyBalabit account (http://www.balabit.com/mybalabit) and download the syslog-ng DEB
package for y our S ystem from
http://www.balabit.com/network-security/syslog-ng/ central-syslog-server/upgtrades/.

2. Issue the following command as root:
dpkg -i syslog-ng-<version>-<OS8>-<arch>.deb

3. Answer the configuration questions of syslog-ng. These are described in detail in Section 3.1, “Installing syslog-
ng using the .run installer” (p. 26).

3.4. Compiling syslog-ng from source

To compile syslog-ng Open Source Edition (OSE) from the source code, complete the following steps. Alternatively,
you can use the precompiled binary packages. Precompiled binary packages are available for free for the supported
Linoux a n d B § D platfor ms a t
http:/ /www.balabit.com/network-security/syslog-ng/opensoutce-logging-system /upgrades/ .

Procedure 3.5. Compiling syslog-ng from source

1. Download the latest version of syslog-ng OSE from
https://www.balabit.com/downloads/files/syslog-ng/sources/stable/. The source code is available as a tar.gz
archive file.

2. Download the latest wversion of the EventLog library available at
https://www.balabit.com/downloads/files/eventlog/0.2/.

3. Install the following packages that are required to compile syslog-ng. These packages are available for most
UNIX/Linux systems. Alternatively, you can also download the sources and compile them.

m the g C compiler (at least version 2.7.2),
m the GNU flex lexical analyser generator, available at http://flex.sourceforge.net/;
m the bison patser generator, available at http://ftp.gnu.org/gnu/bison/;
m and the development files of the g/ib library, available at http://freshmeat.net/projects/glib/.
4. If you want to use the spoof-source function of syslog-ng, install the development files of the /Zbnet library,
available at http://libnet.sourceforge.net.

5. If you want to use the /ete/ hosts.deny and [etc/ hosts.allow for TCP access, install the development files of the
libwrap (also called TCP-wrappers) library, available at
ftp:/ /ftp.porcupine.org/pub/security/index.html [ftp://ftp.porcupine.org/pub/secutity/index.html].

6. Uncompress the eventlog archive using the
$ tar xvfz eventlog-x.x.x.x.tar.gz
or the
$ gunzip -c eventlog-x.x.x.x.tar.gz | tar xvf -

command. A new directory containing the source code of eventlog will be created.

http://www.balabit.com/mybalabit
http://www.balabit.com/network-security/syslog-ng/central-syslog-server/upgrades/
http://www.balabit.com/network-security/syslog-ng/opensource-logging-system/upgrades/
https://www.balabit.com/downloads/files/syslog-ng/sources/stable/
https://www.balabit.com/downloads/files/eventlog/0.2/
http://flex.sourceforge.net/
http://ftp.gnu.org/gnu/bison/
http://freshmeat.net/projects/glib/
http://libnet.sourceforge.net
ftp://ftp.porcupine.org/pub/security/index.html
ftp://ftp.porcupine.org/pub/security/index.html

Compiling syslog-ng from source

7. By default, eventlog creates a file used by the syslog-ng configure scriptin the /usr/ local/ lib/ pkgeonfig directory.
Issue the following command to add this directory to your PKG_CONFIG_PATH:

PKG _CONFIG_PATH=/usr/local/lib/pkgconfig:$PKG CONFIG PATH

8. Enter the new directory and issue the following commands:

$./configure
S make
S make install

9. Uncompress the syslog-ng archive using the
tar xvfz syslog-ng-x.xx.tar.gz
or the
unzip -c¢ syslog-ng-x.xx.tar.gz | tar xvf -

command. A new directory containing the source code of syslog-ng will be created.

10. Enter the new directory and issue the following commands:

$./configure
S make
S make install

These commands will build syslog-ng using its default options.

11. If needed, use the following options to change how syslog-ng is compiled using the following command syntax:

$./configure --compile-time-option—-name

Note
You can also use --disable options, to explicitly disable a feature and override autodetection. For example, to disable the
TCP-wrapper supportt, use the --disable-tep-wrapper option.

Warning

> 4 Starting with syslog-ng Open Source Edition 3.0.2, default linking mode of syslog-ng is dynami c. This means that
syslog-ng might not be able to start up if the /usr directory is on NFS. On platforms where syslog-ng is used as a
system logger, the ——enable-mixed-1inkingis preferred.

B --enable-debug Include debug information.

W --enable-dynamic-linking Compile syslog-ng as a completely dynamic binary. If not specified syslog-
ng uses mixed linking (-—enable-mixed-1inking): it links dynamically to system libraries
and statically to everything else.

Uninstalling syslog-ng

W -—-enable-ipp6 Enable IPv6 support.

W --enable-linux-caps Enable support for capabilities on Linux.

W -—-enable-pere Enable using PCRE-type regular expressions. Requires the 11bpcre library package.
B --enable-spoof-sonrce Enable spoof_source feature (disabled by default).

W -—-enable-static-linking Compile syslog-ng as a static binary.

W --enable-sun-door Enable Sun door support even if not detected (autodetected by default).

W --enable-sun-streams Enable Sun STREAMS support even if not detected (autodetected by default).

B --enable-tep-wrapper Enable using / etc/ hosts.deny and / ete/ hosts.allow for TCP access (enabled automat-
ically if the 1ibwrap libraries are detected).

W --with-timezone-dir Specifies the directory where syslog-ng looks for the timezone files to resolve the
time zone () and local time zone() options. If not specified, the
/opt/syslog-ng/share/zoneinfo/ and /usr/share/zoneinfo/ directories are
checked, respectively. Note that HP-UX uses a unique file format (t z tab) to describe the timezone
information; that format is currently not supported in syslog-ng. As a workaround, copy the zoneinfo
files from another, non-HP-UX system to the /opt/syslog-ng/share/zoneinfo/ dit-
ectory of your HP-UX system.

For information on configuring syslog-ng, see the Chapter 4, Configuring syslog-ng (p. 40).
3.5. Uninstalling syslog-ng

If you need to uninstall syslog-ng for some reason, you have the following options:

W If you bhave installed syslog-ng wusing the .run installer. Execute the uninstall.sh script located at
/opt/syslog-ng/bin/uninstall. sh. The uninstall script will automatically restore the syslog
daemon used before installing syslog-ng. To completely remove syslog-ng, including the configuration
files, use the uninstall.sh --purge command.

W [fyou have installed syslog-ng from a .deb package: Execute the dpkg -r syslog-ng command to remove syslog-
ng; or the dpkg -P syslog-ng command to remove syslog-ng and the configuration files as well. Note
that removeing syslog-ng does not restore the syslog daemon used before syslog-ng.

B [fyou have installed syslog-ng from an .rpm package: Execute the rpm -e syslog-ng command to remove syslog-
ng. Note that removing syslog-ng does not restore the syslog daemon used before syslog-ng.

3.6. Configuring Microsoft SQL Server to accept logs from syslog-ng
Complete the following steps to configure your Microsoft SQL Server to enable remote logins and accept log
messages from syslog-ng.

Procedure 3.6. Configuring Microsoft SQL Server to accept logs from syslog-ng

1. Start the SQL Server Management Studio application. Select Start > Programs > Microsoft SQL Server
2005 > SQL Server Management Studio.

2. Create 2 new database.

Configuring Microsoft SQL Server to accept logs from syslog-ng

a B Microsoft SQL Server Management Studio

Ele Edt Yew Tools Wndow Commumty Hef

0 mewouery | Oy |95 08 5 | 3 |5 H &

Connecte | 42 @ 4 T

=] Ld METUDDHO-ZZHOSR (SQL Server 9.0.1399 - NETUC
o]

[3 Securil

3 Server attach...

(3 Replic: pestore Database..,

[Manac pecrore Files and Filegroups...

23 Motific ———————————————————
[saL5 Refresh

Figure 3.11. Creating a new MSSQL. database 1.

In the Object Explorer, right-click on the Databases entry and select New Database.

b. -inx
Selectapage L5 Seript ~ () Help
2 General
%4 Options
27 Flegroups Database name: [syslon
Qwner [edefauit> _|
I Uz fulktesd Indexing
Databass files:
Logisal Name_| File Type | Filegroup, Initial Size (ME) | Autogrowth
syslog Data PRIMARY | By 1 MB. urrestiicted growth
syslog_lag Leg Not spplicable | 1 By 10 percent, unresticted growth
Server
NETUDDHO-Z3HOSA
Connection
HETUDDHO-Z3HOSR A cministrz
3 View connestion propetties
Feady | |
Add Hemove
Y

Figure 3.12. Creating a new MSSQL. database 2.

Enter the name of the new database (e.g.,, sy slogng) into the Database name field and click
OK.

3. Create a new database user and associate it with the new database.

a .2 Microsoft SOL Server Management Studio

Fle Edit Yiew Tools Window Community Help

Atewouey | O [FR B 5| 0|5 H @

Connect~ | @0 m] T
) | {3 METUDDHO-Z3HOSR. (SGL Server 9.0.1395 - NETUC
[Databases
) 3 Security
= [.

£

2 ¥ |R\sGLServerzo0sms
[l R\SGLServer2005HS
) R\S0LServerz0055Q
A NT AUTHORITY|SVSTEM

Figure 3.13. Creating a new MSSQL. user 1.

In the Object Explorer, select Security, right-click on the Logins entry, then select New Login.

Configuring Microsoft SQL Server to accept logs from syslog-ng

b. -lolx]
B e Logipme: [iroana e
1 Securables £ Windows authentication
57 Status
@ S0OL Server authentication
Eassword: [eeseeaee
Confitm password: [eeseeaee
I~ Enforce password policy
I~ Enforce password expiration
= | Wser must chanaes password at nestlogin
€ Mapped|to certiicate.
Cerffficate name: [
& Meppedito asymmetic kep
Koy |
NEThoHozHas Defaul database -
Connectian: Defaul language: [<detauns =l
NETUDDHO-Z3HOSRMAdministra
3 View connection properties
Ready
oK Cancel
I ==
Fignre 3.14. Creating a new MSSQL. user 2.
Enter a name (e.g.,, syslog-ng) for the user into the Login name field.
Select the SQL Server Authentication option and enter a password for the user.
d. In the Default database field, select the database created in Step 2 (e.g,, syslogng).
e. Inthe Default language field, select the language of log messages that you want to store in the
database, then click OK.
3 Warning

Incorrect language settings may result in the database converting the messages to a different character-
encoding format. That way the log messages may become unreadable, causing information loss.

f.

the previous step, and select Properties.

In the Object Explorer, select Security > Logins, then right-click on the new login created in

Configuring Microsoft SQL Server to accept logs from syslog-ng

B Login Properties - sysloong

_Olx
5eleclapa L5 Seript - L) Help
A Generdl
4 Server Roles
= User Mapping Users mapped to this login
 Secuables Map | Databass [User | Defaul Schema |
A Shatus [l master
I model
r meds
¥ | syslogng : syslogng dbo -]
I tempds
I Guest aceount enabled for, syslogng
Diatabase [ole membership for: syslogng
[db_accessadmin
Somer [] db_backupaparstor
NETUDDHO-Z3HDSR [db_dstareader
] db_datawriter
Connectior:) [db_ddladmin
NETUDDHO-ZIHOSR aministre | [oy derpriotareader
S View connection pioperties E db_denydatauniter
e
[] db_securityadmin
o e
Ready

oK C.]
R

%

Figure 3.15. Associating database with the new user

Select User Mapping. In the Users mapped to this login option, check the line corresponding

to the new login (e.g, syslogng). In the Database role membership field, check the
db_owner and public options.

E Server Properties - NETUDDHO-23HOSR.

O[]
 Selectapa L5 Seript ~ 7 Hel
Server authentication

 Windows duthentication made
127 Database Settings & 50L Server and Windows Avthentication made
|2 Advanced

A

L Permissians Login audiing

C None

[Comneciin

Server:

METUDDHO-Z3HOSR
Connection:
MNETUDDHO-Z3HOSR\Administiz

23 Wiew connection properties

Fieady

& Eailed lagins only
 Successhl logins only
 Both failed and successhul logins

Server prowy accourt

I~ Enable server proxy account
Prory account
Passnord

Oplions

I~ Enable C2 audit racing

I~ Cioss database ownership chaining

Enable remote logins for SQL users.

aK C |
R

Figure 3.16. Associating database with the new user

In the Object Explorer right-click on your database server, and select Properties > Security, and set the
Server Authentication option to SQL Server and Windows Authentication mode.

The syslog-ng configuration file

Chapter 4. Configuring syslog-ng

This chapter describes how to configure syslog-ng.
4.1. The syslog-ng configuration file

The syslog-ng application is configured by editing the syslog-ng. conf file. Use any regular text editor applic-
ation to modify the file. The precompiled syslog-ng packages include sample configuration files as well.

Every syslog-ng configuration file must begin with a line containing the version information of syslog-ng, For syslog-
ng version 3.0, this line looks like:

@version:3.0

If the configuration file does not contain the version information, syslog-ng assumes that the file is for syslog-ng
version 2.x. In this case it interprets the configuration and sends warnings about the parts of the configuration that
should be updated. Version 3.0 of syslog-ng will correctly operate with configuration files of version 2.x, but the
default values of certain parameters are different in 3.0.

All identifiers, option names and attributes, and any other strings used in the syslog-ng configuration file are case
sensitive. Objects must be defined before they are referenced in another statement.

Example 4.1. A simple configuration file
The following is a very simple configuration file for syslog-ng: it collects the internal messages of syslog-ng and the messages
; from /dev/loginto the /var/log/messages_syslog-ng.log file

@version:3.0

source s _local { unix-stream("/dev/log"); internal(); };
destination d file normal {file("/var/log/messages_syslog-ng.log"); };
log { source(s local); destination(d file); };
D Tip
Q ‘ Before activating a new configuration, check that your configuration file is syntactically correct using the syslog-ng --syntax
o r command.

To activate the configuration, reload the configuration of syslog-ng using the /etc/init.d/syslog-ng reload command.

The syslog-ng.confand license. txt filesarelocated under the /opt/syslog-ng/etc/ directory.

Note
Eatlier versions of syslog-ng PE stored the configuration and license files under different directories, depending on the platform;
typically under /etc/syslog-ng/.

Including configuration files *

4.1.1. Including configuration files

The syslog-ng application supports including external files in its configuration file, so parts of its configuration can
be managed separately. To include the contents of a file in the syslog-ng configuration, use the following syntax

include "filename";

This imports the entire file into the configuration of syslog-ng, at the location of the include statement. If you
specify a directory, syslog-ng will try to include every file in alphabetic order. When including configuration files,
consider the following points:

m If an object is defined twice (e.g., the original syslog-ng configuration file and the file imported into this
configuration file both define the same option, source, or other object), then the object that is defined
later in the configuration file will be effective. For example, if you set a global option at the beginning
of the configuration file, and later include a file that defines the same option with a different value, then
the option defined in the imported file will be used.

m Files can be embedded into each other: the included files can contain include statements as well, up to
a maximum depth of 15 levels.

m Include statements can only be used at top level of the configuration file. For example, the following is
correct:

@version:3.0
include "example.conf";

But the following is not:

source s_example {
include "example.conf"

iy

Warning

>4 The syslog-ng application will not start if it cannot find a file that is to be included in its configuration. Always double-check
the filenames, paths, and access rights when including configuration files, and use the --syntax-only command-line option
to check your configuration.

4.2. Defining global objects

Global objects (e.g., soutces, destinations, log paths, or filters) are defined in the syslog-ng configuration file. Object
definitions consist of the following elements:

m Type of the object: One of source, destination, log, filter, parser, rewrite rule, or
template.

W Identifier of the object: A unique name identifying the object. When using a reserved word as an identifier,
enclose the identifier in quotation marks.

Notes about the configuration syntax *

Tip
Q D ¢ Use identifiers that refer to the type of the object they identify. For example, prefix source objects with s,
[P destinations with d_, and so on.

W Parameters: The parameters of the object, enclosed in braces {parameters}.
W Semicolon: Object definitions end with a semicolon (/).

The syntax is summarized as follows:
type identifier { parameters };

Objects have parameters; some of them are required, others are optional. Required parameters are positional,
meaning that they must be specified in a defined order. Optional arguments can be specified in any order using the
option (value) format. If a parameter (optional or required) is not specified, its default value is used. The
parameters and their default values are listed in the reference section of the particular object. See Chapter 6, Refer-
ence (p. 91) for details.

Example 4.2. Using required and optional parameters
The unix-stream () source driver has a single required argument: the name of the socket to listen on. Optional parameters
; follow the socket name in any order, so the following source definitions have the same effect:

source s_demo_streaml {

unix-stream("/dev/log" max-connections (10) group(log)); };:
source s _demo stream2 {
unix-stream("/dev/log" group (log) max-connections(10)); };

To add comments to the configuration file, start a line with # and write your comments. These lines are ignored
by syslog-ng.

Comment: This is a stream source
source s_demo stream {
unix-stream("/dev/log" max-connections (10) group(log)); };

4.2.1. Notes about the configuration syntax

When you are editing the syslog-ng configuration file, note the following points:

m When writing the names of options and parameters (or other reserved words), the hyphen (-) and un-
derscore () characters are equivalent, e.g,, max-connections (10) and max connections (10)
are both correct.

® Number can be prefixed with + or - to indicate positive or negative values. Numbers beginning with
zero (0) or Ox are treated as hexadecimal or octal numbers, respectively.

B You can use commas (,) to separate options ot other parameters for readability; syslog-ng completely
ignores them. The following declarations are equivalent:

Sources and source drivers *

source s _demo stream {
unix-stream("/dev/log" max-connections (10)
group (log)); };

source s _demo stream {
unix-stream("/dev/log", max-connections (10),
group (log)); };

m Strings between single quotes ('string') are treated literally, you do not have to escape special
characters. This makes writing and reading regular expressions much more simple: it is recommended
to use single quotes when writing regular expressions.

m When enclosing strings between double-quotes ("string"), you have to escape special characters:
e.g., when enclosing a regular expression that uses the \ character to escape a special chatractet, you have
to add an extra \ (e.g, "\ \n"). Itis recommended to use single quotes instead.

m Enclosing normal strings between double-quotes ("string") is not necessary, you can just omit the
double-quotes. E.g., when writing filters, match ("sometext") and match (sometext) will
both match for the sometext string.

m When enclosing object IDs (e.g, the name of a destination) between double-quotes
("mydestination"), the ID can include whitespace as well, e.g:

source "s demo stream" {
unix-stream("/dev/log" max-connections (10)
group (log)); };

4.3. Sources and source drivers

A source is where syslog-ng receives log messages. Sources consist of one or more drivers, each defining where
and how messages are received.

To define a source, add a source statement to the syslog-ng configuration file using the following syntax:

source <identifier> { source-driver (params); source-driver (params); ... };

Example 4.3. A simple source statement
The following source statement receives messages on the TCP port 1999 of the interface having the 10. 1. 2. 3 1P address.

source s _demo tcp { tcp(ip(10.1.2.3) port(1999)); };

Example 4.4. A source statement using two source drivers
The following source statement receives messages on the 1999 TCP port and the 1999 UDP port of the interface having
; the 10.1.2. 3 1P address.

source s_demo_two_drivers {
tep(ip(10.1.2.3) port(1999));
udp (ip(10.1.2.3) port(1999)); };

Sources and source drivers *

Example 4.5. Setting default priority and facility

If the message received by the soutrce does not have a proper syslog header, you can use the default-facility () and
default-priority () options to set the facility and priority of the messages. Note that these values are applied only to
messages that do not set these parameters in their header.

source headerless messages { udp(default-facility(syslog) default-priority (emergq));
}i

Define a source only once. The same source can be used in several log paths. Duplicating sources causes syslog-ng
to open the source (TCP/IP port, file, etc.) more than once, which might cause problems. For example, include
the /dev/1og file source only in one source statement, and use this statement in more than one log path if needed.

To collect log messages on a specific platform, it is important to know how the native syslogd communicates
on that platform. The following table summarizes the operation methods of syslogd on some of the tested

platforms:

Platform Method

Linux A SOCK STREAM unix socket named /dev/1og; some of the distributions switched
over to using SOCK DGRAM, though applications still work with either method.

BSD flavors A SOCK DGRAM unix socket named /var/run/log.

Solaris (2.5 or below)

An SVR4 style STREAMS device named /dev/10g.

Solatis (2.6 or above)

In addition to the STREAMS device used in eatlier versions, 2.6 uses a new multithreaded
IPC method called door. By default the door used by syslogdis /etc/.syslog door.

HP-UX 11 or later

HP-UX uses a named pipe called /dev/1og thatis padded to 2048 bytes, e.g,, source
s _hp-ux {pipe ("/dev/log" pad size (2048) }.

AIX 5.2 and 5.3

A SOCK_STREAMor SOCK DGRAM unix socket called /dev/1og.

Table 4.1. Communication methods used between the applications and syslogd

Each possible communication mechanism has a corresponding source driver in syslog-ng. For example, to open a
unix socket with SOCK DGRAM style communication use the driver unix—-dgram. The same socket using the
SOCK_STREAM style — as used under Linux — is called unix-stream.

Example 4.6. Source statement on a Linux based operating system
The following source statement collects the following log messages:

w internal(): Messages generated by syslog-ng
m 1dp(ip(0.0.0.0) port(514)): Messages artiving to the 514 /UDP port of any interface of the host.

w unixc-stream("/ dev/ log");: Messages arriving to the /dev/1og socket.

source s_demo {

internal();
udp (ip(0.0.0.0) port(514));
unix-stream("/dev/log"); };

The following table lists the source drivers available in syslog-ng.

Collecting internal messages *

Name Description
internal() Messages generated internally in syslog-ng.

file()

Opens the specified file and reads messages.

pipe(), fifo

Opens the specified named pipe and reads messages.

program)

Opens the specified application and reads messages from its standard output.

sun-stream(), sun-streams

Opens the specified STREAMS device on Solaris systems and reads incoming mes-
sages.

syslog()

Listens for incoming messages using the new IETF-standard syslog protocol.

tc tcpb Listens on the specified TCP port for incoming messages using the BSD-syslog
protocol over IPv4 and IPv6 networks, respectively.
ud udp6 Listens on the specified UDP port for incoming messages using the BSD-syslog

protocol over IPv4 and IPv6 networks, respectively.

unix-dgram()

Opens the specified unix socket in SOCK DGRAM mode and listens for incoming
messages.

unix-stream

Opens the specified unix socket in SOCK_STREAM mode and listens for incoming
messages.

Table 4.2. Sonrce drivers available in syslog-ng

For a complete description of the parameters of the above drivers, see Section 6.1, “Source drivers” (p. 91).

4.3.1. Collecting internal messages

All messages generated internally by syslog-ng use this special source. To collect warnings, errors and notices from
syslog-ng itself, include this source in one of your source statements.

internal ()

The syslog-ng application will issue a warning upon startup if none of the defined log paths reference this driver.

Example 4.7. Using the internal() driver

’ source s local { internal(); };

4.3.1.1. Log statistics

Periodically, syslog-ng sends a message containing statistics about the received messages, and about any lost messages
since the last such message. It includes a processed entry for every source and destination, listing the number
of messages received or sent, and a dropped entry including the IP address of the server for every destination
where syslog-ng has lost messages. The center (received) entry shows the total number of messages received
from every configured sources.

Collecting internal messages *

The following is a sample log statistics message for a configuration that has a single source (s 1ocal)and a network
and a local file destination (d _network and d_local, respectively). All incoming messages are sent to both
destinations.

Log statistics;
dropped="tcp (AF INET (192.168.10.1:514))=6439"',
processed="center (received)=234413",
processed="destination (d tcp)=234413"',
processed="'destination (d local)=234413"',
processed="'source (s _local)=234413"

Log statistics can be also retrieved on-demand using one of the following options:

m Use the socat application: echo STATS | socat -vv
UNIX-CONNECT:/opt/syslog-ng/var/run/syslog-ng.ctl -

m If you have an OpenBSD-style netcat application installed, use the echo STATS | nc -U
vat/run/syslog-ng.ctl command. Note that the netcat included in most Linux disttibutions is a GNU-
style version that is not suitable to query the statistics of syslog-ng.

m Starting from syslog-ng Open Source Edition version 3.1, syslog-ng Open Source Edition includes the
syslog-ng-ctl utility. Use the syslog-ng-ctl stats command.

The statistics include a list of source groups and destinations, as well as the number of processed messages for each.
The verbosity of the statistics can be set using the stats level () option. See Section 6.9, “Global op-
tions” (p. 169) for details. An example output is shown below.

src.internal;s all#0;;a;processed; 6445
src.internal;s all#0;;a;stamp;1268989330
destination;df auth;;a;processed; 404
destination;df news dot notice;;a;processed;0
destination;df news dot err;;a;processed;0
destination;d ssb;;a;processed; 7128
destination;df uucp;;a;processed;0

source;s all;;a;processed; 7128

destination;df mail;;a;processed;0

destination;df user;;a;processed;l

destination;df daemon;;a;processed;l
destination;df debug;;a;processed;15
destination;df messages;;a;processed; 54
destination;dp xconsole;;a;processed; 671
dst.tcp;d network#0;10.50.0.111:514;a;dropped; 5080
dst.tcp;d network#0;10.50.0.111:514;a;processed; 7128
dst.tcp;d network#0;10.50.0.111:514;a;stored;2048
destination;df syslog;;a;processed; 6724
destination;df facility dot warn;;a;processed;0
destination;df news dot crit;;a;processed;0
destination;df lpr;;a;processed;0

destination;du all;;a;processed;0
destination;df facility dot info;;a;processed;0

Collecting messages from text files

center; ;received;a;processed; 0

destination;df kern;;a;processed;70

center; ;queued;a;processed; 0

destination;df facility dot err;;a;processed;0

The statistics ate semicolon separated; every line contains statistics for a particular object (e.g., source, destination,
tag, etc.). The statistics have the following fields:
1. The type of the object (e.g,, dst. file, tag, src.facility)

2. The ID of the object used in the syslog-ng configuration file, eg, d internal or
source.src_tcp. The #0 part means that this is the first destination in the destination group.

3. The instance ID (destination) of the object, e.g., the filename of a file destination, or the name of the
application for a program source or destination.

4. The status of the object. One of the following:

B a - active. At the time of quering the statistics, the source or the destination was still alive (it continu-
ously received statistical data).

B d- dynamic. Such objects may not be continuously available, for example, like statistics based on the
sendet's hostname.

m o - This object was once active, but stopped receiving messages. (E.g., a dynamic object may disappear
and become orphan.)

5. The type of the statistics:
m processed: The number of messages that successfully reached their destination.

m dropped: The number of dropped messages — syslog-ng OSE could not send the messages to the
destination and the output buffer got full, so messages were lost.

B stored: The number of messages stored in the message queue, waiting to be sent to the destination.
B suppressed: The number of suppressed messages (if the suppress () feature is enabled).
m stamp: The UNIX timestamp of the last message sent to the destination.

6. The number of such messages.

Note
Note that certain statistics are available only if the stats-level () option is set to a higher value.

4.3.2. Collecting messages from text files

Collects log messages from plain-text files, e.g., from the logfiles of an Apache webserver.

The syslog-ng application notices if a file is renamed or replaced with a new file, so it can correctly follow the file
even if logrotation is used. When syslog-ng is restarted, it records the position of the last sent log message, and
continues to send messages from this position after the restart.

Collecting messages from named pipes

The file driver has a single required parameter specifying the file to open. For the list of available optional parameters,
see Section 6.1.2, “file()” (p. 91).

Declaration:
file(filename) ;
Example 4.8. Using the file() driver
’ source s file { file("/var/log/messages"};

The kernel usually sends log messages to a special file (/dev/kmsg on BSDs, /proc/kmsg on Linux). The
file () driver reads log messages from such files. The syslog-ng application can periodically check the file for
new log messages if the follow freg () option is set.

p Note
/ On Linux, the k10gd daemon can be used in addition to syslog-ng to read kernel messages and forward them to syslog-ng.
S klogd used to preprocess kernel messages to resolve symbols etc., but as this is deprecated by ksymoops there is really
no point in running both kI1ogd and syslog-ng in parallel. Also note that running two processes reading /proc/kmsg at
the same time might result in dead-locks.

When using syslog-ng to read messages from the /proc/kmsg file, syslog-ng automatically disables the follow freq()
parameter to avoid blocking the file.

4.3.3. Collecting messages from named pipes

The pipe driver opens a named pipe with the specified name and listens for messages. It is used as the native message
delivery protocol on HP-UX.

The pipe driver has a single required parameter, specifying the filename of the pipe to open. For the list of available
optional parameters, see Section 6.1.3, “pipe()” (p. 95).

Declaration:
pipe (filename) ;

Note
As of syslog-ng Open Source Edition 3.0.2, pipes are created automatically. In eatlier versions, you had to create the pipe
using the mkfifo(1) command.

Pipe is very similar to the £11e () driver, but there are a few differences, for example pipe () opens its argument
in read-write mode, therefore it is not recommended to be used on special files like /proc/kmsg.

Collecting messages on Sun Solaris

3 Warning
It is not recommended to use pipe () on anything else than real pipes.

Example 4.9. Using the pipe() driver

; source s pipe { pipe("/dev/pipe" pad size (2048)); };

4.3.4. Collecting messages on Sun Solaris

Solaris uses its STREAMS framework to send messages to the sy slogd process. Solaris 2.5.1 and above uses an
IPC called doorin addition to STREAMS, to confirm the delivery of a message. The syslog-ng application supports
the IPC mechanism via the door () option (see below).

Note
The sun-streams () driver must be enabled when the syslog-ng application is compiled (see ./configure --help).

The sun-streams () driver has a single required argument specifying the STREAMS device to open, and the
door () option. For the list of available optional parameters, see Section 6.1.5, “sun-streams() driver” (p. 102).

Declaration:
sun-streams (name_ of the streams device door (filename of the door));

Example 4.10. Using the sun-streams() driver

’ source s stream { sun-streams ("/dev/log" door ("/etc/.syslog door")); };

4.3.5. Collecting messages using the IETF syslog protocol

The syslog () driver enables to receive messages from the network using the new standard syslog protocol and
message format (also called IETF-syslog protocol; described in RFC 5424-28, see Section 2.15.2, “IETF-syslog
messages” (p. 22)). UDP, TCP, and TLS-encrypted TCP can all be used to transport the messages.

For the list of available optional parameters, see Section 6.1.6, “syslog()” (p. 108).

Declaration:
syslog (ip () port () transport () options()):;

Collecting messages from remote hosts using the BSD syslog protocol

Example 4.11. Using the syslog() driver
TCP source listening on the localhost on port 1999.

source s syslog { syslog(ip(127.0.0.1) port(1999) transport("tcp")); };
UDP source with defaults.
source s_udp { syslog(transport ("udp")); };

Encrypted source where the client is also authenticated. See Section 6.10, “TLS options” (p. 173) for details on the encryption
settings.

source s_syslog tls{ syslog(
ip(10.100.20.40)
transport ("tls")
tls(
peer-verify (required-trusted)
ca dir('/opt/syslog-ng/etc/syslog-ng/keys/ca.d/")

key file('/opt/syslog-ng/etc/syslog-ng/keys/server privatekey.pem')
cert file('/opt/syslog-ng/etc/syslog-ng/keys/server certificate.pem')

)
)i}

4.3.6. Collecting messages from remote hosts using the BSD syslog protocol

The tcp (), tecpb (), udp (), udpb () drivers can receive messages from the network using the TCP and UDP
networking protocols. The tcp6 () and udp6 () drivers use the IPv6 network protocol, while tcp () and
udp () use IPv4.

UDP is a simple datagram oriented protocol, which provides "best effort service" to transfer messages between
hosts. It may lose messages, and no attempt is made at the protocol level to retransmit such lost messages. The
BSD-syslpg protocol traditionally uses UDP.

TCP provides connection-oriented service, which basically means that the path of the messages is flow-controlled.
Along this path, each message is acknowledged, and retransmission is done for lost packets. Generally it is safer to
use T'CP, because lost connections can be detected, and no messages get lost, assuming that the TCP connection
does not break. When a TCP connection is broken the 'in-transit' messages that were sent by syslog-ng but not yet
received on the other side are lost. (Basically these messages are still sitting in the socket buffer of the sending host
and syslog-ng has no information about the fate of these messages).

The tcp () and udp () drivers do not have any required parameters. By default they bind to the 0. 0.0.0:514
address, which means that syslog-ng will listen on all available interfaces, port 514. To limit accepted connections
to only one interface, use the Jocalip () parameter as described below. For the list of available optional para-
meters, see Section 6.1.7, “tcp(), tcp6(), udp() and udp6()” (p. 113).

Declaration:
tcp ([options]) ;
udp ([options]) ;

Collecting messages from UNIX domain sockets

Note
The tcp port 514 is reserved for use with rshell, so select a different port if syslog-ng and rshell is used at the same time.

If you specify a multicast bind address to udp () and udpé6 (), syslog-ng will automatically join the necessary
multicast group. TCP does not support multicasting,

The syslog-ng application supports TLS (Transport Layer Security, also known as SSL) for the tcp() and tcp6()
drivers. See the TLS-specific options below and Section 4.12, “Encrypting log messages with TLS” (p. 76) for details.
For the list of available optional parameters, see Section 6.1.7, “tcp(), tcp6(), udp() and udp6()” (p. 113).

Tip
Q D ‘ The syslog () driver also supports TLS-encrypted connections.

Example 4.12. Using the udp() and tcp() drivers
A simple udp() source with default settings.

source s udp { udp(); };# An UDP source with default settings.

A TCP source listening on the localhost interface, with a limited number of connections allowed.
source s_tcp { tcp(ip(127.0.0.1) port(1999) max-connections (10)); };
A TCP source listening on a TLS-encrypted channel.

source s _tcp { tcp(ip(127.0.0.1) port (1999)
tls (peer-verify('required-trusted"')
key file('/opt/syslog-ng/etc/syslog-ng/syslog-ng.key")
cert file('/opt/syslog-ng/etc/syslog-ng/syslog-ng.crt')));
}i

ATCP source listening for messages using the IETF-syslog message format. Note that for transferring IETF-syslog messages,
generally you are recommended to use the syslog () driver on both the client and the server, as it uses both the IETF-
syslog message format and the protocol. See Section 4.3.5, “Collecting messages using the IETF syslog protocol” (p. 49) for
details.

source s _tcp syslog { tcp(ip(127.0.0.1) port(1999) flags(syslog-protocol)); };

4.3.7. Collecting messages from UNIX domain sockets

The unix-stream () and unix-dgram () drivers open an AF UNIX socket and start listening on it for
messages. The unix-stream () driver is primarily used on Linux and uses SOCK STREAM semantics (connection
oriented, no messages are lost); while unix-dgram () is used on BSDs and uses SOCK DGRAM semantics: this
may result in lost local messages if the system is overloaded.

To avoid denial of service attacks when using connection-oriented protocols, the number of simultaneously accepted
connections should be limited. This can be achieved using the max-connections () parameter. The default
value of this parameter is quite strict, you might have to increase it on a busy system.

Destinations and destination drivers *

Both unix-stream and unix-dgram have a single required argument that specifies the filename of the socket to create.
For the list of available optional parameters, see Section 6.1.8, “unix-stream() and unix-dgram()” (p. 121)

Declaration:
unix-stream(filename [options]):;
unix-dgram(filename [options]);
' Note
g syslogd on Linux originally used SOCK STREAM sockets, but some distributions switched to SOCK DGRAM around
& 1999 to fix a possible DoS problem. On Linux you can choose to use whichever driver you like as syslog clients automatically

detect the socket type being used.

The difference between the unix-stream and unix-dgram drivers is similar to the difference between the TCP and
UDP network protocols. Use the following guidelines to select which driver to use in a particular situation:

Choose unix-stream if you would choose TCP (stream) instead of UDP (datagram). The unix-stream driver offers
the following features:

m Increased reliability

m Ordered delivery of messages

m Client-side notification of failures
Choose unix-dgram if you would choose TCP (stream) over UDP (datagram). The unix-dgram driver offers the
following features:

m Decreased possibility of Dos by opening too many connections (a local vulnerability)

m Less overhead

However, the client does not notice if a message is lost when using the unix-dgram driver.

Example 4.13. Using the unix-stream() and unix-dgram() drivers
’ source s stream { unix-stream("/dev/log" max-connections (10)); };

source s _dgram { unix-dgram("/var/run/log"); };

4.4. Destinations and destination drivers

A destination is where a log message is sent if the filtering rules match. Similarly to sources, destinations consist of
one or more drivers, each defining where and how messages are sent.

D Tip
Q ‘ If no drivers are defined for a destination, all messages sent to the destination are discarded. This is equivalent to omitting
[r the destination from the log statement.

Y

Storing messages in plain-text files

To define a destination, add a destination statement to the syslog-ng configuration file using the following syntax:

destination <identifier> {
destination-driver (params); destination-driver (params) ;

Y

Example 4.14. A simple destination statement
The following destination statement sends messages to the TCP port 1999 of the 10.1.2. 3 host.

destination d demo tcp { tcp("10.1.2.3" port(1999)); };
If name resolution is configured, the hostname of the target server can be used as well.

destination d tcp { tcp("target host" port(1999); localport(999)); };

The following table lists the destination drivers available in syslog-ng.

Name Description

file() Writes messages to the specified file.

fifo(), pipe Writes messages to the specified named pipe.

program() Forks and launches the specified program, and sends messages to its standard input.

sql) Sends messages into an SQL database. In addition to the standard syslog-ng packages, the

sqgl () destination requires database-specific packages to be installed. Refer to the section
appropriate for your platform in Chapter 3, Installing syslog-ng (p. 20).

syslog() Sends messages to the specified remote host using the IETE-syslog protocol. The IETF
standard supports message transport using the UDP, TCP, and TLS networking protocols.

tep() and tep6() |Sends messages to the specified TCP port of a remote host using the BSD-syslog protocol
over IPv4 and IPvG, respectively.

udp() and udp6() |Sends messages to the specified UDP port of a remote host using the BSD-syslog protocol
over IPv4 and IPvG, respectively.

unix-dgram() Sends messages to the specified unix socket in SOCK DGRAM style (BSD).
unix-stream() Sends messages to the specified unix socket in SOCK STREAM style (Linux).
usertty() Sends messages to the terminal of the specified user, if the user is logged in.

Table 4.3. Destination drivers available in syslog-ng

For detailed list of driver parameters, see Section 6.2, “Destination drivers” (p. 127).
4.4.1. Storing messages in plain-text files

The file driver is one of the most important destination drivers in syslog-ng. It allows to output messages to the
specified text file, or to a set of files.

The destination filename may include macros which get expanded when the message is written, thus a simple
file () driver may create several files. For more information on available macros see Section 6.5, “Macros” (p. 153).

Sending messages to named pipes *

If the expanded filename refers to a directory which does not exist, it will be created depending on the
create dirs () setting (both global and a per destination option).

The file () has a single required parameter that specifies the filename that stores the log messages. For the list
of available optional parameters, see Section 6.2.1, “file()” (p. 127).

Declaration:

0
0

y

o

file(filename options()) ;

Example 4.15. Using the file() driver

destination d file { file("/var/log/messages"); };

Example 4.16. Using the file() driver with macros in the file name and a template for the message

destination d_file ({
file("/var/log/$YEAR.SMONTH.S$SDAY/messages"
template ("$HOUR:$SMIN:S$SSEC $TZ S$HOST [SLEVEL] S$MSG $MSG\n")
template escape (no)) ;

Note
When using the £ile () destination, update the configuration of your log rotation program to rotate these files. Otherwise,
the log files can become very large.

Warning
Since the state of each created file must be tracked by syslog-ng, it consumes some memory for each file. If no new messages
are written to a file within 60 seconds (controlled by the time reap () global option), it is closed, and its state is freed.

Exploiting this, a DoS attack can be mounted against the system. If the number of possible destination files and its needed
memory is more than the amount available on the syslog-ng server.

The most suspicious macro is $ PROGRAM, where the number of possible variations is rather high. Do not use the $ PROGRAM
macro in insecure environments.

4.4.2. Sending messages to named pipes

The pipe () driver sends messages to a named pipe like /dev/xconsole.

The pipe driver has a single required parameter, specifying the filename of the pipe to open. The filename can include
macros. For the list of available optional parameters, see Section 6.2.2, “pipe()” (p. 130).

Declaration:

pipe (filename) ;

Sending messages to external applications *

Warning
> 4 As of syslog-ng Open Source Edition 3.0.2, pipes are created automatically. In eatlier versions, you had to create the pipe
using the mkfifo(1) command.

Example 4.17. Using the pipe() driver

; destination d pipe { pipe("/dev/xconsole"); };

4.4.3. Sending messages to external applications

The program () driver starts an external application or script and sends the log messages to its standard input
(stdin).

The program () driver has a single required parameter, specifying a program name to start. The program is executed
with the help of the current shell, so the command may include both file patterns and I/O redirections. For the
list of available optional parameters, see Section 6.2.3, “program()” (p. 133).

Declaration:
program (command to run);

Note

The syslog-ng application automatically restarts the external program if it exits for reliability reasons. However it is not recom-
mended to launch programs for single messages, because if the message rate is high, launching several instances of an applic-
ation might ovetload the system, resulting in Denial of Service.

Note that the message format does not include the priority and facility values by default. To add these values, specify
a template for the program destination, as shown in the following example.

Example 4.18. Using the program() destination driver

’ destination d prog { program("/bin/script" template ("<$PRI>SDATE SHOST $SMSG\n");
}i

4.4.4. Storing messages in an SQL database

The sql () driver sends messages into an SQL database. Currently the Microsoft SQL (MSSQL), MySQL, Oracle,
PostgreSQL, and SQLite databases are supported.

The sqgl () driver has the following required parameters:

Storing messages in an SQL database *

Name |Type Default Description
type mssql, mysql,|n/a Specifies the type of the database, i.e., the DBI
oracle, pgsql, database driver to use. Use the mssqgl option
or sqlite3 to send logs to an MSSQL database. See the ex-
amples of the databases on the following sec-
tions for details.
database [string n/a Name of the database that stores the logs.
table string n/a Name of the database table to use (can include
macros). When using macros, note that some
databases limit the length of table names.
columns [string list "date", "facility", "level", "host", "pro-[Name of the columns storing the data in
gram", "pid", "message" fieldname [dbtype] format. The
[dbtype] parameter is optional, and specifies
the type of the field. By default, syslog-ng creates
text columns. Note that not every database
engine can index text fields.
values [string list "${R_YEAR}-${R_MONTH}-|The parts of the message to store in the fields
$ { R _ D A Y }|specified in the columns parametet.
${R_HOUR}:${R_MIN}:${R_SEC}",
"$FACILITY", "$LEVEL", "$HOST",
"$PROGRAM", "§PID", "$MS-
GONLY"

Table 4.4. Required parameters of the sql() driver

For the list of available optional parameters, see Section 6.2.4, “sql()” (p. 135).

Declaration:
sql (database type host parameters database parameters [options]);

Warning
The syslog-ng application requires read and write access to the SQL table, otherwise it cannot verify that the destination table
exists.

Currently the syslog-ng application has default schemas for the different databases and uses these defaults if the database
schema (e.g., columns and column types) is not defined in the configuration file. However, these schemas will be deprecated
and specifying the exact database schema will be required in later versions of syslog-ng,

Note
In addition to the standard syslog-ng packages, the sgl () destination requires database-specific packages to be installed.
These packages are automatically installed by the binary syslog-ng installer.

The sql () driver is cutrently not available for every platform that is supported by syslog-ng. For a list of platforms that
support the sql () driver, visit http://www.balabit.com/network-security/syslog-ng/ central-syslog-server/.

The tableand value parameters can include macros to create tables and columns dynamically (see Section 6.5,
“Macros” (p. 153) for details).

http://www.balabit.com/network-security/syslog-ng/central-syslog-server/

Storing messages in an SQL database *

3 Warning
When using macros in table names, note that some databases limit the maximum allowed length of table names. Consult the
documentation of the database for details.

Inserting the records into the database is performed by a separate thread. The syslog-ng application automatically
performs the escaping required to insert the messages into the database.

Example 4.19. Using the sql() driver

The following example sends the log messages into a PostgreSQL database running on the 1ogserver host. The messages
; are inserted into the 1ogs database, the name of the table includes the exact date and the name of the host sending the
messages. The syslog-ng application automatically creates the required tables and columns, if the user account used to connect
to the database has the required privileges.

destination d _sqgl {
sql (type (pgsql)
host ("logserver") username ("syslog-ng") password ("password")
database ("logs")
table ("messages S${HOST} S${R YEAR}S{R MONTH}S{R DAY}")
columns ("datetime", "host", "program", "pid", "message")
Values("$R_DATE", "SHOST", "SPROGRAM", "SPID", "SMSGONLY")
indexes ("datetime", "host", "program", "pid", "message"));

}i
The following example specifies the type of the database columns as well:

destination d sql {

sql (type (pgsql)

host ("logserver") username ("syslog-ng") password("password")

database ("logs")

table ("messages ${HOST} ${R YEAR}S${R MONTH}$S{R DAY}")

columns ("datetime varchar(16)", "host varchar(32)", "program varchar(20)",
"pid varchar(8)", "message varchar (200)")

values("$R7DATE", "SHOST", "S$SPROGRAM", "S$SPID", "SMSGONLY")

indexes ("datetime", "host", "program", "pid", "message"));
}i

4.4.4.1. Using the sql() driver with an Oracle database

The Oracle sql destination has some special aspects that are important to note.

m The hostname of the database server is set in the tnsnames . ora file, not in the host parameter of
the sql () destination.
Make sure to set the Oracle-related environment variables properly, so syslog-ng and the Oracle client
will find the file. The following variables must be sett ORACLE BASE, ORACLE HOME, and
ORACLE_SID. See the documentation of the Oracle Instant Client for details.

m As certain database versions limit the maximum length of table names, macros in the table names should
be used with care.

m In the current version of syslog-ng PE, the types of database columns must be explicitly set for the Oracle
destination. The column used to store the text part of the syslog messages should be able to store messages
as long as the longest message permitted by syslog-ng, therefore it is usually recommended to use the

Storing messages in an SQL database *

varchar2 or clob column type. (The maximum length of the messages can be set using the
log msg size () option.) See the following example for details.

Example 4.20. Using the sql() driver with an Oracle database

The following example sends the log messages into an Oracle database running on the Jogserver host, which must be
3 setin the /etc/tnsnames.ora file. The messages ate inserted into the LOGS database, the name of the table includes
the exact date when the messages were sent. The syslog-ng application automatically creates the required tables and columns,
if the user account used to connect to the database has the required privileges.

destination d sql {

sgl (type (oracle)

username ("syslog-ng") password ("password")

database ("LOGS")

table ("msgs_ ${R YEAR}${R MONTH}${R DAY}")

columns ("datetime varchar (16)", "host varchar (32)", "program varchar (32)", "pid
varchar (8)", "message varchar2")

values("$R7DATE", "SHOST", "SPROGRAM", "SPID", "SMSGONLY")

indexes ("datetime", "host", "program", "pid", "message"));

};

The Oracle Instant Client retrieves the address of the database server from the /etc/tnsnames. ora file. Edit or create
this file as needed for your configuration. A sample is provided below.

LOGS =

(DESCRIPTION =
(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)
(HOST = logserver)

(PORT = 1521))

)

(CONNECT_DATA =
(SERVICE_NAME
)

)

EXAMPLE . SERVICE)

4.4.4.2. Using the sql() driver with a Microsoft SQL database

The mssql database driver can access Microsoft SQL (MSSQL) destinations. This driver has some special aspects
that are important to note.

m The date format used by the MSSQL database must be explicitly set in the /etc/locales.conf
file of the syslog-ng server. See the following example for details.

B As certain database versions limit the maximum length of table names, macros in the table names should
be used with care.

m In the current version of syslog-ng PE, the types of database columns must be explicitly set for the
MSSQL destination. The column used to store the text part of the syslog messages should be able to
store messages as long as the longest message permitted by syslog-ng. The varchar column type can
store maximum 4096 bytes-long messages. The maximum length of the messages can be set using the
log msg size () option. See the following example for details.

m Remote access for SQL users must be explicitly enabled on the Microsoft Windows host running the
Microsoft SQL Server. See Section 3.6, “Configuring Microsoft SQL Server to accept logs from syslog-
ng” (p. 36) for details.

Sending messages to a remote logserver using the IETF-syslog protocol

Example 4.21. Using the sql() driver with an MSSQL database

The following example sends the log messages into an MSSQL database running on the Jogserver host. The messages
; are inserted into the syslogng database, the name of the table includes the exact date when the messages were sent. The
syslog-ng application automatically creates the required tables and columns, if the user account used to connect to the database
has the required privileges.

destination d mssql {
sgl (type (mssgl) host ("logserver") port ("1433")

username ("syslogng") password("syslogng") database ("syslogng")

table ("msgs ${R_YEAR}${R MONTH}S{R DAY}")columns ("datetime varchar (16)", "host
varchar (32)",

"program varchar(32)", "pid varchar(8)", "message varchar (4096)")

values ("$R_DATE", "SHOST", "S$PROGRAM", "SPID", "SMSGONLY")

indexes ("datetime", "host", "program", "pid", "message"));

}i

The date format used by the MSSQL database must be explicitly set in the /etc/locales.conf file of the syslog-ng
server. Edit or create this file as needed for your configuration. A sample is provided below.

[default]
date = "%$Y-%m-%d $H:%M:%S"

4.4.5. Sending messages to a remote logserver using the IETF-syslog protocol

The syslog () driver sends messages to a remote host (e.g, a syslog-ng server or relay) on the local intranet or
internet using the new standard syslog protocol developed by IETF (see Section 2.15.2, “IETF-syslog mes-
sages” (p. 22) for details about the new protocol). The protocol supports sending messages using the UDP, TCP,
or the encrypted TLS networking protocols.

The required arguments of the driver are the address of the destination host (where messages should be sent). The
transport method (networking protocol) is optional, syslog-ng uses the TCP protocol by default. For the list of
available optional parameters, see Section 6.2.5, “syslog()” (p. 139).

Declaration:
syslog (host transport [options]);

Note
Note that the syslog destination dtiver has required parameters, while the source driver defaults to the local bind address,
and every parameter is optional.

The udp transport method automatically sends multicast packets if a multicast destination address is specified. The
tcpand t1s methods do not support multicasting,

Note
The default ports for the different transport protocols are as follows: UDP — 514; TLS — 6514.

Sending messages to a remote logserver using the legacy BSD-syslog protocol

Example 4.22. Using the syslog() driver

; destination d tcp { syslog(ip"10.1.2.3" transport ("tcp") port(1999);
localport (999)); 1};

If name resolution is configured, the hostname of the target server can be used as well.

destination d tcp { syslog(ip"target host" transport ("tcp") port(1999);
localport (999)); 1};

Send the log messages using TLS encryption and use mutual authentication. See Section 6.10, “TLS options” (p. 173) for details
on the encryption and authentication options.

destination d syslog tlsf{
syslog("10.100.20.40"
transport ("tls")
port (6514)
tls (peer-verify (required-trusted)
ca dir('/opt/syslog-ng/etc/syslog-ng/keys/ca.d/")
key file('/opt/syslog-ng/etc/syslog-ng/keys/client key.pem')

cert file('/opt/syslog-ng/etc/syslog-ng/keys/client certificate.pem'))
)i}

4.4.6. Sending messages to a remote logserver using the legacy BSD-syslog protocol

The tcp (), tcp6 (), udp (), and udp6 () drivers send messages to another host (e.g., a syslog-ng server or
relay) on the local intranet or internet using the UDP or TCP protocol. The tcp6 () and udpé6 () drivers use
the IPv6 network protocol.

All four drivers have a single required parameter specifying the destination host address, where messages should
be sent. For the list of available optional parameters, see Section 6.2.6, “tcp(), tcp6(), udp(), and udp6(),” (p. 142).

The udp () and udpé6 () drivers automatically send multicast packets if a multicast destination address is specified.
The tcp () and tcpé6 () drivers do not support multicasting,

Declaration:

4

tcp (host [options]
udp (host [options]
tcp6 (host [options

)
)
]
udp6 (host [options]

) 7
)

Example 4.23. Using the tcp() driver

4’ destination d tcp { tcp("10.1.2.3" port(1999); localport(999)); };

If name resolution is configured, the hostname of the target server can be used as well.

destination d tcp { tcp("target host" port(1999); localport (999)); };
To send messages using the IETF-syslog message format, enable the syslog-protocol flag:

destination d tcp { tcp("10.1.2.3" port(1999); flags(syslog-protocol) };

Sending messages to UNIX domain sockets *

4.4.7. Sending messages to UNIX domain sockets

The unix-stream() and unix-dgram () drivers send messages to a UNIX domain socket in either
SOCK STREAMor SOCK_DGRAM mode.

Both drivers have a single required argument specifying the name of the socket to connect to. For the list of available
optional parameters, see Section 6.2.7, “unix-stream() & unix-dgram()” (p. 146).

Declaration:
unix-stream(filename [options]):;
unix-dgram(filename [options]);

Example 4.24. Using the unix-stream() driver

’ destination d unix stream { unix-stream("/var/run/logs"); };

4.4.8. usertty()

This driver writes messages to the terminal of a logged-in user.

The usertty () driver has a single required argument, specifying a username who should receive a copy of
matching messages.

Declaration:
usertty (username) ;

The usertty () does not have any further options nor does it support templates.

Example 4.25. Using the usertty() driver

; destination d usertty { usertty("root"); };

4.5. Log paths

Log paths determine what happens with the incoming log messages. Messages coming from the sources listed in
the log statement and matching all the filters are sent to the listed destinations.

To define a log path, add a log statement to the syslog-ng configuration file using the following syntax:

log {
source (sl); source(s2);
optional element (filterl|parserl|rewritel);
optional element (filterZ2|parser2|rewrite2);...
destination(dl); destination (d2):;

Log paths *

flags(flagl[, flag2...]);

g

Warning
Log statements are processed in the order they appear in the configuration file, thus the order of log paths may influence
what happens to a message, especially when using filters and log flags.

Example 4.26. A simple log statement
The following log statement sends all messages attiving to the localhost to a remote server.

source s_localhost { tcp(ip(127.0.0.1) port(1999)); };
destination d_tcp { tcp("10.1.2.3" port(1999); localport(999)); };
log { source(s_localhost); destination(d tcp); };

All matching log statements are processed by default, and the messages are sent to every matching destination by
default. So a single log message might be sent to the same destination several times, provided the destination is

listed in several log statements, and it can be also sent to several different destinations.

This default behavior can be changed using the f1ags () parameter. Flags apply to individual log paths; they are
not global options. The following flags available in syslog-ng:

m final: Do not send the messages processed by this log path to any further destination.

W fallback: Process messages that were not processed by other log paths.

W carchall Process every message, regardless of its source or if it was already processed by other log paths.

m flow-control: Stop reading messages from the source if the destination cannot accept them. See Section 2.12,

“Managing incoming and outgoing messages with flow-control” (p. 16).

Warning
The final, fallback,and catchall flags apply only for the top-level log paths, they have no effect on embedded log
paths.

Example 4.27. Using log path flags

Let's suppose that you have two hosts (myhost A and myhost B) that run two applications ecach (application A
and application B), and you collect the log messages to a central syslog-ng server. On the server, you create two log
paths:

m one that processes only the messages sent by myhost A; and
m one that processes only the messages sent by application A.
This means that messages sent by application Arunning on myhost Awill be processed by both log paths, and the
messages of application B running on myhost Bwill not be processed at all.
m Ifyouadd the final flag to the first log path, then only this log path will process the messages of myhost A,
so the second log path will receive only the messages of application Arunning on myhost B.

m If you create a third log path that includes the fallback flag, it will process the messages not processed by
the first two log paths, in this case, the messages of application Brunning on myhost B.

m Adding a fourth log path with the catchall flag would process every message received by the syslog-ng
server.

Using embedded log statements *

‘ log { source(s_localhost); destination(d file); flags(catchall); };

For details on the individual flags, see Section 6.3, “Log path flags” (p. 149). The effect and use of the

flow-control flag is detailed in Section 2.12, “Managing incoming and outgoing messages with flow-con-
trol” (p. 16).

4.5.1. Using embedded log statements

Embedded log statements (see Section 2.2.1, “Embedded log statements” (p. 6)) re-use the results of processing
messages (e.g., the results of filtering or rewriting) to create complex log paths. Embedded log statements use the
same syntax as regular log statements, but they cannot contain additional sources. To define embedded log statements,
use the following syntax:

log {
source (sl); source(s2);

optional element (filterl |parserl|rewritel);
optional element (filter?2|parser2|rewrite2);...

destination(dl); destination (d2):;
flags(flagl[, flag2...1]1);

#embedded log statement
log
{
optional element (filterl |parserl|rewritel);
optional element (filterZ2|parser2|rewrite2);...
destination(dl); destination (d2):;
#another embedded log statement
log
{
optional element (filterl |parserl|rewritel);
optional element (filterZ2|parser2|rewrite2);...
destination(dl); destination(d2); ...};
}i
}i

3 Warning
The final, fallback,and catchall flags apply only for the top-level log paths, they have no effect on embedded log
paths.

Configuring flow-control *

Example 4.28. Using embedded log paths
The following log path sends every message to the d_filel and the d fileZ2 destinations.

log { source(s_localhost); destination(d filel); destination(d_file2); };
The next example is equivalent with the one above, but uses an embedded log statement.

log { source(s_localhost); destination(d_filel);
log {destination(d file2); };
}i

The following example sends every message coming from the host 192.168.1.1 into the d filel destination, and
sends every message coming from the host 192.168. 1. 1 and containing the string exampleinto the d file2 destin-
ation.

log { source(s localhost); host(192.168.1.); destination(d filel);
log {message ("example"); destination(d file2); };

}i

The following example collects logs from multiple source groups and uses the source () filter in the embedded log statement
to select messages of the s _network source group.

log { source(s_localhost); source(s_network); destination(d filel);
log {source(s_network); destination(d file2); };

}i

4.5.2. Configuring flow-control

For details on how flow-control works, see Section 2.12, “Managing incoming and outgoing messages with flow-
control” (p. 16). The summary of the main points is as follows:

m The syslog-ng application normally reads a maximum of Jog fetch 1imit () number of messages
from a source.

m From TCP and unix-stream sources, syslog-ng reads a maximum of log fetch l1imit () from
every connection of the source. The number of connections to the source is set using the
max connections () parameter.

m Every destination has an output buffer (1og fifo size()).

m Flow-control uses a control window to determine if there is free space in the output buffer for new
messages. Every source has its own control window; 1og iw size () parameter sets the size of the
control window.

m When a source accepts multiple connections, the messages of every connection use the same control
window.

m The output buffer must be larger than the control window of every source that logs to the destination.

m If the control window is full, syslog-ng stops reading messages from the source until some messages are
successfully sent to the destination.

m If the output buffer becomes full, and neither disk-buffering nor flow-control is used, messages may be
lost.

Note
If you modify the max connections () or the log fetch 1imit () parameter, do not forget to adjust the
log iw size () and log fifo size () parameters accordingly.

Example 4.29. Sizing parameters for flow-control

Suppose that syslog-ng has a source that must accept up to 300 parallel connections. Such situation can arise when a network
’ source receives connections from many clients, or if many applications log to the same socket. Therefore, set the
max_connections () parameter of the source to 300. However, the 1og fetch limit () (default value: 10)
parameter applies to every connection of the source individually, while the 1og iw size () (default value: 100) parameter
applies to the source. In a worst-case scenario, the destination does not accept any messages, while all 300 connections send
atleast log fetch limit () number of messages to the source during every poll loop. Therefore, the control window
must accommodate at least max connections ()*log fetch limit () messages to beable to read every incoming
message of a poll loop. In the current example this means that (1og iw size () should be greater than 300*10=3000.
If the control window is smaller than this value, the control window might fill up with messages from the first connections
— causing syslog-ng to read only one message of the last connections in every poll loop.

The output buffer of the destination must accommodate at least Iog iw size () messages, but use a greater value: in the
current example 3000 *10=30000 messages. That way all incoming messages of ten poll loops fit in the output buffer. If
the output buffer is full, syslog-ng does not read any messages from the source until some messages are successfully sent to
the destination.

source s_localhost {
tep(ip(127.0.0.1) port(1999) max-connections(300)); };
destination d tcp {
tcp("10.1.2.3" port(1999); localport(999)); log fifo size(30000); };

log { source(s_localhost); destination(d tcp); flags(flow-control);

}i

If other sources send messages to this destination, than the output buffer must be further increased. For example, if a network
host with maximum 100 connections also logs into the destination, than increase the 1og fifo size () by 10000.

source s_localhost ({
tecp (ip(127.0.0.1) port(1999) max-connections (300)); };
source s_tcp {
tecp (ip(192.168.1.5) port(1999) max-connections (100)); };
destination d tcp {
tep("10.1.2.3" port(1999); localport(999)); log fifo size(40000); };

log { source(s_localhost); destination(d tcp); flags(flow-control);

See also Section 5.2, “Handling lots of parallel connections” (p. 86).
4.6. Filters

The following sections describe how to select and filter log messages.

m Section 4.6.1, “Using filters” (p. 65) describes how to configure and use filters.
B Section 4.6.2, “Optimizing regular expressions in filters” (p. 68) provides tips on using regular expressions.

B Section 4.6.3, “Tagging messages” (p. 68) explains how to tag messages and how to filter on the tags.
4.6.1. Using filters

Filters perform log routing within syslog-ng: a message passes the filter if the filter expression is true for the partic-
ular message. If a log statement includes filters, the messages are sent to the destinations only if they pass all filters
of the log path. For example, a filter can select only the messages originating from a particular host. Complex filters
can be created using filter functions and logical boolean expressions.

To define a filter, add a filter statement to the syslog-ng configuration file using the following syntax:

Using filters *

filter <identifier> { expression; };
The expression may contain the following elements:
m The functions listed in Table 6.16, “Filter functions in syslog-ng” (p. 151). Some of the functions accept
extended regular expressions as parameters.

m The boolean operators and, or, not.

m Parentheses to mark the precedence of the operators when using complex filters.

Example 4.30. A simple filter statement
The following filter statement selects the messages that contain the word deny and come from the host example.

filter demo filter { host ("example") and match ("deny" value ("MESSAGE")); };
For the filter to have effect, include it in a log statement:

log demo filteredlog{
source (sl); source(s2);
filter (demo filter);
destination(dl); destination(d2); };

The host (), match (),and program () filter functions accept regular expressions as parameters.

filter demo regexp filter { host("system.*1") and match ("deny" value ("MESSAGE")) ;
bi

The value () parameter limits the scope of a filter function to the scope of a macro. For example, to limit the
scope of the match () filter to the text part of the message, use:

match ("keyword" value ("MESSAGE"))

The value () parameter accepts both built-in macros and user-defined ones created with a parser. Do not prefix
the macros with the § sign. For details on macros and parsers, see Section 4.7, “Templates and macros” (p. 69)
and Section 4.8, “Parsing messages” (p. 70).

Note

When a log statement includes multiple filter statements, syslog-ng sends a message to the destination only if all filters are
true for the message. In other words, the filters are connected with the logical AND operator. In the following example, no
message arrives to the destination, because the filters are exclusive (the hostname of a client cannot be examplel and
example?Z at the same time):

filter demo filterl { host ("examplel"); };
filter demo filter2 { host ("example2"); };

log demo filteredlog{

source (sl); source(s2);
filter (demo filterl); filter (demo filter2);
destination(dl); destination(d2); };

To select the messages that come from either host examplel or exampleZ, use a single filter expression:
filter demo filter { host ("examplel") or host ("example2"); };

log demo filteredlog{
source (sl); source(s2);

Using filters *

filter (demo_ filter);
destination(dl); destination(d2); };

Use the not operator to invert filters, for example, to select the messages that were not sent by host examplel:
filter demo filter { not host ("examplel"); };

However, to select the messages that were not sent by host examplel or exampleZ2, you have to use the and operator
(that's how boolean logic works):

filter demo filter { not host ("examplel") and not host ("example2"); };
Alternatively, you can use parentheses to avoid this confusion:

filter demo filter { not (host ("examplel") or host ("example2")); };

In the extended regular expressions, the characters () [] . *?+7$| are used as special symbols. Therefore, these
characters have to be preceded with a backslash (\) if they ate meant literally. For example, the \$40 expression
matches the $40 string. Backslashes have to be escaped as well if they are meant literally. For example, the \ \d
expression matches the \d string.

Q D Tip

W ‘ If you use single quotes in, you do not need to escape the backslash, e.g. match ("\\. ") is equivalenttomatch ("\. ').

ALY

By default, all regular expressions are case sensitive. To disable the case sensitivity of the expression, add the
flags (ignore-case) option to the regular expression.

filter demo regexp insensitive { host ("system" flags (ignore-case)); };

For details on regular expressions, see Section 6.8, “Regular expressions” (p. 168).

/° Note

g In regular expressions, the asterisk (*) character means 0, 1 or any number of the previous expression. For example, in the
'S f*ilter expression the asterisk means 0 or more f letters. This expression matches for the following strings: i1ter,
filter, ffilter, etc. To achieve the wildcard functionality commonly represented by the asterisk character in other ap-

plications, use . * in your expressions, e.g,, £. *ilter.

The level () filter can select messages corresponding to a single importance level, or a level-range. To select
messages of a specific level, use the name of the level as a filter parameter, e.g., use the following to select warning
messages:

level (warning)

To select a range of levels, include the beginning and the ending level in the filter, separated with two dots (. .).
For example, to select every message of error or higher level, use the following filter:

level (err..emerq)

Optimizing regular expressions in filters

Similarly, messages sent by a range of facilities can also be selected. Note that this is only possible when using the
name of the facilities. It is not possible to select ranges the numerical codes of the facilities.

facility(localO..localh)
For a complete list of the available levels and facilities, see Section 6.4, “Filter functions” (p. 150).

For a complete description on the above functions, see Section 6.4, “Filter functions” (p. 150).
4.6.2. Optimizing regular expressions in filters

Some filter functions accept regular expressions as parameters. But evaluating general regular expressions puts a
high load on the CPU, which can cause problems when the message traffic is very high. Often the regular expression
can be replaced with simple filter functions and logical operators. Using simple filters and logical operators, the
same effect can be achieved at a much lower CPU load.

Example 4.31. Optimizing regular expressions in filters
Suppose you need a filter that matches the following error message logged by the xntpd NTP daemon:

xntpd[1567]: time error -1159.777379 is too large (set clock manually);
The following filter uses regular expressions and matches every instance and variant of this message.

filter £ demo regexp {
program ("demo program") and
match ("time error .* is too large .* set clock manually"); };

Segmenting the match () part of this filter into separate match () functions greatly improves the performance of the filter.

filter f demo optimized regexp {
program ("demo_program") and
match ("time error") and
match("is too large") and
match ("set clock manually"); };

4.6.3. Tagging messages

Starting with syslog-ng 3.1, it is also possible to label the messages with custom tags. Tags are simple labels, identified
by their names, which must be unique. Currently syslog-ng can tag a message at two different places:

m at the source when the message is received; and

m when the message matches a pattern in the pattern database. For details on using the pattern database,
see Section 4.9, “Classifying messages” (p. 72), for details on creating tags in the pattern database, see
Section 6.6.2.3, “Creating pattern databases” (p. 162).

When syslog-ng receives a message, it automatically adds the . source.<id of the source statement>
tag to the message. Use the tags () option of the source to add custom tags, and the tags () option of the filters
to select only specific messages.

Note that tagging messages and also filtering on the tags is very fast, much faster then other types of filters.

Templates and macros *

Example 4.32. Adding tags and filtering messages with tags

; source s_tcp {
tcp(ip(192.168.1.1) port(1514) tags("tcp", "router"));
}i

Use the tags () option of the filters to select only specific messages:

filter £ tcp {
tags (".source.s_tcp");
}i

filter £ router {
tags ("router") ;
}i

4.7. Templates and macros

The syslog-ng application allows you to define message templates, and reference them from every object that can
use a template. Templates can be used to create standard message formats or filenames. Templates can reference
one or more macros (e.g., date, the hostname, etc.). See Section 6.5, “Macros” (p. 153) for a list of macros available
in syslog-ng Open Source Edition. Fields from the structured data (SD) part of messages using the new IETF-syslog
standard can also be used as macros.

Template objects have a single option called template escape, which is disabled by default
(template escape (no)). This behavior is useful when the messages are passed to an application that cannot
handle escaped characters properly. Enabling template escaping (template escape (yes)) causes syslog-ng
to escape the ' and " characters from the messages.

Note
In versions 2.1 and earlier, the template escape () option was enabled by default.

Macros can be included by prefixing the macro name with a $ sign, just like in Bourne compatible shells. Regarding
braces around macro names, the following two formats are equivalent "$MSG" and "$ {MSG} ".

Default values for macros can also be specified by appending the : — characters and the default value to the macro,
e.g,

${HOST:-default hostname}

The macros related to the date of the message (e.g.: ISODATE, HOUR, etc.) have two further versions each: one
with the S and one with the R prefix (e.g: S DATE and R _DATE). The S DATE macro represents the date
found in the log message, i.c. when the message was sent by the original application. R_DATE is the date when
syslog has received the message.

DATE equals cither S DATE or R DATE, depending on the global option set in the now deprecated
use time recvd () parameter (see Section 6.9, “Global options” (p. 169)).

Parsing messages *

Warning
The hostname-related macros (FULLHOST, FULLHOST FROM, HOST, and HOST FROM) do not have any effect if the
keep hostname ()_option is disabled.

By default, syslog-ng sends messages using the following template: $ISODATE $HOST $MSGHDRSMSG\n.
(The $MSGHDRSMSG part is written together because the $MSGHDR macro includes a trailing whitespace.)

Note
Earlier versions of syslog-ng used templates and scripts to send log messages into SQL databases. Starting from version 2.1,
syslog-ng natively supports direct database access using the sq1 () destination. See Section 6.2.4, “sql()” (p. 135) for details.

Example 4.33. Using templates

The following template (t_demo_filetemplate) adds the date of the message and the name of the host sending the
; message to the beginning of the message text. The template is then used in a file destination: messages sent to this destination
(d_file) will use the message format defined in the template.

template t demo filetemplate ({
template ("$ISODATE SHOST S$SMSG\n"); template escape (no); };

destination d file {
file("/var/log/messages" template (t demo filetemplate)); };

Templates can also be used inline, if they are used only at a single location. The following destination is equivalent with the
previous example:

destination d file {
file ("/var/log/messages"
template ("SISODATE SHOST SMSG\n") template escape (no));

}i

4.8. Parsing messages

The syslog-ng application can separate parts of log messages (i.c., the contents of the $MSG macro) to named fields
(columns). These fields act as user-defined macros that can be referenced in message templates, file- and tablenames,
etc.

Parsers are similar to filters: they must be defined in the syslog-ng configuration file and used in the log statement.

/° Note

The order of filters, rewriting rules, and parsers in the log statement is important, as they are processed sequentially.

To create a parser, define the columns of the message, the delimiter or separator characters, and optionally the
characters that are used to escape the delimiter characters (quote-pairs). For the list of parser parameters, see Sec-
tion 6.6, “Message parsers” (p. 150).

Parsing messages *

Declaration:
parser parser name {
csv-parser (columnl, column2, ...)
delimiters ()
quote-pairs ()

)2

Column names work like macros. Always use a prefix to identify the columns of the parsers, e.g,
MYPARSERI1.COLUMN1, MYPARSERZ.COLUMNZ, etc. Column names starting with a dot (e.g.,, . HOST) are
reserved for use by syslog-ng.

Example 4.34. Segmenting hostnames separated with a dash
The following example separates hostnames like example-1 and example-2 into two parts.

parser p hostname segmentation {
csv-parser (columns ("HOSTNAME .NAME", "HOSTNAME.ID")
delimiters ("-")
flags (escape—-none)
template ("S{HOST}")) ;
}i
destination d file { file("/var/log/messages-${HOSTNAME.NAME:-examplehost}"); };
log { source(s_local); parser(p_hostname segmentation); destination(d file);};

Example 4.35. Parsing Apache log files

The following parser processes the log of Apache web servers and separates them into different fields. Apache log messages
; can be formatted like:

o

h

o

1 %u %t \"%r\" %>s %b \"${Referer}i\" \"%{User-Agent}i\" $T %v"

Here is a sample message:

192.168.1.1 - - [31/Dec/2007:00:17:10 +0100] "GET /cgi-bin/example.cgi HTTP/1.1"
200 2708 "-" "curl/7.15.5 (i4 86-pc-linux-gnu) libcurl/7.15.5 OpenSSL/0.9.8c
z1ib/1.2.3 1libidn/0.6.5" 2 example.balabit

To parse such logs, the delimiter character is set to a single whitespace (delimiters (" ")). Whitespaces between quotes
and brackets are ignored (quote-pairs ('""[]")).

parser p_apache {
csv-parser (columns ("APACHE.CLIENT IP", "APACHE.IDENT NAME", "APACHE.USER NAME",

"APACHE.TIMESTAMP", "APACHE.REQUEST URL", "APACHE.REQUEST STATUS",
"APACHE.CONTENT LENGTH", "APACHE.REFERER", "APACHE.USER AGENT",
"APACHE.PROCESS TIME", "APACHE.SERVER NAME")

flags (escape-double-char, strip-whitespace)

delimiters (" ")

quote-pairs ('""[]1")

)i

bi

The results can be used for example to separate log messages into different files based on the APACHE.USER_NAME field.
If the field is empty, the nouser name is assigned.

log { source(s_local);
parser (p_apache); destination(d file);};
}i
destination d file { file("/var/log/messages-S${APACHE.USER NAME:-nouser}"); };

Classifying messages *

Multiple parsers can be used to split a part of an already parsed message into further segments.

Example 4.36. Segmenting a part of a message
The following example splits the timestamp of a parsed Apache log message into separate fields.

parser p apache timestamp {

csv-parser (columns ("APACHE.TIMESTAMP.DAY", "APACHE.TIMESTAMP.MONTH",
"APACHE.TIMESTAMP.YEAR", "APACHE.TIMESTAMP.HOUR", "APACHE.TIMESTAMP.MIN",
"APACHE.TIMESTAMP.MIN", "APACHE.TIMESTAMP.ZONE")

delimiters("/: ")

flags (escape—none)

template ("${APACHE.TIMESTAMP}")) ;

}i
log { source(s_local);

log { parser (p_apache); parser (p_apache timestamp); destination(d file);};

}i

4.9. Classifying messages

To classify messages using a pattern database, include a db_parser () statement in your syslog-ng configuration
file using the following syntax:

Declaration:
parser <identifier> {db parser (file("<database filename>"));};

Note that using the parser in a log statement only performs the classification, but does not automatically do anything
with the results of the classification.

Example 4.37. Defining pattern databases
The following statement uses the database located at /opt/syslog-ng/var/db/patterndb.xml.

parser pattern db {
db parser (
file("/opt/syslog-ng/var/db/patterndb.xml")
)i
}i

To apply the patterns on the incoming messages, include the parser in a log statement:

log {
source (s_all);
parser (pattern db);
destination(di messages_ class);
}i
Note

The default location of the pattern database file is /opt /syslog-ng/var/run/patterndb.xml. The £ile option
of the db-parser statement can be used to specify a different file, thus different db-parser statements can use different
pattern databases. Later versions of syslog-ng will be able to dynamically generate a main database from separate pattern
database files.

Downloading sample pattern databases *

Example 4.38. Using classification results

The following destination separates the log messages into different files based on the class assigned to the pattern that matches
’ the message (e.g., Violation and Security type messages are stored in a separate file), and also adds the ID of the matching
rule to the message:

destination di messages class {
file("/var/log/messages-${.classifier.class}"

template ("${.classifier.rule id};${S UNIXTIME};${SOURCEIP};${HOST};${PROGRAM};${PID};${MSG}\n")
template escape (no)

)
}:

To create your own pattern databases see Section 0.6.2.3, “Creating pattern databases” (p. 162).
4.9.1. Downloading sample pattern databases

Sample pattern databases are available at the BalaBit Download page
http:/ /www.balabit.com/downloads/files/patterndb-snapshot/. Note that even though these pattern databases
contain over 8000 rules for more than 200 applications and devices, they are only samples and experimental databases
that are not officially supported and may or may not work in your environment.

The syslog-ng pattern databases are available under the Creative Commons Attribution-Noncommercial-Share
Alike 3.0 (CC by-NC-SA) license. This includes every pattern database written by community contributors or the
BalaBit staff. It means that:

B you are free to use and modify the patterns for noncommercial purposes;

m when redistributing the pattern databases you must distribute your modifications under the same license;

m and when redistributing the pattern databases, you must make it obvious that the original syslog-ng
pattern databases are available at http://www.balabit.com/network-security/syslog-ng/.

For legal details, the full text of the license is available at
http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

4.9.2. Using parser results in filters and templates
4.9.2.1. Filtering messages based on classification

The results of message classification and parsing can be used in custom filters and file and database templates as
well. There are two built-in macros in syslog-ng OSE that allow you to use the results of the classification: the
.classifier.class macro contains the class assigned to the message (e.g, violation, security, or unknown),
while the .classifier.rule id macro contains the identifier of the message pattern that matched the
message.

Example 4.39. Using classification results for filtering messages
To filter on a specific message class, create a filter that checks the .classifier_class macro, and use this filter in a log statement.

filter fi class_violation {
match ("violation"

http://www.balabit.com/downloads/files/patterndb-snapshot/
http://www.balabit.com/network-security/syslog-ng/
http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Using parser results in filters and templates

value (".classifier.class")
type ("string")

) i

}i

log {
source (s_all);
parser (pattern db) ;
filter (fi class violation);
destination(di class violation);

}i

Filtering on the unknown class selects messages that did not match any rule of the pattern database. Routing these messages
into a separate file allows you to periodically review new or unknown messages.

To filter on messages matching a specific classification rule, create a filter that checks the .classifier_rule_id macro. The
unique identifier of the rule (e.g,, e1e9c0d8-13bb-11de-8293-000c2922ed0a) is the 1d attribute of the rule in
the XML database.

filter fi class rule {
match ("ele9c0d8-13bb-11de-8293-000c2922ed0a"
value (".classifier rule id")
type ("string")
) i
}i

The message-segments parsed by the pattern parsers can also be used as macros as well. To accomplish this, you
have to add a name to the parser, and then you can use this name as a macro that refers to the parsed value of the

message.
Example 4.40. Using pattern parsers as macros
For example, you want to parse messages of an application that look like "Transaction: <type>.", where <type>
3 is a string that has different values (e.g,, refused, accepted, incomplete, etc.). To parse these messages, you can use the following

pattern:
'Transaction: @ESTRING::.Q'

Here the @ESTRING(@ parser parses the message until the next full stop character. To use the results in a filter or a filename
template, include a name in the parser of the pattern, e.g.:

'Transaction: @ESTRING:TRANSACTIONTYPE:.@'

After that, add a custom template to the logpath that uses this template. For example, to select every accepted transaction,
use the following custom filter in the log path:

match ("accepted" wvalue ("TRANSACTIONTYPE")) ;

' Note

. The above mactos can be used in database columns and filename templates as well, if you create custom templates for the
E destination or logspace.

Use a consistent naming scheme for your macros, for example, APPLICATIONNAME MACRONAME.

Rewriting messages *
O (&

4.10. Rewriting messages

The syslog-ng application can rewrite parts of log messages: it can search and replace text, and also set a specific
field to a specified value. Rewriting messages is often used in conjunction with message parsing Section 4.8,
“Parsing messages” (p. 70).

Rewrite rules are similar to filters: they must be defined in the syslog-ng configuration file and used in the log
statement.

/° Note

The order of filters, rewriting rules, and patsers in the log statement is important, as they are processed sequentially.

To create replace a part of the log message, define the string or regular expression to replace, the string to replace
the original text (macros can be used as well), and the field of the message that the rewrite rule should process.
Substitution rules can operate on any value available via macros, e.g., HOST, MESSAGE, PROGRAM, or any
user-defined macros created using parsers (see Section 6.6, “Message parsers” (p. 156) for details.). Substitution
rules use the following syntax:

Declaration:
rewrite <name of the rule>
{subst ("<string or regular expression to find>",
"<replacement string>", value (<field name>), flags());};

A single substitution rule can include multiple substitutions that are applied sequentially to the message. Note that
rewriting rules must be included in the log statement to have any effect.

Tip
Q D ‘ For case-insensitive searches, add the flags (ignore-case) option; to replace every occurrence of the string, add
S o flags (global) option.

Example 4.41. Using substitution rules
The following example replaces the first occurrence of the string I Pin the text of the message with the string T P-Address.

rewrite r rewrite subst{subst ("IP", "IP-Address", value ("MESSAGE"));};
To replace every occurrence, use:

rewrite r rewrite subst{subst("IP", "IP-Address", value ("MESSAGE"),
flags("global"));};

Multiple substitution rules are applied sequentially; the following rules replace the first occurrence of the string TP with the
string TP-Addresses.

rewrite r rewrite subst{subst ("IP", "IP-Address", value ("MESSAGE")) ;
subst ("Address", "Addresses", value ("MESSAGE")):;};

Configuring global syslog-ng options

To set a field of the message to a specific value, define the string to include in the message, and the field where it
should be included. Setting a field can operate on any value available via macros, e.g.,, HOST, MESSAGE, PRO-
GRAM, or any user-defined macros created using parsers (see Section 6.6, “Message parsers” (p. 156) for details.).
Note that this operation completely replaces any previous value of that field. Use the following syntax:

Declaration:
rewrite <name of the rule>
{set ("<string to include>", value(<field name>));};
Example 4.42. Setting message fields to a particular value
The following example sets the HOST field of the message to myhost.

rewrite r rewrite set{set ("myhost", value("HOST"));};
The following example sets the sequence ID field of the RFC5424-formatted (IETF-syslog) messages to a fixed value.

rewrite r sd { set("55555" value (".SDATA.meta.sequenceId")); };

4.11. Configuring global syslog-ng options

The syslog-ng application has a number of global options governing DNS usage, the timestamp format used, and
other general points. Each option may have parameters, similarly to driver specifications. To set global options,
add an option statement to the syslog-ng configuration file using the following syntax:

options { optionl (params); option2 (params); ... };

Example 4.43. Using global options
To disable domain name resolving, add the following line to the syslog-ng configuration file:

options { use dns(no); };
For a detailed list of the available options, see Section 6.9, “Global options” (p. 169). See Chapter 5, Best practices
and examples (p. 86) for important global options and recommendations on their use.
4.12. Encrypting log messages with TLS

This section describes how to configure TLS encryption in syslog-ng. For the concepts of using TLS in syslog-ng,
see Section 2.7, “Secure logging using TLS” (p. 11).

Create an X.509 certificate for the syslog-ng server.

p Note
'/ The subject alt name parameter (or the Common Name parameter if the subject alt name parameter is
'S empty) of the server's certificate must contain the hostname or the IP address (as resolved from the syslog-ng clients and relays)

of the server (e.g, syslog-ng.example.com).

Alternatively, the Common Name or the subject alt name parameter can contain a generic hostname, e.g.,
* . example.com.

Encrypting log messages with TLS

Note that if the Common Name of the certificate contains a generic hostname, do not specify a specific hostname or an IP
address in the subject alt name parameter.

Complete the following steps on every syslog-ng client host. Examples are provided using both the legacy BSD-
syslog protocol (using the tcp () driver) and the new IETF-syslog protocol standard (using the syslog ()
driver):

Procedure 4.1. Configuring TLS on the syslog-ng clients

1. Copy the CA certificate (e.g., cacert.pem) of the Certificate Authority that issued the certificate of the
syslog-ng server to the syslog-ng client hosts, for example into the
/opt/syslog-ng/etc/syslog-ng/ca.d directory.

Issue the following command on the certificate: openssl x509 -noout -hash -in cacert.pem The result is a
hash (e.g., 6d2962a8), a series of alphanumeric characters based on the Distinguished Name of the certificate.

Issue the following command to create a symbolic link to the certificate that uses the hash returned by the
previous command and the . O suffix.

In -s cacert.pem 6d2962a8.0

2. Add a destination statement to the syslog-ng configuration file that uses the tls/(
ca dir(path to ca directory)) option and specify the directory using the CA certificate. The
destination must use the tcp () or tcpvé () destination driver, and the IP address and port parameters of
the driver must point to the syslog-ng server.

Example 4.44. A destination statement using TLS
The following destination encrypts the log messages using TLS and sends them to the 6514 /TCP port of the syslog-
’ ng server having the 70. 1. 2. 3 IP address.

destination demo tls destination ({
tcp("10.1.2.3" port(6514)
tls(ca dir("/opt/syslog-ng/etc/syslog-ng/ca.d"))); };

A similar statement using the IETF-syslog protocol and thus the syslog () driver:

destination demo tls syslog destination { syslog("10.1.2.3" port(6514)
transport ("tls")
port (3214)
tls(ca dir ("/opt/syslog-ng/etc/syslog-ng/ca.d")));

3. Include the destination created in Step 2 in a log statement.

Warning

> 4 The encrypted connection between the server and the client fails if the Common Name or the subject alt name
parameter of the server certificate does not contain the hostname or the IP address (as resolved from the syslog-ng
clients and relays) of the server.

Do not forget to update the certificate files when they expire.

Encrypting log messages with TLS

Complete the following steps on the syslog-ng server:

Procedure 4.2. Configuring TLS on the syslog-ng server

1. Copy the certificate (e.g, syslog-ng. cert) of the syslog-ng server to the syslog-ng server host, for example
into the /opt/syslog-ng/etc/syslog-ng/cert.d directory. The certificate must be a valid X.509
certificate in PEM format.

2. Copy the private key (e.g., syslog—-ng. key) matching the certificate of the syslog-ng server to the syslog-
ng server host, for example into the /opt/syslog-ng/etc/syslog-ng/key.d directory. The key
must be in PEM format, and must not be password-protected.

3. Add a source statement to the syslog-ng configuration file that uses the tls/(
key file(key file fullpathname) cert file(cert file fullpathname)) option
and specify the key and certificate files. The source must use the soutrce driver (tcp () or tcpvé ())
matching the destination driver used by the syslog-ng client.

Example 4.45. A source statement using TLS
The following soutce receives log messages encrypted using TLS, artiving to the 1999/TCP pott of any interface of
’ the syslog-ng server.

source demo_tls source ({
tcp(ip(0.0.0.0) port(1999)
tls(
key file("/opt/syslog-ng/etc/syslog-ng/key.d/syslog-ng.key")

cert file("/opt/syslog-ng/etc/syslog-ng/cert.d/syslog-ng.cert"))); };
A similar source for receiving messages using the IETF-syslog protocol:
source demo_tls syslog source ({

syslog(ip(0.0.0.0) port(1999)

transport ("tls")

tls(
key file("/opt/syslog-ng/etc/syslog-ng/key.d/syslog-ng.key")

cert file("/opt/syslog-ng/etc/syslog-ng/cert.d/syslog-ng.cert"))); };

4. Disable mutual authentication for the source by setting the following TLS option in the source statement:
tls(peer verify(optional-untrusted)
To configure mutual authentication, see Section 4.13, “Mutual authentication using TLS” (p. 79).

Example 4.46. Disabling mutual authentication
The following source receives log messages encrypted using TLS, artiving to the 2999/TCP port of any interface of
’ the syslog-ng server. The identity of the syslog-ng client is not verified.

source demo_tls source {
tcp(ip(0.0.0.0) port(1999)
tls(
key file("/opt/syslog-ng/etc/syslog-ng/key.d/syslog-ng.key")

cert file("/opt/syslog-ng/etc/syslog-ng/cert.d/syslog-ng.cert")
peer verify(optional-untrusted))); };

A similar source for receiving messages using the IETF-syslog protocol:

Mutual authentication using TLS *

source demo_tls syslog source ({
syslog(ip(0.0.0.0) port(1999)
transport ("tls")
tls(

key file("/opt/syslog-ng/etc/syslog-ng/key.d/syslog-ng.key")

cert file("/opt/syslog-ng/etc/syslog-ng/cert.d/syslog-ng.cert")
peer verify(optional-untrusted))); };

3 Warning
Do not forget to update the certificate and key files when they expire.

For the details of the available t1s () options, see Section 6.10, “TLS options” (p. 173).

4.13. Mutual authentication using TLS

This section describes how to configure mutual authentication between the syslog-ng server and the client. Config-
uring mutual authentication is similar to configuring TLS (see Section 4.12, “Encrypting log messages with
TLS” (p. 76)), but the server verifies the identity of the client as well. Therefore, each client must have a certificate,
and the server must have the certificate of the CA that issued the certificate of the clients. For the concepts of using
TLS in syslog-ng, see Section 2.7, “Secure logging using TLS” (p. 11).

Complete the following steps on every syslog-ng client host. Examples are provided using both the legacy BSD-

syslog protocol (using the tcp () driver) and the new IETF-syslog protocol standard (using the syslog ()
driver):

Procedure 4.3. Configuring TLS on the syslog-ng clients

1.
2.

Create an X.509 certificate for the syslog-ng client.

Copy the certificate (e.g, client cert.pem) and the matching private key (e.g,, client. key) to the
syslog-ng client host, for example into the /opt/syslog-ng/etc/syslog-ng/cert.d directory.
The certificate must be a valid X.509 certificate in PEM format and must not be password-protected.

Copy the CA certificate of the Certificate Authority (e.g,, cacert .pem) that issued the certificate of the
syslog-ng server to the syslog-ng client hosts, for example into the
/opt/syslog-ng/etc/syslog-ng/ca.d directory.

Issue the following command on the certificate: openssl x509 -noout -hash -in cacert.pem The result is a
hash (e.g., 6d2962a8), a series of alphanumeric characters based on the Distinguished Name of the certificate.

Issue the following command to create a symbolic link to the certificate that uses the hash returned by the
previous command and the . 0 suffix.

In -s cacert.pem 6d2962a8.0

Add a destination statement to the syslog-ng configuration file that wuses the tls{(
ca dir(path to ca directory)) optionand specify the directory using the CA certificate. The
destination must use the tcp () or tcpvé () destination driver, and the IP address and port parameters of

Mutual authentication using TLS *

the driver must point to the syslog-ng setver. Include the client's certificate and private key in the t1s ()
options.

Example 4.47. A destination statement using mutual authentication

The following destination encrypts the log messages using TLS and sends them to the 1999/TCP port of the syslog-
’ ng server having the 10.1.2. 3 IP address. The private key and the certificate file authenticating the client is also
specified.

destination demo tls destination ({
tcp("10.1.2.3" port(1999)
tls(ca dir("/opt/syslog-ng/etc/syslog-ng/ca.d")
key file("/opt/syslog-ng/etc/syslog-ng/key.d/client.key")
cert file("/opt/syslog-ng/etc/syslog-ng/cert.d/client cert.pem"))
)i)i

destination demo tls syslog destination ({
syslog("10.1.2.3" port(1999)
transport ("tls")
tls(ca dir("/opt/syslog-ng/etc/syslog-ng/ca.d")
key file("/opt/syslog-ng/etc/syslog-ng/key.d/client.key")

cert file("/opt/syslog-ng/etc/syslog-ng/cert.d/client cert.pem"))); };

Include the destination created in Step 2 in a log statement.

Warning

> 4 The encrypted connection between the server and the client fails if the Common Name or the subject alt name
parameter of the server certificate does not the hostname or the IP address (as resolved from the syslog-ng clients and
relays) of the server.

Do not forget to update the certificate files when they expire.

Complete the following steps on the syslog-ng server:

Procedure 4.4. Configuring TLS on the syslog-ng server

1.

Copy the certificate (e.g, syslog—ng. cert) of the syslog-ng server to the syslog-ng server host, for example
into the /opt/syslog-ng/etc/syslog-ng/cert.ddirectory. The certificate must be a valid X.509
certificate in PEM format.

Copy the CA certificate (e.g, cacert .pem) of the Certificate Authority that issued the certificate of the
syslog-ng clients to the syslog-ng servet, for example into the /opt/syslog-ng/etc/syslog-ng/ca.d
directory.

Issue the following command on the certificate: openssl x509 -noout -hash -in cacert.pem The result is a
hash (e.g., 6d2962a8), a series of alphanumeric characters based on the Distinguished Name of the certificate.

Issue the following command to create a symbolic link to the certificate that uses the hash returned by the
previous command and the . 0 suffix.

In -s cacert.pem 6d2962a8.0

Configuring syslog-ng clients

3. Copy the private key (e.g, syslog-ng. key) matching the certificate of the syslog-ng server to the syslog-
ng server host, for example into the /opt/syslog-ng/etc/syslog-ng/key.d directory. The key
must be in PEM format, and must not be password-protected.

4. Add a source statement to the syslog-ng configuration file that wuses the tls{(
key file(key file fullpathname) cert file(cert file fullpathname)) option
and specify the key and certificate files. The source must use the source driver (tcp () or tcpvé ())
matching the destination driver used by the syslog-ng client. Also specify the directory storing the certificate
of the CA that issued the client's certificate.

Example 4.48. A source statement using TLS
The following source receives log messages encrypted using TLS, arriving to the 1999/TCP port of any interface of
3 the syslog-ng server.

source demo_ tls source {
tcp(ip(0.0.0.0) port(1999)
tls(
key file("/opt/syslog-ng/etc/syslog-ng/key.d/syslog-ng.key")

cert file("/opt/syslog-ng/etc/syslog-ng/cert.d/syslog-ng.cert")
ca dir ("/opt/syslog-ng/etc/syslog-ng/ca.d"))); };

A similar source for receiving messages using the IETF-syslog protocol:

source demo_tls syslog source ({
syslog(ip(0.0.0.0) port(1999)
transport ("tls")
tls(

key file("/opt/syslog-ng/etc/syslog-ng/key.d/syslog-ng.key")

cert file("/opt/syslog-ng/etc/syslog-ng/cert.d/syslog-ng.cert")
ca dir ("/opt/syslog-ng/etc/syslog-ng/ca.d"))); };

3 Warning
Do not forget to update the certificate and key files when they expire.

For the details of the available t1s () options, see Section 6.10, “TLS options” (p. 173).
4.14. Configuring syslog-ng clients

To configure syslog-ng on a client host, complete the following steps:

Procedure 4.5. Configuring syslog-ng on client hosts

1. Install the syslog-ng application on the host. See Chapter 3, Installing syslog-ng (p. 26) for details installing syslog-
ng on specific operating systems.

2. Configure the local sources that collect the log messages of the host.
Create a network destination that points directly to the syslog-ng server, or to a local relay.

4. Create a log statement connecting the local sources to the syslog-ng server or relay.

Configuring syslog-ng relays

5. If the logs will also be stored locally on the host, create local file destinations.
6. Create a log statement connecting the local sources to the file destination.

7. Set filters and options (e.g., TLS encryption) as necessary.

Example 4.49. A simple configuration for clients
The following is a simple configuration file that collects local log messages and forwards them to a logserver using the IETF-

; syslog protocol.

@version:3.0
options {
mark freq(30);

}i
source s _local { unix-stream("/dev/log"); internal(); };
destination d syslog tcp {

syslog("192.168.1.1" transport ("tcp") port (2010)) ;
}i

log { source(s_local);destination(d syslog tcp); };

4.15. Configuring syslog-ng relays

To configure syslog-ng on a relay host, complete the following steps:

Procedure 4.6. Configuring syslog-ng on relay hosts

1. Install the syslog-ng application on the host. See Chapter 3, Installing syslog-ng (p. 26) for details installing syslog-
ng on specific operating systems.

Configure the network sources that collect the log messages sent by the clients.
Create a network destination that points to the syslog-ng server.

Create a log statement connecting the network sources to the syslog-ng server.
Configure the local sources that collect the log messages of the relay host.

Create a log statement connecting the local sources to the syslog-ng server.

A o

Set filters and options (e.g., TLS encryption) as necessary.

Note

By default, the syslog-ng server will treat the relayed messages as if they were created by the relay host, not the host
that originally sent them to the relay. In order to use the original hostname on the syslog-ng server, use the
keep hostname (yes) option both on the syslog-ng relay and the syslog-ng relay. This option can be set individually
for every source if needed.

In relay mode, syslog-ng cannot write messages received from network sources into files; the £ile () destination
is disabled. The following sources are network sources: syslog (), tcp (), tcp6 (), udp (), udpb ().

Configuring syslog-ng servers

Example 4.50. A simple configuration for relays
The following is a simple configuration file that collects local and incoming log messages and forwards them to a logserver
’ using the IETF-syslog protocol.

@version:3.0

options {
mark freqg(30);
keep hostname (yes) ;

}i

source s local { unix-stream("/dev/log"); internal(); };
source s_network { syslog(transport (tcp))};

destination d syslog tcp {

syslog("192.168.1.5" transport ("tcp") port (2010)
) i

}i

log { source(s_local); source (s _network);
destination (d syslog tcp); };

4.16. Configuring syslog-ng servers

To configure syslog-ng on a server host, complete the following steps:

Procedure 4.7. Configuring syslog-ng on server hosts

1. Install the syslog-ng application on the host. See Chapter 3, Installing sysiog-ng (p. 26) for details installing syslog-
ng on specific operating systems.

Configure the network sources that collect the log messages sent by the clients and relays.
Create local destinations that will store the log messages, e.g., files or programs.

Create a log statement connecting the network sources to the local destinations.
Configure the local sources that collect the log messages of the syslog-ng server.

Create a log statement connecting the local sources to the local destinations.

A B

Set filters, options (e.g., TLS encryption) and other advanced features as necessary.

Note

By default, the syslog-ng server will treat the relayed messages as if they were created by the relay host, not the host
that originally sent them to the relay. In order to use the original hostname on the syslog-ng server, use the
keep hostname (yes) option both on the syslog-ng relay and the syslog-ng relay. This option can be set individually
for every source if needed.

Example 4.51. A simple configuration for servers
The following is a simple configuration file for syslog-ng Open Source Edition that collects incoming log messages and stores
; them in a text file.

@version:3.0
options {
time reap (30);
mark freg(10);

Troubleshooting syslog-ng

keep hostname (yes) ;

}i

source s local { unix-stream("/dev/log"); internal();};
source s_network { syslog(transport (tcp))};

destination d _logs {
file(
"/var/log/syslog-ng/logs.txt"
owner ("root")
group ("root")
perm (0777)
)i i

log { source(s_local); source(s_network); destination(d logs); };

4.17. Troubleshooting syslog-ng

This section provides tips and guidelines about troubleshooting problems related to syslog-ng.

Tip
Q D g As a general rule, first try to get logging the messages to a local file. Once this is working, you know that syslog-ng is running
[e correctly and receiving messages, and you can proceed to forwarding the messages to the server.

If the syslog-ng server does not receive the messages, use tcpdump or a similar packet sniffer tool on the client to verify that
the messages are sent correctly, and on the server to verify that it receives the messages.

If syslog-ng is closing the connections for no apparent reason, be sure to check the log messages of syslog-ng. You might
also want to run syslog-ng with the ——verbose or —-debug command-line options for more-detailed log messages.
Starting from syslog-ng OSE version 3.1, you can enable these messages without restarting syslog-ng using the syslog-ng-ctl
verbose --set=on command. See the syslog-ng-ctl man page for details at syslog-ng-ctl(1) (p. 192).

Similatly, build up encrypted connections step-by-step: first create a working unencrypted (e.g, TCP) connection, then add
TLS encryption, and finally client authentication if needed.

4.17.1. Creating syslog-ng core files

When syslog-ng crashes for some reason, it can create a core file that contains important troubleshooting information.
To enable core files, complete the following procedure:

Procedure 4.8. Creating syslog-ng core files

1. Core files are produced only if the maximum core file size ulimitis setto a high value in the init

script of syslog-ng. Add the following line to the init script of syslog-ng:

ulimit -c unlimited

2. Verify that syslog-ng has permissions to write the directory it is started from, e.g;, /opt/syslog-ng/sbin/.
3. If syslog-ng crashes, it will create a core file in the directory syslog-ng was started from.

4. To test that syslog-ng can create a core file, you can create a crash manually. For this, determine the PID of
syslog-ng (e.g., using the ps -All | grep syslog-ng command), then issue the following command: kill -ABRT
<syslog-ng pid>

Running a failure script *

This should create a core file in the current working directory.

4.17.2. Running a failure script

When syslog-ng is abnormally terminated, it can execute a user-created failure script. This can be used for example
to send an automatic e-mail notification. The script must be located at
/opt/syslog-ng/sbin/syslog-ng-failure.

4.17.3. Stopping syslog-ng

To avoid problems, always use the init scripts to stop syslog-ng (/etc/init.d/syslog-ng stop),instead
of using the kill command. This is especially true on Solatis and HP-UX systems, here use /etc/init.d/syslog
stop.

General recommendations *

Chapter 5. Best practices and examples

This chapter discusses some special examples and recommendations.
5.1. General recommendations

This section provides general tips and recommendations on using syslog-ng. Some of the recommendations are
detailed in the subsequent sections.

m Do not base the separation of log messages into different files on the facility parameter. As several
applications and processes can use the same facility, the facility does not identify the application that
sent the message. By default, the facility parameter is not even included in the log message itself.
In general, sorting the log messages into several different files can make finding specific log messages
difficult. If you must create separate log files, use the application name.

m Standard log messages include the local time of the sending host, without any time zone information.
It is recommended to replace this timestamp with an ISODATE timestamp, because the ISODATE
format includes the year and timezone as well. To convert all timestamps to the ISODATE format, include
the following line in the syslog-ng configuration file:

options {ts format (iso) };

m Resolving the IP addresses of the clients to domain names can decrease the performance of syslog-ng;
See Section 5.4, “Using name resolution in syslog-ng” (p. 87) for details.

5.2. Handling lots of parallel connections

When syslog-ng is receiving messages from a large number of TCP or unix-stream connections, the CPU usage of
syslog-ng might increase even if the number of messages is low. By default, syslog-ng processes every message
when it is received. To reduce the CPU usage, process the incoming messages in batches. To accomplish this, instruct
syslog-ng to wait for a short time before processing a message. During this period additional messages might arrive
that can be processed together with the original message. To process log messages in batches, set the
time sleep () option (measured in milliseconds) to a non-zero value. Include the following line in your syslog-
ng configuration:

options { time sleep(20); };

/° Note
\/ ‘ It is not recommended to increase the time sleep () parameter above 100ms, as that might distort timestamps, slow

down syslog-ng, and cause messages to be dropped.

When modifying the time sleep () option,alsoadjustthe log fetch limit ()and log fifo size () options
accordingly.

Handling large message load *

The max connections () parameter limits the number of parallel connections for the source.

If adjusting the time sleep () option is not desired for some reason, an alternative solution is to use
unix-stream(), udp () and unix-dgram () sources instead of tcp () connections.

5.3. Handling large message load

This section provides tips on optimizing the performance of syslog-ng. Optimizing the performance is important
for syslog-ng hosts that handle large traffic.

m Disable DNS resolution, or resolve hostnames locally. See Section 5.4, “Using name resolution in syslog-
ng” (p. 87) for details.

m Enable flow-control for the TCP sources. See Section 2.12, “Managing incoming and outgoing messages
with flow-control” (p. 16) for details.

m Do notuse the usertty () destination driver. Under heavy load, the users are not be able to read the
messages from the console, and it slows down syslog-ng,

m Do not use regular expressions in our filters. Evaluating general regular expressions puts a high load on
the CPU. Use simple filter functions and logical operators instead. See Section 4.6.2, “Optimizing regular
expressions in filters” (p. 68) for details.

m When receiving lots of messages using the UDP protocol, increase the size of the UDP receive buffer
on the syslog-ng hosts. For information about sizing and modifying the UDP buffer, see
http:/ /www.29west.com/docs/ THPM/udp-buffer-sizing. html.

5.4. Using name resolution in syslog-ng

The syslog-ng application can resolve the hostnames of the clients and include them in the log messages. However,
the performance of syslog-ng is severely degraded if the domain name server is unaccessible or slow. Therefore, it
is not recommended to resolve hostnames in syslog-ng. If you must use name resolution from syslog-ng, consider
the following:

m Use DNS caching. Verify that the DNS cache is large enough to store all important hostnames. (By default,
the syslog-ng DNS cache stores 100 7 entries.)

options { dns cache (2000); };
m If the IP addresses of the clients change only rarely, set the expiry of the DNS cache large.
options { dns cache expire (87600); };

m If possible, resolve the hostnames locally. See Section 5.4.1, “Resolving hostnames locally ” (p. 88) for
details.

4
\2*

Note
Domain name resolution is important mainly in relay and server mode.

http://www.29west.com/docs/THPM/udp-buffer-sizing.html

Resolving hostnames locally

5.4.1. Resolving hostnames locally

Resolving hostnames locally enables you to display hostnames in the log files for frequently used hosts, without
having to rely on a DNS server. The known IP address — hostname pairs are stored locally in a file. In the log
messages, syslog-ng will replace the IP addresses of known hosts with their hostnames. To configure local name
resolution, complete the following steps:

Procedure 5.1. Resolving hostnames locally

1. Add the hostnames and the respective IP addresses to the file used for local name resolution. On Linux and
UNIX systems, this is the /et c/hosts file. Consult the documentation of your operating system for details.

2. Instruct syslog-ng to resolve hostnames locally. Set the use dns () option of syslog-ng to persist only.

3. Setthe dns cache hosts () option to point to the file storing the hostnames.

options {
use dns (persist only);
dns cache hosts(/etc/hosts); };

5.5. Collecting logs from chroot

To collect logs from a chroot using a syslog-ng client running on the host, complete the following steps:

Replacing klogd on Linux

syslog-ng host
¢S W S S S S S S S S S S S S S S Sy,

applications

Log
[

‘ messages

Idevilog [

|| & source #1

L1 2 source #2

I— Log paths Jees & Destinations JIl

[|
|
| syslog-ng client
|
[

chroot (ivarichroot)

Idevilog [T

Log

messages ‘

chrooted
applications

v 1 ' ! ! ! /! | | | | | "
1 1 | | | ________’

L ' ' ' ! ! ! |/ ! | | | [| | -,

Figure 5.1. Collecting logs from chroot

Procedure 5.2. Collecting logs from chroot

1. Create a /dev directory within the chroot. The applications running in the chroot send their log messages
here.

2. Create a local source in the configuration file of the syslog-ng application running outside the chroot. This
source should point to the /dev/1og file within the chroot (e.g., to the /chroot/dev/log ditectory).

3. Include the source in a log statement.

Note
You need to set up timezone information within your chroot as well. This usually means creating a symlink to
/etc/localtime.

5.6. Replacing klogd on Linux

The syslog-ng application can replace both the syslogd and klogd daemons on Linux hosts. To replace klogd,
complete the following steps:

A note on timezones and timestamps *

Procedure 5.3. Replacing klogd on Linux

1. Add a file source pointing to /proc/kmsg to the syslog-ng configuration file.

source s_kmsg { file("/proc/kmsg"); };

3 Warning
Do notuse a pipe source to read /proc/kmsg; pipe opens the source in read-write mode and this may cause problems
when using SELinux or similar security measures.

2. Include the source defined in Step 1 in a log path.
3. Stop klogd.

Warning
> 4 Do not run klogd and syslog-ng simultaneously when using syslog-ng to read /proc/kmsg, as it might block syslog-

ng.

5.7. A note on timezones and timestamps

If the clients run syslog-ng, then use the ISO timestamp, because it includes timezone information. That way you
do not need to adjust the recv_time zone () parameter of syslog-ng

If you want syslog-ng to output timestamps in Unix (POSIX) time format, use the S UNIXTIME and R UNIXTIME
macros. You do not need to change any of the timezone related parameters, because the timestamp information
of incoming messages is converted to Unix time internally, and Unix time is a timezone-independent time repres-
entation. (Actually, Unix time measures the number of seconds elapsed since midnight of Coordinated Universal
Time (UTC) January 1, 1970, but does not count leap seconds.)

5.8. Dropping messages

To skip the processing of a message without sending it to a destination, create a log statement with the appropriate
filters, but do not include any destination in the statement, and use the final flag.

Example 5.1. Skipping messages
The following log statement drops all debug level messages without any further processing.

filter demo debugfilter { level (debug); };
log { source(s_all); filter (demo debugfilter); flags(final); };

Source drivers *

Chapter 6. Reference

This chapter documents the drivers and options that can be used in the configuration file. For details on how to
use syslog-ng, see Chapter 4, Configuring syslog-ng (p. 40).

6.1. Source drivers

6.1.1. internal()

All messages generated internally by syslog-ng use this special source. To collect warnings, errors and notices from
syslog-ng itself, include this source in one of your source statements.

Note
Internal messages always use the local timezone of the host.

internal ()

This driver does not have any parameters.

Example 6.1. Using the internal() driver

; source s_local { internal(); };

6.1.2. file()

Collects log messages from plain-text files. The file driver has a single required parameter specifying the file to
open.

Declaration:
file(filename) ;

Note

If the message does not have a proper syslog header, syslog-ng treats messages received from files as sent by the ke rn facility.
Use the default-facility and default-priority options in the source definition to assign a different facility
if needed.

The file () driver has the following options:

multi-line,
no-parse,
store-leg-
acy-msgh-
dr, syslog-
protocol,
validate-
utf8

Name Type Default Description
default-facility() [facility|kern This parameter assigns a facility value to the messages
string received from the file source, if the message does not
specify one.
default-priority() |priority This parameter assigns an emergency level to the mes-
string sages received from the file source, if the message does
not specify one.
file filename The file to read messages from.
with path
encoding() string Specifies the characterset (encoding, e.g., UTF-8) of
messages using the legacy BSD-syslog protocol. To list
the available character sets on a host, execute the iconv
-1 command.
flags() em p ty -|empty set Specifies the log parsing options of the source.
lines, ker-
nel no- Use the empty-1ines flag to keep the empty lines

of the messages. By default, syslog-ng removes empty
lines automatically.

The kernel flag makes the source default to the
LOG KERN | LOG CRIT priority if not specified
otherwise.

The no-multi-1ine flag disables line-breaking in
the messages; the entire message is converted to a single
line.

By default, syslog-ng parses incoming messages as sys-
log messages. If a source does not send propetly
formatted messages, use the no—parse flag to disable
message parsing for the source. As a result, syslog-ng
will generate a new syslog header and put the entire
incoming message into the MSG part of the syslog
message.

The no-parse flag completely disables syslog mes-
sage parsing and processes the complete line as the
message part of a syslog message. Other information
(timestamp, host, etc.) is added automatically. This flag
is useful for parsing files not complying to the syslog
format.

If the store-legacy-msghdr flag is enabled,
syslog-ng stores the original incoming header of the
log message. This is useful of the original format of a
non-syslog-compliant message must be retained (syslog-
ng automatically corrects minor header errors, e.g., adds

Name

Type

Default

Description

a whitespace before msg in the following message:
Jan 22 10:06:11 host program:msg).
Note that store-legacy-msghdr should be en-
abled when receiving messages from syslog-ng Agent
for Windows clients that use the Snare-compatible
mode.

The syslog-protocol flag specifies that incoming
messages are expected to be formatted according to
the new IETF syslog protocol standard. Note that this
flag is not needed for the syslog driver.

The validate-ut £8 flagenables encoding-verific-
ation for messages formatted according to the new
IETF syslog standard (see Section 2.15.2, “IETF-syslog
messages” (p. 22) for details). If the BOM character
is missing, but the message is otherwise UTF-8 compli-
ant, syslog-ng automatically adds the BOM character
to the message.

follow_freq()

number

Indicates that the source should be checked periodically
instead of being polled. This is useful for files which
always indicate readability, even though no new lines
were appended. If this value is higher than zero, syslog-
ng will not attempt to use poll () on the file, but
checks whether the file changed every time the
follow freq() interval (in seconds) has elapsed.
Floating-point numbers (e.g, 1. 5) can be used as well.

keep_timestamp()

yes or no

yes

Specifies whether syslog-ng should accept the
timestamp received from the sending application or
client. If disabled, the time of reception will be used
instead. This option can be specified globally, and per-
source as well. The local setting of the source overrides
the global option if available.

log msg size () op-
tion, which defaults to
8192

log_fetch_limit() |number |The value specified by the[The maximum number of messages fetched from a
g I o b a 1 [sourceduringasingle poll loop. The destination queues
log fetch limit () |might fill up before flow-control could stop reading if|
option, which defaults to|log fetch limit () is too high.

10.

log_iw_size() number |100 The size of the initial window, this value is used during

flow control.

log_msg_size() |number [Use the global|Specifies the maximum length of incoming log mes-

sages. Uses the value of the global option if not spe-
cified.

Name

Type

Default

Description

log_prefix() (DE-
PRECATED)

string

A string added to the beginning of every log message.
It can be used to add an arbitrary string to any log
source, though it is most commonly used for adding
kernel: to the kernel messages on Linux. NOTE:
This option s deprecated. Use
program override () instead.

optional()

yes or no

Instruct syslog-ng to ignore the error if a specific source
cannot be initialized. No other attempts to initialize the
source will be made until the configuration is reloaded.
This option currently applies to the pipe (),
unix-dgram, and unix-streamdrivers.

pad_size()

number

Specifies input padding. Some operating systems (such
as HP-UX) pad all 0 messages to block boundary. This
option can be used to specify the block size. (HP-UX
uses 2048 bytes). Syslog-ng will pad reads from the as-
sociated device to the number of bytes set in
pad size(). Mostly used on HP-UX where
/dev/1log isanamed pipe and every write is padded
to 2048 bytes.

program_override

string

Replaces the SPROGRAM part of the message with
the parameter string. For example, to mark every mes-
sage coming from the kernel, include the
program override ("kernel") optionin the
source containing /proc/kmsg. NOTE: This option
replaces the deprecated 1og prefix () option.

tags()

string

Label the messages received from the source with cus-
tom tags. Tags must be unique, and enclosed between
double quotes. When adding multiple tags, separate
them with comma, eg, tags ("dmz",
"router"). This option is available only in syslog-
ng 3.1 and later.

time_zone()

timezone
in the form
+ /-
HH:MM

The default timezone for messages read from the
source. Applies only if no timezone is specified within
the message itself.

e

Example 6.2. Using the file() driver

Table 6.1. Options of the file() sources

source s file { file("/var/log/messages"};

Example 6.3. Tailing files
The following source checks the access . 1og file every second for new messages.

source s _tail { file("/var/log/apache/access.log"
follow freq(l) flags(no-parse)); };

6.1.3. pipe()

The pipe driver opens a named pipe with the specified name and listens for messages. It is used as the native message
delivery protocol on HP-UX.

The pipe driver has a single required parameter, specifying the filename of the pipe to open.
Declaration:

pipe (filename) ;

Note
As of syslog-ng Open Source Edition 3.0.2, pipes are created automatically. In earlier versions, you had to create the pipe
using the mkfifo(1) command.

The pipe driver has the following options:

Name Type Default Description
flags() emp ty -|empty set Specifies the log parsing options of the source.
lines, ket-
nel, no- Use the empty-1ines flag to keep the empty lines
multi-line, of the messages. By default, syslog-ng removes empty
no-parse, lines automatically.
leo-
Zzoffnseﬁ— The kernel flag makes the source default to the
y-msg LOG KERN | LOG CRIT ptiority if not specified
dr, syslog- — —
’ otherwise.
protocol,
vafgid ate- The no-multi-1ine flag disables line-breaking in
ut

the messages; the entire message is converted to a single
line.

By default, syslog-ng parses incoming messages as syslog
messages. If a source does not send properly formatted
messages, use the no—parse flag to disable message
parsing for the source. As a result, syslog-ng will gener-
ate a new syslog header and put the entire incoming
message into the MSG part of the syslog message.

The no-parse flag completely disables syslog mes-
sage parsing and processes the complete line as the
message part of a syslog message. Other information
(timestamp, host, etc.) is added automatically. This flag
is useful for parsing files not complying to the syslog
format.

If the store-legacy-msghdr flag is enabled,
syslog-ng stores the original incoming header of the log
message. This is useful of the original format of a non-
syslog-compliant message must be retained (syslog-ng
automatically corrects minor header errors, e.g., adds a
whitespace before msg in the following message: Jan
22 10:06:11 host program:msg).Note that
store-legacy-msghdr should be enabled when
receiving messages from syslog-ng Agent for Windows
clients that use the Snare-compatible mode.

The syslog-protocol flag specifies that incoming
messages are expected to be formatted according to the
new IETF syslog protocol standard. Note that this flag
is not needed for the sy sIog driver.

The validate-utf8 flagenables encoding-verific-
ation for messages formatted according to the new
IETF syslog standard (see Section 2.15.2, “IETF-syslog
messages” (p. 22) for details). If the BOM character is

Name

Type

Default

Description

missing, but the message is otherwise UTF-8 compliant,
syslog-ng automatically adds the BOM character to the
message.

follow_freq()

number

Indicates that the source should be checked periodically
instead of being polled. This is useful for files which
always indicate readability, even though no new lines
were appended. If this value is higher than zero, syslog-
ng will not attempt to use poll () on the file, but
checks whether the file changed every time the
follow freqg() interval (in seconds) has elapsed.
Floating-point numbers (e.g., 1 . 5) can be used as well.

keep_timestamp()

yes or no

yes

Specifies whether
timestamp received from the sending application or
client. If disabled, the time of reception will be used
instead. This option can be specified globally, and per-

syslog-ng should accept the

source as well. The local setting of the source overrides
the global option if available.

log_fetch_limit() |number |The value specified by the [The maximum number of messages fetched from a
g I o b a 1 [sourceduringa single pollloop. The destination queues
log fetch 1limit () [might fill up before flow-control could stop reading if
option, which defaults to|log fetch limit () is too high.

10.

log_iw_size() number 100 The size of the initial window, this value is used during

flow control.

log_msg size() |number [Use the global|Specifies the maximum length of incoming log mes-
log msg size () op-|sages. Uses the value of the global option if not spe-
tion, which defaults to|cified.

8192.
log_prefix() (DE-|string A string added to the beginning of every log message.
PRECATED) It can be used to add an arbitrary string to any log
source, though it is most commonly used for adding
kernel: to the kernel messages on Linux. NOTE:
This option is deprecated. Use
program override () instead.
optional() yes or no Instruct syslog-ng to ignore the error if a specific source
cannot be initialized. No other attempts to initialize the
source will be made until the configuration is reloaded.
This option currently applies to the pipe(),
unix-dgram, and unix-stream drivers.
pad_size() number |0 Specifies input padding. Some operating systems (such

as HP-UX) pad all 0 messages to block boundary. This
option can be used to specify the block size. (HP-UX

Name

Type

Default

Description

uses 2048 bytes). Syslog-ng will pad reads from the as-
sociated device to the number of bytes set in
pad size (). Mostly used on HP-UX where
/dev/1log is a named pipe and every write is padded
to 2048 bytes.

pipe

filename

with path

The filename of the pipe to read messages from.

program_override

string

Replaces the PROGRAM part of the message with
the parameter string, For example, to mark every mes-
sage coming from the kernel, include the
pbrogram override ("kernel") option in the
source containing /proc/kmsg. NOTE: This option
replaces the deprecated 1og prefix () option.

tags()

string

Label the messages received from the source with cus-
tom tags. Tags must be unique, and enclosed between
double quotes. When adding multiple tags, separate
them with comma, eg, tags ("dmz",
"router"). This option is available only in syslog-
ng 3.1 and later.

time_zone()

timezone
in the form

+ /
HH:MM

The default timezone for messages read from the
source. Applies only if no timezone is specified within
the message itself.

Example 6.4. Using the pipe() driver

Table 6.2. Options of the pipe() sources

;p source s _pipe { pipe("/dev/pipe" pad size (2048)); };

6.1.4. program()

The program driver starts an external application and reads messages from the standard output (stdout) of the ap-
plication. It is mainly useful to receive log messages from daemons that accept incoming messages and convert
them to log messages.

The program driver has a single required parameter, specifying the name of the application to start.

Declaration:

program (filename) ;

Note
The program is restarted automatically if it exits.

The program driver has the following options:

Name Type Default Description
flags() emp ty -|empty set Specifies the log parsing options of the source.
lines, ker-
nel, no- Use the empty-1ines flag to keep the empty lines
multi-line, of the messages. By default, syslog-ng removes empty
no-parse, lines automatically.
leg-
Zzofrensel%l— The kernel flag makes the source default to the
y-msg LOG KERN | LOG CRIT ptiority if not specified
dr, syslog- — -
’ otherwise.
protocol,
vafgid ate- The no-multi-1ine flag disables line-breaking in
ut

the messages; the entire message is converted to a single
line.

By default, syslog-ng parses incoming messages as syslog
messages. If a source does not send propetrly formatted
messages, use the no-parse flag to disable message
parsing for the source. As a result, syslog-ng will gener-
ate a new syslog header and put the entire incoming
message into the MSG part of the syslog message.

The no-parse flag completely disables syslog mes-
sage parsing and processes the complete line as the
message part of a syslog message. Other information
(timestamp, host, etc.) is added automatically. This flag
is useful for parsing files not complying to the syslog
format.

If the store-legacy-msghdr flag is enabled,
syslog-ng stores the original incoming header of the log
message. This is useful of the original format of a non-
syslog-compliant message must be retained (syslog-ng
automatically corrects minor header errors, e.g., adds a
whitespace before msg in the following message: Jan
22 10:06:11 host program:msg).Note that
store-legacy-msghdr should be enabled when
receiving messages from syslog-ng Agent for Windows
clients that use the Snare-compatible mode.

The syslog-protocol flag specifies that incoming
messages are expected to be formatted according to the
new IETF syslog protocol standard. Note that this flag
is not needed for the syslog driver.

The validate-utf8 flagenables encoding-verific-
ation for messages formatted according to the new
IETF syslog standard (see Section 2.15.2, “IETF-syslog
messages” (p. 22) for details). If the BOM character is

Name

Type

Default

Description

missing, but the message is otherwise UTF-8 compliant,
syslog-ng automatically adds the BOM character to the
message.

follow_freq()

number

Indicates that the source should be checked periodically
instead of being polled. This is useful for files which
always indicate readability, even though no new lines
were appended. If this value is higher than zero, syslog-
ng will not attempt to use poll () on the file, but
checks whether the file changed every time the
follow freq() interval (in seconds) has elapsed.
Floating-point numbers (e.g., 1 . 5) can be used as well.

keep_timestamp()

yes or no

yes

Specifies whether
timestamp received from the sending application or
client. If disabled, the time of reception will be used
instead. This option can be specified globally, and per-

syslog-ng should accept the

source as well. The local setting of the source overrides
the global option if available.

log_fetch_limit() |number |The value specified by the |The maximum number of messages fetched from a
g I o b a 1 [sourceduringa single pollloop. The destination queues
log fetch 1limit () |might fill up before flow-control could stop reading if
option, which defaults to|log fetch limit () is too high.

10.

log_iw_size() number 100 The size of the initial window, this value is used during

flow control.

log_msg size() |number [Use the global|Specifies the maximum length of incoming log mes-
log msg size () op-|sages. Uses the value of the global option if not spe-
tion, which defaults to|cified.

8192.
log_prefix() (DE-|string A string added to the beginning of every log message.
PRECATED) It can be used to add an arbitrary string to any log
source, though it is most commonly used for adding
kernel: to the kernel messages on Linux. NOTE:
This option is deprecated. Use
program override () instead.
optional() yes or no Instruct syslog-ng to ignore the error if a specific source
cannot be initialized. No other attempts to initialize the
source will be made until the configuration is reloaded.
This option currently applies to the pipe(),
unix-dgram, and unix-stream drivers.
pad_size() number |0 Specifies input padding. Some operating systems (such

as HP-UX) pad all 0 messages to block boundary. This
option can be used to specify the block size. (HP-UX

sun-streams() driver *

Name Type Default Description

uses 2048 bytes). Syslog-ng will pad reads from the as-
sociated device to the number of bytes set in
pad size(). Mostly used on HP-UX where
/dev/1log is a named pipe and every write is padded
to 2048 bytes.

program filename The name of the application to start and read messages
with path from.
program_override |string Replaces the $PROGRAM part of the message with

the parameter string, For example, to mark every mes-
sage coming from the kernel, include the
program override ("kernel') option in the
source containing /proc/kmsg. NOTE: This option
replaces the deprecated 1og prefix () option.

tags() string Label the messages received from the source with cus-
tom tags. Tags must be unique, and enclosed between
double quotes. When adding multiple tags, separate
them with comma, eg, tags ("dmz",
"router"). This option is available only in syslog-
ng 3.1 and later.

time_zone() timezone The default timezone for messages read from the
in the form source. Applies only if no timezone is specified within
+ /- the message itself.
HH:MM

Table 6.3. Options of the program() source

Example 6.5. Using the program() driver

’ source s _program { program("/etc/init.d/mydaemon"); };

6.1.5. sun-streams() driver

Solaris uses its STREAMS framework to send messages to the syslogd process.

Newer versions of Solaris (2.5.1 and above), use a new IPC in addition to STREAMS, called door to confirm the

delivery of a message. The syslog-ng application supports this new IPC mechanism via the door () option (see
below).

Note
The sun-streams () driver must be enabled when the syslog-ng application is compiled (see ./configure --help).

sun-streams() driver *

The sun-streams () driver has a single required argument specifying the STREAMS device to open, and the
door () option.

Declaration:
sun-streams (name_of the streams device door (filename of the door)):;

sun-streams() driver *

Name Type Default Description

doox() string none Specifies the filename of a door to open, needed on
Solaris above 2.5.1.

sun-streams() driver *

Name Type Default Description

flags() em p ty-|empty set
lines, ker-
nel, no-
multi-line,
no-patse,
store-leg-
acy-msgh-
dr, syslog-
protocol,
validate-
utf8

sun-streams() driver *

Name Type Default Description

Specifies the log parsing options of the source.

Use the empty-1ines flag to keep the empty lines
of the messages. By default, syslog-ng removes empty
lines automatically.

The kernel flag makes the source default to the
LOG KERN | LOG CRIT priotity if not specified
otherwise.

The no-multi-1ine flag disables line-breaking in
the messages; the entire message is converted to a single
line.

By default, syslog-ng parses incoming messages as syslog
messages. If a source does not send properly formatted
messages, use the no-parse flag to disable message
parsing for the source. As a result, syslog-ng will gener-
ate a new syslog header and put the entire incoming
message into the MSG part of the syslog message.

The no-parse flag completely disables syslog message
parsing and processes the complete line as the message
part of a syslog message. Other information (timestamp,
host, etc.) is added automatically. This flag is useful for
parsing files not complying to the syslog format.

If the store-legacy-msghdr flag is enabled,
syslog-ng stores the original incoming header of the log
message. This is useful of the original format of a non-
syslog-compliant message must be retained (syslog-ng
automatically corrects minor header errors, e.g., adds a
whitespace before msg in the following message: Jan
22 10:06:11 host program:msg). Note that
store-legacy-msghdr should be enabled when
receiving messages from syslog-ng Agent for Windows
clients that use the Snare-compatible mode.

The syslog-protocol flagspecifies that incoming
messages are expected to be formatted according to the
new IETF syslog protocol standard. Note that this flag
is not needed for the syslog driver.

The validate-ut£8 flag enables encoding-verific-
ation for messages formatted according to the new
IETF syslog standard (see Section 2.15.2, “IETF-syslog
messages” (p. 22) for details). If the BOM character is
missing, but the message is otherwise UTF-8 compliant,

sun-streams() driver *

Name

Type

Default

Description

syslog-ng automatically adds the BOM character to the
message.

follow_freq()

number

Indicates that the source should be checked periodically
instead of being polled. This is useful for files which
always indicate readability, even though no new lines
were appended. If this value is higher than zero, syslog-
ng will not attempt to use poll () on the file, but
checks whether the file changed every time the
follow freqg() interval (in seconds) has elapsed.
Floating-point numbers (e.g, 1. 5) can be used as well.

keep_timestamp()

yes or no

yes

Specifies whether syslog-ng should accept the timestamp
received from the sending application or client. If dis-
abled, the time of reception will be used instead. This
option can be specified globally, and per-source as well.
The local setting of the source overrides the global op-
tion if available.

log_fetch_limit() |number |The value specified by the|The maximum number of messages fetched from a
g 1 o b a 1 [sourceduringasingle pollloop. The destination queues
log fetch limit () |might fill up before flow-control could stop reading if
option, which defaults to|log fetch limit () is too high.

10.

log_iw_size() number 100 The size of the initial window, this value is used during

tlow control.

log_msg size() |number [Use the global|Specifies the maximum length of incoming log mes-
log msg size () op-|sages. Uses the value of the global option if not spe-
tion, which defaults to|cified.

8192.
log_prefix() (DE-|string A string added to the beginning of every log message.
PRECATED) It can be used to add an arbitrary string to any log
source, though it is most commonly used for adding
kernel: to the kernel messages on Linux. NOTE:
This option is deprecated. Use
program override () instead.
optional() yes or no Instruct syslog-ng to ignore the error if a specific source

cannot be initialized. No other attempts to initialize the
source will be made until the configuration is reloaded.
This option currently applies to the pipe(),
unix-dgram, and unix-stream drivers.

Name

Type

Default

Description

pad_size()

number

0

Specifies input padding. Some operating systems (such
as HP-UX)) pad all 0 messages to block boundary. This
option can be used to specify the block size. (HP-UX
uses 2048 bytes). Syslog-ng will pad reads from the as-
sociated device to the number of bytes set in
pad size(). Mostly used on HP-UX where
/dev/1log is a named pipe and every write is padded
to 2048 bytes.

program_override

string

Replaces the SPROGRAM part of the message with
the parameter string. For example, to mark every mes-
sage coming from the kernel, include the
program override ("kernel") option in the
source containing /proc/kmsg. NOTE: This option
replaces the deprecated 1og prefix () option.

tags() string Label the messages received from the source with cus-
tom tags. Tags must be unique, and enclosed between
double quotes. When adding multiple tags, separate
them with comma, e.g, tags ("dmz",
"router"). This option is available only in syslog-
ng 3.1 and later.
time_zone() timezone The default timezone for messages read from the source.
in the Applies only if no timezone is specified within the
form +/- message itself.
HH:MM

e

6.1.6. syslog()

Example 6.6. Using the sun-streams() driver

Table 6.4. Options for sun-streams

source s_stream { sun-streams ("/dev/log" door ("/etc/.syslog door")); };

This driver enables to receive messages from the network using the new standard syslog protocol and message
format (see Section 2.15.2, “IETF-syslog messages” (p. 22) for details about the protocol). UDP, TCP, and TLS-

encrypted TCP can all be used to transport the messages.

Declaration:

syslog (ip ()

port ()

transport ()

options());

Name Type Default Description
flags() em p ty -[empty set Specifies the log parsing options of the source.
lines, ker-
nel, no- Use the empty-1ines flag to keep the empty lines
multi-line, of the messages. By default, syslog-ng removes empty
no-parse, lines automatically.
leo-
:::Offnsii— The kernel flag makes the source default to the
yTmes LOG KERN | LOG CRIT priotity if not specified
dr, syslog- — -
’ otherwise.
protocol,
v afg date- The no-multi-1ine flag disables line-breaking in
ut

the messages; the entire message is converted to a single
line.

By default, syslog-ng parses incoming messages as sys-
log messages. If a source does not send properly
formatted messages, use the no—parse flag to disable
message parsing for the source. As a result, syslog-ng
will generate a new syslog header and put the entire
incoming message into the MSG part of the syslog
message.

The no-parse flag completely disables syslog mes-
sage parsing and processes the complete line as the
message part of a syslog message. Other information
(timestamp, host, etc.) is added automatically. This flag
is useful for parsing files not complying to the syslog
format.

If the store-legacy-msghdr flag is enabled,
syslog-ng stores the original incoming header of the
log message. This is useful of the original format of a
non-syslog-compliant message must be retained (syslog-
ng automatically corrects minor header errors, e.g., adds
a whitespace before msg in the following message:
Jan 22 10:06:11 host program:msg).
Note that store-1legacy-msghdr should be en-
abled when receiving messages from syslog-ng Agent
for Windows clients that use the Snare-compatible
mode.

The syslog-protocol flag specifies that incoming
messages are expected to be formatted according to
the new IETF syslog protocol standard. Note that this
flag is not needed for the syslog driver.

The validate-ut£8 flag enables encoding-verific-
ation for messages formatted according to the new

Name Type Default Description

IETF syslog standard (see Section 2.15.2, “IETF-syslog
messages” (p. 22) for details). If the BOM character
is missing, but the message is otherwise UTF-8 compli-
ant, syslog-ng automatically adds the BOM character

to the message.

follow_freq() number |1 Indicates that the source should be checked periodically
instead of being polled. This is useful for files which
always indicate readability, even though no new lines
were appended. If this value is higher than zero, syslog-
ng will not attempt to use poll () on the file, but
checks whether the file changed every time the
follow freq() interval (in seconds) has elapsed.
Floating-point numbers (e.g;, 1. 5) can be used as well.

host_override() [string Replaces the $HOST part of the message with the
parameter string.

ip() or localip() [string 0.0.0.0 The IP address to bind to. Note that this is not the
address where messages are accepted from.

ip_tos() number |0 Specifies the Type-of-Service value of outgoing packets.

ip_ttl() number |0 Specifies the Time-To-Live value of outgoing packets.

keep-alive() yes or no |yes Specifies whether connections to sources should be

closed when syslog-ng is restarted (upon the receipt of
a SIGHUP signal). Note that this applies to the server
(source) side of the syslog-ng connections, client-side
(destination) connections are always reopened after
receiving a HUP signal unless the keep-alive op-
tion is enabled for the destination.

keep_hostname() [yes orno [no Enable or disable hostname rewriting. Enable this op-
tion to use hostname-related macros. This option can
be specified globally, and per-source as well. The local
setting of the source overrides the global option if
available. When relaying messages, enable this option
on the syslog-ng server and also on every relay, other-
wise syslog-ng will treat incoming messages as if they
were sent by the last relay.

keep_timestamp() [yes or no [yes Specifies whether syslog-ng should accept the
timestamp received from the sending application or
client. If disabled, the time of reception will be used
instead. This option can be specified globally, and per-
source as well. The local setting of the source overrides
the global option if available.

PRECATED)

Name Type Default Description

log_fetch_limit() |number |The value specified by the [The maximum number of messages fetched from a
g I o b a 1 [sourceduringasingle poll loop. The destination queues
log fetch limit () |might fill up before flow-control could stop reading if
option, which defaults to|1log fetch 1imit () is too high.
10.

log_iw_size() number 100 The size of the initial window, this value is used during

flow control.

log_msg size() |number [Use the global|Specifies the maximum length of incoming log mes-
log msg size () op-[sages. Uses the value of the global option if not spe-
tion, which defaults to|cified.
8192.

log_prefix() (DE-|string A string added to the beginning of every log message.

It can be used to add an arbitrary string to any log
source, though it is most commonly used for adding
kernel: to the kernel messages on Linux. NOTE:
This option is deprecated. Use
program override () instead.

max-connections()

number

10

Specifies the maximum number of simultaneous con-
nections.

optional()

yes or no

Instruct syslog-ng to ignore the error if a specific source
cannot be initialized. No other attempts to initialize the
source will be made until the configuration is reloaded.
This option currently applies to the pipe(),
unix-dgram, and unix-stream drivers.

pad_size()

number

Specifies input padding. Some operating systems (such
as HP-UX) pad all 0 messages to block boundary. This
option can be used to specify the block size. (HP-UX
uses 2048 bytes). Syslog-ng will pad reads from the as-
sociated device to the number of bytes set in
pad size(). Mostly used on HP-UX where
/dev/1log is a named pipe and every write is padded
to 2048 bytes.

or local-

port()
port()

number

514

The port number to bind to.

program_override

string

Replaces the $PROGRAM part of the message with
the parameter string, For example, to mark every mes-
sage coming from the kernel, the
program override ("kernel") option in the
source containing /proc/kmsg. NOTE: This option
replaces the deprecated 1og prefix () option.

include

Name Type Default Description
so_broadcast() |yesorno [no This option controls the SO BROADCAST socket
option required to make syslog-ng send messages to a
broadcast address. See the socket(7) manual page for
details.
so_tcvbuf() number |0 Specifies the size of the socket receive buffer in bytes.
See the socket(7) manual page for details.
so_sndbuf() number |0 Specifies the size of the socket send buffer in bytes.
See the socket(7) manual page for details.
so_broadcast() |yes orno |no This option controls the SO BROADCAST socket
option required to make syslog-ng send messages to a
broadcast address. See the socket(7) manual page for
details.
so_keepalive() yes or no |no Enables keep-alive messages, keeping the socket open.
This only effects TCP and UNIX-stream sockets. See
the socket(7) manual page for details.
tags() string Label the messages received from the source with cus-
tom tags. Tags must be unique, and enclosed between
double quotes. When adding multiple tags, separate
them with comma, eg, tags ("dmz",
"router"). This option is available only in syslog-
ng 3.1 and later.
tcp-keep-alive() [yesorno [no This is an obsolete alias of the so _keepalive ()
option.
time_zone() timezone The default timezone for messages read from the
in the form source. Applies only if no timezone is specified within
+ /- the message itself.
HH:MM
transport udp, tep, or | tcp Specifies the protocol used to receive messages from
tls the source.
tls() tls options [n/a This option sets various TLS specific options like

key/certificate files and trusted CA locations and can
only be used with the tcp transport protocols. See
Section 6.10, “TLS options” (p. 173) for more informa-
tion.

tep(), tep6(), udp() and udp6() 5K

Name

Type Default Description

use_dns()

yes, no,|yes Enable or disable DNS usage. The
p e r - persist_only
sist_only

option attempts to resolve hostnames locally from file
(e.g., from /etc/hosts). syslog-ng blocks on DNS
queries, so enabling DNS may lead to a Denial of Ser-
vice attack. To prevent DoS, protect your syslog-ng
network endpoint with firewall rules, and make sure
that all hosts which may get to syslog-ng are resolvable.
This option can be specified globally, and per-source
as well. The local setting of the source overrides the
global option if available.

use_fqdn()

yes or no |no Add Fully Qualified Domain Name instead of short

hostname. This option can be specified globally, and
per-source as well. The local setting of the source
overrides the global option if available.

Table 6.5. Options for syslog() sources

Example 6.7. Using the syslog() driver
TCP source listening on the localhost on port 1999.

source s_syslog { syslog(ip(127.0.0.1) port(1999) transport("tcp")); };
UDP source with defaults.
source s_udp { syslog(transport ("udp")); };

Encrypted source where the client is also authenticated. See Section 6.10, “TLS options” (p. 173) for details on the encryption
settings.

source s_syslog tls{ syslog(
ip(10.100.20.40)
transport ("tls")
tls(
peer-verify(required-trusted)
ca dir('/opt/syslog-ng/etc/syslog-ng/keys/ca.d/")

key file('/opt/syslog-ng/etc/syslog-ng/keys/server privatekey.pem')
cert file('/opt/syslog-ng/etc/syslog-ng/keys/server certificate.pem')

)
)it

6.1.7. tcp(), tcp6(), udp() and udp6()

The tcp (), tecpb6 (), udp (), udpb () drivers can receive messages from the network using the TCP and UDP
networking protocols. The tcp6 () and udp6 () drivers use the IPv6 network protocol, while tcp () and

udp () use IPv4.

tep(), tep6(), udp() and udp6() 5K

The tcp () and udp () drivers do not have any required parameters. By default they bind to 0.0.0.0:514,
which means that syslog-ng will listen on all available interfaces, port 514. To limit accepted connections to only
one interface, use the Jocalip () parameter as described below:.

»

If you specify a multicast bind address to udp () and udpé6 (), syslog-ng will automatically join the necessary
multicast group. TCP does not support multicasting,

Note
The tcp port 514 is reserved for use with rshell, so select a different port if syslog-ng and rshell is used at the same time.

The syslog-ng application supports TLS (Transport Layer Security, also known as SSL) for the tcp() and tcp6()
drivers. See the TLS-specific options below and Section 4.12, “Encrypting log messages with TLS” (p. 76) for details.

Declaration:
tcp ([options]) ;
udp ([options]) ;

The following options are valid for tcp (), tcp6 (), udp (), and udpé6 () drivers:

tep(), tep6(), udp() and udp6() 5K

Name Type Default Description

encoding() string Specifies the characterset (encoding, e.g., UTF=-8) of
messages using the legacy BSD-syslog protocol. To list
the available character sets on a host, execute the iconv
-1 command.

tep(), tep6(), udp() and udp6() 5K

Name

Type

Default

Description

flags()

empty-
lines, ker-
nel, no-
multi-line,
no-parse,
store-leg-
acy-msgh-
dr, syslog-
protocol,
validate-
utf8

empty set

tep(), tep6(), udp() and udp6() 5K

Name Type Default Description

Specifies the log parsing options of the source.

Use the empty—1ines flag to keep the empty lines
of the messages. By default, syslog-ng removes empty
lines automatically.

The kernel flag makes the source default to the
LOG KERN | LOG CRIT ptiority if not specified
otherwise.

The no-multi-1ine flag disables line-breaking in
the messages; the entire message is converted to a single
line.

By default, syslog-ng parses incoming messages as sys-
log messages. If a source does not send properly
formatted messages, use the no-parse flag to disable
message parsing for the source. As a result, syslog-ng
will generate a new syslog header and put the entire in-
coming message into the MSG part of the syslog mes-
sage.

The no-parse flag completely disables syslog mes-
sage parsing and processes the complete line as the
message part of a syslog message. Other information
(timestamp, host, etc.) is added automatically. This flag
is useful for parsing files not complying to the syslog
format.

If the store-legacy-msghdr flag is enabled,
syslog-ng stores the original incoming header of the log
message. This is useful of the original format of a non-
syslog-compliant message must be retained (syslog-ng
automatically corrects minor header errors, e.g., adds a
whitespace before msg in the following message: Jan
22 10:06:11 host program:msg). Note that
store-legacy-msghdr should be enabled when
receiving messages from syslog-ng Agent for Windows
clients that use the Snare-compatible mode.

The syslog-protocol flagspecifies that incoming
messages are expected to be formatted according to
the new IETF syslog protocol standard. Note that this
flag is not needed for the syslog driver.

The validate-utf8 flagenables encoding-verific-
ation for messages formatted according to the new
IETF syslog standard (see Section 2.15.2, “IETF-syslog

tep(), tep6(), udp() and udp6() 5K

Name Type Default Description

messages” (p. 22) for details). If the BOM character is
missing, but the message is otherwise UTF-8 compliant,
syslog-ng automatically adds the BOM character to the

message.

follow_freq() number |1 Indicates that the source should be checked periodically
instead of being polled. This is useful for files which
always indicate readability, even though no new lines
were appended. If this value is higher than zero, syslog-
ng will not attempt to use poll () on the file, but
checks whether the file changed every time the
follow freq() interval (in seconds) has elapsed.
Floating-point numbers (e.g., 1. 5) can be used as well.

host_override() [string Replaces the $HOST part of the message with the
parameter string;

ip() or localip() [string 0.0.0.0 The IP address to bind to. Note that this is not the ad-
dress where messages are accepted from.

ip_tos() number |0 Specifies the Type-of-Service value of outgoing packets.

ip_ttl() number |0 Specifies the Time-To-Live value of outgoing packets.

keep-alive() yes or no |yes Specifies whether connections to sources should be

closed when syslog-ng is restarted (upon the receipt of
a SIGHUP signal). Note that this applies to the server
(source) side of the syslog-ng connections, client-side
(destination) connections are always reopened after re-
ceiving a HUP signal unless the keep-alive option
is enabled for the destination.

keep_hostname() yes orno [no Enable or disable hostname rewriting. Enable this op-
tion to use hostname-related macros. This option can
be specified globally, and per-source as well. The local
setting of the source overrides the global option if
available. When relaying messages, enable this option
on the syslog-ng server and also on every relay, other-
wise syslog-ng will treat incoming messages as if they
were sent by the last relay.

keep_timestamp() [yes or no |[yes Specifies whether syslog-ng should accept the
timestamp received from the sending application or
client. If disabled, the time of reception will be used
instead. This option can be specified globally, and per-
source as well. The local setting of the source overrides
the global option if available.

tep(), tep6(), udp() and udp6() 5K

PRECATED)

Name Type Default Description

log_fetch_limit() |number |The value specified by the|The maximum number of messages fetched from a
g 1 o b a 1 [sourceduringa single pollloop. The destination queues
log fetch limit () |might fill up before flow-control could stop reading if
option, which defaults to|1log fetch 1imit () istoo high.
10.

log_iw_size() number |100 The size of the initial window;, this value is used during

flow control.

log_msg size() |number |Use the global|Specifies the maximum length of incoming log mes-
log msg size () op-|sages. Uses the value of the global option if not spe-
tion, which defaults to|cified.
8192.

log_prefix() (DE-|string A string added to the beginning of every log message.

It can be used to add an arbitrary string to any log
source, though it is most commonly used for adding
kernel: to the kernel messages on Linux. NOTE:
This option is deprecated. Use
program override () instead.

max-connections()

number

10

Specifies the maximum number of simultaneous con-
nections.

optional()

yes or no

Instruct syslog-ng to ignore the error if a specific source
cannot be initialized. No other attempts to initialize the
source will be made until the configuration is reloaded.
This option currently applies to the pipe (),
unix-dgram, and unix-stream drivers.

pad_size()

number

Specifies input padding. Some operating systems (such
as HP-UX) pad all 0 messages to block boundary. This
option can be used to specify the block size. (HP-UX
uses 2048 bytes). Syslog-ng will pad reads from the as-
sociated device to the number of bytes set in
pad size(). Mostly used on HP-UX where
/dev/1log is a named pipe and every write is padded
to 2048 bytes.

or local-

port()
port()

number

514

The port number to bind to.

program_override

string

Replaces the SPROGRAM part of the message with
the parameter string. For example, to mark every mes-
sage coming from the kernel, the
program override ("kernel") option in the
source containing /proc/kmsg. NOTE: This option
replaces the deprecated 1og prefix () option.

include

tep(), tep6(), udp() and udp6() 5K

Name Type Default Description
so_broadcast() |yesorno |no This option controls the SO BROADCAST socket op-
tion required to make syslog-ng send messages to a
broadcast address. See the socket(7) manual page for
details.
so_keepalive() yes or no |no Enables keep-alive messages, keeping the socket open.
This only effects TCP and UNIX-stream sockets. See
the socket(7) manual page for details.
so_rcvbuf() number |0 Specifies the size of the socket receive buffer in bytes.
See the socket(7) manual page for details.
so_sndbuf() number |0 Specifies the size of the socket send buffer in bytes. See
the socket(7) manual page for details.
tcp-keep-alive() [yes orno [no This is an obsolete alias of the so _keepalive ()
option.
tags() string Label the messages received from the source with cus-
tom tags. Tags must be unique, and enclosed between
double quotes. When adding multiple tags, separate
them with comma, e.g, tags ("dmz",
"router"). This option is available only in syslog-
ng 3.1 and later.
time_zone() timezone The default timezone for messages read from the
in the form source. Applies only if no timezone is specified within
+ /- the message itself.
HH:MM
tls() tls options |n/a This option sets various TLS specific options like
key/certificate files and trusted CA locations and can
only be used with the tcp transport protocols. See
Section 6.10, “TLS options” (p. 173) for more informa-
tion.
use_dns() yes, no,|yes Enable or disable DNS usage. The
p et - persist_only
sist_only

option attempts to resolve hostnames locally from file
(e.g, from /etc/hosts). syslog-ng blocks on DNS
queries, so enabling DNS may lead to a Denial of Ser-
vice attack. To prevent DoS, protect your syslog-ng
network endpoint with firewall rules, and make sure
that all hosts which may get to syslog-ng are resolvable.
This option can be specified globally, and per-source
as well. The local setting of the source overrides the
global option if available.

unix-stream() and unix-dgram()

Name Type Default Description
use_fqdn() yes or no |no Add Fully Qualified Domain Name instead of short
hostname. This option can be specified globally, and
per-source as well. The local setting of the source
overrides the global option if available.
Table 6.6. Options for tep, tep6, udp, and ndp6 drivers
Example 6.8. Using the udp() and tcp() drivers
A simple udp() source with default settings.
3

source s udp { udp(); };# An UDP source with default settings.

A TCP source listening on the localhost interface, with a limited number of connections allowed.
source s_tcp { tcp(ip(127.0.0.1) port(1999) max-connections (10)); };
A TCP source listening on a TLS-encrypted channel.

source s _tcp { tcp(ip(127.0.0.1) port (1999)
tls (peer-verify('required-trusted"')
key file('/opt/syslog-ng/etc/syslog-ng/syslog-ng.key")
cert file('/opt/syslog-ng/etc/syslog-ng/syslog-ng.crt')));
}i

ATCP source listening for messages using the IETF-syslog message format. Note that for transferring IETF-syslog messages,
generally you are recommended to use the syslog () driver on both the client and the server, as it uses both the IETF-
syslog message format and the protocol. See Section 4.3.5, “Collecting messages using the IETF syslog protocol” (p. 49) for
details.

source s_tcp syslog { tcp(ip(127.0.0.1) port(1999) flags(syslog-protocol)); };

6.1.8. unix-stream() and unix-dgram()

These two drivers behave similatly: they open an AF UNIX socket and start listening on it for messages.

Both unix-stream and unix-dgram have a single required argument, specifying the filename of the socket to create.

Declaration:

unix-stream(filename [options]) :;
unix-dgram(filename [options]);

The following options can be specified for these divers:

unix-stream() and unix-dgram()

Name

Type

Default

Description

encoding()

string

Specifies the characterset (encoding, e.g., UTF-8) of
messages using the legacy BSD-syslog protocol. To list
the available character sets on a host, execute the iconv
-1 command.

unix-stream() and unix-dgram()

Name Type Default Description
flags() em p ty -[empty set

lines, ker-

nel, no-

multi-line,
no-parse,
store-leg-
acy-msgh-
dr, syslog-
protocol,
validate-
utf8

unix-stream() and unix-dgram()

Name

Type

Default

Description

Specifies the log parsing options of the source.

Use the empty-1ines flag to keep the empty lines
of the messages. By default, syslog-ng removes empty
lines automatically.

The kernel flag makes the source default to the
LOG KERN | LOG CRIT priority if not specified
otherwise.

The no-multi-1ine flag disables line-breaking in
the messages; the entire message is converted to a single
line.

By default, syslog-ng parses incoming messages as sys-
log messages. If a source does not send properly
formatted messages, use the no—parse flag to disable
message parsing for the source. As a result, syslog-ng
will generate a new syslog header and put the entire
incoming message into the MSG part of the syslog
message.

The no-parse flag completely disables syslog mes-
sage parsing and processes the complete line as the
message part of a syslog message. Other information
(timestamp, host, etc.) is added automatically. This flag
is useful for parsing files not complying to the syslog
format.

If the store-legacy-msghdr flag is enabled,
syslog-ng stores the original incoming header of the
log message. This is useful of the original format of a
non-syslog-compliant message must be retained (syslog-
ng automatically corrects minor header errors, e.g., adds
a whitespace before msg in the following message:
Jan 22 10:06:11 host program:msg).
Note that store-1legacy-msghdr should be en-
abled when receiving messages from syslog-ng Agent
for Windows clients that use the Snare-compatible
mode.

The syslog-protocol flagspecifies that incoming
messages are expected to be formatted according to
the new IETTF syslog protocol standard. Note that this
flag is not needed for the syslog driver.

The validate-ut£8 flag enables encoding-verific-
ation for messages formatted according to the new

unix-stream() and unix-dgram()

Name

Type

Default

Description

IETF syslog standard (see Section 2.15.2, “IETF-syslog
messages” (p. 22) for details). If the BOM character
is missing, but the message is otherwise UTF-8 compli-
ant, syslog-ng automatically adds the BOM character
to the message.

follow_freq()

number

Indicates that the source should be checked periodically
instead of being polled. This is useful for files which
always indicate readability, even though no new lines
were appended. If this value is higher than zero, syslog-
ng will not attempt to use poll () on the file, but
checks whether the file changed every time the
follow freq() interval (in seconds) has elapsed.
Floating-point numbers (e.g;, 1. 5) can be used as well.

group()

string

root

Set the gid of the socket.

host_override()

string

Replaces the $HOST part of the message with the
parameter string,

keep-alive()

yes or no

yes

Selects whether to keep connections open when syslog-
ng is restarted; cannot be used with unix-dgram ().

keep_timestamp()

yes or no

yes

Specifies whether
timestamp received from the sending application or
client. If disabled, the time of reception will be used
instead. This option can be specified globally, and per-

syslog-ng should accept the

source as well. The local setting of the source overrides
the global option if available.

log_fetch_limit() |number |The value specified by the|The maximum number of messages fetched from a
g I o b a 1 [sourceduringa single pollloop. The destination queues
log fetch 1limit () [might fill up before flow-control could stop reading if|
option, which defaults to|log fetch l1imit () is too high.

10.

log_iw_size() number 100 The size of the initial window, this value is used during

flow control.

log_msg size() |number [Use the global|Specifies the maximum length of incoming log mes-
log msg size () op-|sages. Uses the value of the global option if not spe-
tion, which defaults tocified.

8192.
log_prefix() (DE-|string A string added to the beginning of every log message.

PRECATED)

It can be used to add an arbitrary string to any log
source, though it is most commonly used for adding
kernel: to the kernel messages on Linux. NOTE:
This option deprecated. Use
program override () instead.

is

unix-stream() and unix-dgram()

Name

Type

Default

Description

max-connections()

number

256

Limits the number of simultaneously open connections.
Cannot be used with unix-dgram().

optional()

yes or no

Instruct syslog-ng to ignore the error if a specific source
cannot be initialized. No other attempts to initialize the
source will be made until the configuration is reloaded.
This option currently applies to the pipe(),
unix-dgram,and unix-stream drivers.

owner ()

string

root

Set the uid of the socket.

pad_size()

number

Specifies input padding. Some operating systems (such
as HP-UX) pad all 0 messages to block boundary. This
option can be used to specify the block size. (HP-UX
uses 2048 bytes). Syslog-ng will pad reads from the as-
sociated device to the number of bytes set in
pad size(). Mostly used on HP-UX where
/dev/1log is a named pipe and every write is padded
to 2048 bytes.

perm()

number

0666

Set the permission mask. For octal numbers prefix the
number with '0', e.g.: use 0755 for rwxr-xr-x.

program_override

string

Replaces the $PROGRAM part of the message with
the parameter string. For example, to mark every mes-
sage coming from the kernel, include the
program override ("kernel") option in the
source containing /proc/kmsg. NOTE: This option
replaces the deprecated 1og prefix () option.

so_broadcast()

yes or no

no

This option controls the SO BROADCAST socket
option required to make syslog-ng send messages to a
broadcast address. See the socket(7) manual page for
details.

so_keepalive()

yes or no

no

Enables keep-alive messages, keeping the socket open.
This only effects TCP and UNIX-stream sockets. See
the socket(7) manual page for details.

so_rcvbuf()

number

Specifies the size of the socket receive buffer in bytes.
See the socket(7) manual page for details.

so_sndbuf()

number

Specifies the size of the socket send buffer in bytes.
See the socket(7) manual page for details.

tags()

string

Label the messages received from the source with cus-
tom tags. Tags must be unique, and enclosed between
double quotes. When adding multiple tags, separate
them with tags ("dmz",
"router"). This option is available only in syslog-
ng 3.1 and later.

comma, e.g,

Destination drivetrs *

Name Type Default Description

time_zone() timezone The default timezone for messages read from the
in the form source. Applies only if no timezone is specified within
+ /- the message itself.
HH:MM

Table 6.7. Options for unix-strean() and unix-dgram()

Example 6.9. Using the unix-stream() and unix-dgram() drivers

’ source s stream { unix-stream("/dev/log" max-connections (10)); };

source s _dgram { unix-dgram("/var/run/log"); };

6.2. Destination drivers

Destination drivers output log messages to somewhere outside syslog-ng e.g,, to a file or a network socket.

6.2.1. file()

The file driver outputs messages to the specified text file, or to a set of files.

The destination filename may include macros which get expanded when the message is written, thus a simple

file () driver may create several files. For more information on available macros see Section 6.5, “Macros” (p. 153).

Warnin,
3 g

When creating several thousands separate log files, syslog-ng might not be able to open the required number of files. This
might happen for example when using the $HOST macro in the filename while receiving messages from a large number of
hosts. To overcome this problem, adjust the ——fd-1imit comman-line parameter of syslog-ng or the global ulimit para-
meter of your host. For setting the ——fd-1imit comman-line parameter of syslog-ng see the syslog-ng(8) (p. 177) manual
page. For setting the ulimit parameter of the host, see the documentation of your operating system.

The £file () destination has the following options:

Name

Type

Default

Description

create_dirs()

yes or no

no

Enable creating non-existing directories.

dir_group()

string

root

The group of directories created by syslog-ng.

dir_owner()

string

root

The owner of directories created by syslog-ng.

dir_perm()

number

0600

The permission mask of directories created by syslog-
ng. Log directories are only created if a file after macro
expansion refers to a non-existing directory, and direct-
ory creation is enabled (see the create dirs ()
option below). For octal numbers prefix the number
with 0, e.g,, use 0755 for rwxr-xr-x.

flags()

no_multi_line,
syslog-pro-
tocol

empty set

Flags influence the behavior of the driver.

The no-multi-1ine flagdisables line-breaking in
the messages; the entire message is converted to a
single line.

The syslog-protocol flag instructs the driver
to format the messages according to the new IETF
syslog protocol standard. If this flag is enabled, macros
used for the message have effect only for the text of
the message, the message header is formatted to the
new standard. Note that this flag is not needed for the
syslog driver.

flush_lines()

number

Use global
setting.

Specifies how many lines are flushed to a destination
at a time. Syslog-ng waits for this number of lines to
accumulate and sends them off in a single batch. Set-
ting this number high increases throughput as fully
filled frames are sent to the network, but also increases
message latency. The latency can be limited by the use
of the flush timeout option.

flush_timeout()

time in milli-
seconds

Use global
setting,

Specifies the time syslog-ng waits for lines to accumu-
late in its output buffer. See the f1ush Iines op-
tion for more information.

frac_digits()

number

The syslog-ng application can store fractions of a
second in the timestamps according to the ISO8601
format.. The frac digits () parameter specifies
the number of digits stored. The digits storing the
fractions are padded by zeros if the original timestamp
of the message specifies only seconds. Fractions can
always be stored for the time the message was received.
Note that syslog-ng can add the fractions to non-
ISO8601 timestamps as well.

Name Type Default [Description

tsync() yes of no no Forces an fsync () call on the destination fd after
each write. Note: enabling this option may seriously
degrade performance.

group() string root Set the group of the created file to the one specified.
local time zone() name of the|The local|Sets the timezone used when expanding filename and
timezone or|timezone. |tablename templates. The timezone can be specified

the timezone as using the name of the (e.g.,

offset time zone ("Europe/Budapest")),orasthe

timezone offset (e.g., +01 : 00). The valid timezone

names are listed under the

/usr/share/zoneinfo directory.

log_fifo_size() number Use global | The number of entries in the output buffer (output
setting. fifo).

overwrite if older () |number 0 If set to a value higher than 0, syslog-ng checks when
the file was last modified before starting to write into
the file. If the file is older than the specified amount
of time (in seconds), then syslog-ng removes the exist-
ing file and opens a new file with the same name. In
combination with e.g, the SWEEKDAY macro, this
can be used for simple log rotation, in case not all
history has to be kept. (Note that in this weekly log
rotation example if its Monday 00:01, then the file
from last Monday is not seven days old, because it was
probably last modified shortly before 23:59 last
Monday, so it is actually not even six days old. So in
this case, set the overwrite if older () para-
meter to a-bit-less-than-six-days, for example, to
518000 seconds.

owner() string root Set the owner of the created file to the one specified.

perm() number 0600 The permission mask of the file if it is created by sys-
log-ng. For octal numbers prefix the number with 0,
eg,use 0755 for rwxr-xr-x.

suppress() seconds 0 (dis-|If several identical log messages would be sent to the
abled) destination without any other messages between the
identical messages (for example, an application re-
peated an error message ten times), syslog-ng can
suppress the repeated messages and send the message
only once, followed by the Last message
repeated n times. message. The parameter of
this option specifies the number of seconds syslog-ng
waits for identical messages.

Name

Type Default [Description

template()

string A format|Specifies a template defining the logformat to be used
conform- |in the destination. Macros are described in Section 6.5,
ing to the|“Macros” (p. 153). Please note that for network destin-
d e fault|ations it might not be appropriate to change the tem-
lo gfile|plate as it changes the on-wire format of the syslog
format. [protocol which might not be tolerated by stock syslog
receivers (like syslogd or syslog-ng itself). For net-
work destinations make sure the receiver can cope with
the custom format defined.

template_escape()

yes of no no Turns on escaping ' and " in templated output files.
This is useful for generating SQL statements and
quoting string contents so that parts of the log message
are not interpreted as commands to the SQL server.

throttle()

number 0 Sets the maximum number of messages sent to the
destination per second. Specifying 0 or a lower value

sets the output limit to unlimited.

time_zone()

timezone off-lun s p e -|Convert timestamps to the timezone specified by this
set in seconds |cified option. If this option is not set then the original
timezone information in the message is used.

ts_format() rtc3164, bsd,|rfc3164 |Override the global timestamp format (set in the
rfc3339, iso global ts format () parameter) for the specific
destination. See also Section 5.7, “A note on timezones
and timestamps” (p. 90).
Table 6.8. Options for file()
Example 6.10. Using the file() driver
; destination d file { file("/var/log/messages"); };
Example 6.11. Using the file() driver with macros in the file name and a template for the message
; destination d file {
file("/var/log/$YEAR.SMONTH. $DAY/messages"
template ("$HOUR: SMIN:$SEC $TZ $HOST [$LEVEL] $MSG $MSG\n")
template escape (no));
}i
6.2.2. pipe()

This driver sends messages to a named pipe like /dev/xconsole.

The pipe driver has a single required parameter, specifying the filename of the pipe to open. The filename can include

macros.

Declaration:
pipe (filename) ;

Warning
> 4 As of syslog-ng Open Source Edition 3.0.2, pipes are created automatically. In earlier versions, you had to create the pipe
using the mkfifo(1) command.

The pipe () destination has the following options:

Name

Type

Default

Description

flags()

no_multi_line,
syslog-pro-
tocol

empty set

Flags influence the behavior of the driver.

The no-multi-1ine flag disables line-breaking in the messages;
the entire message is converted to a single line.

The syslog-protocol flaginstructs the driver to format the
messages according to the new IETT syslog protocol standard. If
this flag is enabled, macros used for the message have effect only
for the text of the message, the message header is formatted to
the new standard. Note that this flag is not needed for the syslog
driver.

flush_lines()

number

Use global set-
ting,

Specifies how many lines are flushed to a destination at a time.
Syslog-ng waits for this number of lines to accumulate and sends
them off in a single batch. Setting this number high increases
throughput as fully filled frames are sent to the network, but also
increases message latency. The latency can be limited by the use
of the flush timeout option.

flush_timeout()

time in milli-
seconds

Use global set-
ting;

Specifies the time syslog-ng waits for lines to accumulate in its
output buffer. See the f1ush 1ines option for more informa-
tion.

frac_digits()

number

The syslog-ng application can store fractions of a second in the
timestamps ~ according the ISO8601 The
frac digits () parameter specifies the number of digits
stored. The digits storing the fractions are padded by zeros if the
original timestamp of the message specifies only seconds. Fractions
can always be stored for the time the message was received. Note
that syslog-ng can add the fractions to non-ISO8601 timestamps

to format..

as well.

fsync()

yes or no

no

Forces an fsync () call on the destination fd after each write.
Note: enabling this option may seriously degrade performance.

group()

string

root

Set the group of the pipe to the one specified.

log_fifo_size()

number

Use global set-
ting;

The number of entries in the output buffer (output fifo).

owner()

string

root

Set the owner of the pipe to the one specified.

perm()

number

0600

The permission mask of the pipe. For octal numbers prefix the
number with '0', e.g.: use 0755 for rwxr-xr-x.

suppress()

seconds

0 (disabled)

If several identical log messages would be sent to the destination
without any other messages between the identical messages (for
example, an application repeated an error message ten times), sys-
log-ng can suppress the repeated messages and send the message
only once, followed by the Last message repeated n
times. message. The parameter of this option specifies the
number of seconds syslog-ng waits for identical messages.

Name Type Default Description
template() string A format con- |Specifies a template defining the logformat to be used in the des-
forming to the [tination. Macros are described in Section 6.5, “Macros” (p. 153).
default logfile|Please note that for network destinations it might not be appropri-
format. ate to change the template as it changes the on-wire format of the
syslog protocol which might not be tolerated by stock syslog re-
ceivers (like syslogd or syslog-ng itself). For network destina-
tions make sure the receiver can cope with the custom format
defined.
template_es-|yes ot no no Turns on escaping ' and " in templated output files. This is useful
cape() for generating SQL statements and quoting string contents so that
parts of the log message are not interpreted as commands to the
SQL server.
throttle() number 0 Sets the maximum number of messages sent to the destination per
second. Specifying 0 or a lower value sets the output limit to un-
limited.
time_zone() timezone off-|unspecified |Convert timestamps to the timezone specified by this option. If]
set in seconds this option is not set then the original timezone information in the
message is used.
ts_format() rfc3164, bsd,|rfc3164 Override the global timestamp format (set in the global
rfc3339, iso ts format () parameter) for the specific destination. See also
Section 5.7, “A note on timezones and timestamps” (p. 90).
Table 6.9. Options for pipe()
Example 6.12. Using the pipe() driver
3 destination d pipe { pipe("/dev/xconsole"); };

6.2.3. program()

This driver starts an external application or script and sends the log messages to its standard input (stdin).

The program () driver has a single required parameter, specifying a program name to start.

Declaration:
program (command to run);

The program () destination has the following options:

Name

Type

Default

Description

flags()

no_multi_line,
syslog-pro-
tocol

empty set

Flags influence the behavior of the driver.

The no-multi-1ine flagdisables line-breaking in the messages;
the entire message is converted to a single line.

The syslog-protocol flaginstructs the driver to format the
messages according to the new IETF syslog protocol standard. If
this flag is enabled, macros used for the message have effect only
for the text of the message, the message header is formatted to the
new standard. Note that this flag is not needed for the syslog
driver.

flush_lines()

number

Use global set-
ting,

Specifies how many lines are flushed to a destination at a time.
Syslog-ng waits for this number of lines to accumulate and sends
them off in a single batch. Setting this number high increases
throughput as fully filled frames are sent to the network, but also
increases message latency. The latency can be limited by the use
of the flush timeout option.

flush_timeout()

time in milli-
seconds

Use global set-
ting;

Specifies the time syslog-ng waits for lines to accumulate in its
output buffer. See the f1ush 1ines option for more informa-
tion.

frac_digits()

number

The syslog-ng application can store fractions of a second in the
timestamps ~ according the 1SO8601 The
frac digits () parameter specifies the number of digits
stored. The digits storing the fractions are padded by zeros if the
original timestamp of the message specifies only seconds. Fractions
can always be stored for the time the message was received. Note
that syslog-ng can add the fractions to non-ISO8601 timestamps

to format..

as well.

fsync()

yes or no

no

Forces an fsync () call on the destination fd after each write.
Note: enabling this option may seriously degrade performance.

log_fifo_size()

number

Use global set-
ting,

The number of entries in the output buffer (output fifo).

suppress()

seconds

0 (disabled)

If several identical log messages would be sent to the destination
without any other messages between the identical messages (for
example, an application repeated an error message ten times), sys-
log-ng can suppress the repeated messages and send the message
only once, followed by the Last message repeated n
times. message. The parameter of this option specifies the
number of seconds syslog-ng waits for identical messages.

Name Type Default Description
template() string A format con- |Specifies a template defining the logformat to be used in the des-
forming to the |tination. Macros are described in Section 6.5, “Macros” (p. 153).
default logfile |Please note that for network destinations it might not be appropri-
format. ate to change the template as it changes the on-wire format of the
syslog protocol which might not be tolerated by stock syslog receiv-
ers (like syslogd or syslog-ng itself). For network destinations
make sure the receiver can cope with the custom format defined.
template_es-|yes ot no no Turns on escaping ' and " in templated output files. This is useful
cape() for generating SQL statements and quoting string contents so that
parts of the log message are not interpreted as commands to the
SQL server.
throttle() number 0 Sets the maximum number of messages sent to the destination per
second. Specifying 0 or a lower value sets the output limit to un-
limited.
time_zone() timezone off-|unspecified |Convert timestamps to the timezone specified by this option. If
set in seconds this option is not set then the original timezone information in the
message is used.
ts_format() rfc3164, bsd,|rfc3164 Override the global timestamp format (set in the global
rfc3339, iso ts format () parameter) for the specific destination. See also
Section 5.7, “A note on timezones and timestamps” (p. 90).
Table 6.10. Options for prograns()
Example 6.13. Using the program() destination driver
; destination d prog { program("/bin/script" template ("<$PRI>$SDATE SHOST $SMSG\n");
}i
6.2.4. sql()

This driver sends messages into an SQL database. The sq1 () driver has the following required parameters: type,
database, table, columns, values.

Declaration:

sql (database type host parameters database parameters

[options]) ;

The sqgl () destination has the following options:

Name

Type

Default

Description

columns

string list

"date", "facility", "level", "host
gram", "pid", "message"

n.n
>

pro-

Name of the columns storing the data in
fieldname [dbtype] format. The
[dbtype] parameter is optional, and spe-
cifies the type of the field. By default, syslog-
ng creates text columns. Note that not every
database engine can index text fields.

database

string

n/a

Name of the database that stores the logs.

frac_digits()

number

The syslog-ng application can store fractions
of a second in the timestamps according to
the ISO8601 format.. The frac digits ()
parameter specifies the number of digits
stored. The digits storing the fractions are
padded by zeros if the original timestamp of
the message specifies only seconds. Fractions
can always be stored for the time the message
was received. Note that syslog-ng can add the
fractions to non-ISO8601 timestamps as well.

host

host-
name or
IP ad-
dress

n/a

Hostname of the database server. Note that
Oracle destinations do not use this parameter,
but the from the
/etc/tnsnames.ora file.

retrieve hostname

indexes

string list

nn

"date", "facility", "host",

program"

The list of columns that are indexed by the
database to speed up searching, To disable
indexing for the destination, include the empty
indexes () parameter in the destination,
simply omitting the 1 ndexes parameter will
cause syslog-ng to request indexing on the
default columns.

local time zone()

name of
t h
timezone
the
timezone
offset

c

or

The local timezone.

Sets the timezone used when expanding file-
name and tablename templates. The timezone
can be specified as using the name of the (e.g,,
time zone ("Europe/Budapest")),
or as the timezone offset (e.g,, +01 : 00). The
valid timezone names are listed under the
/usr/share/zoneinfo directory.

log_fifo_size()

number

Use global setting,

The number of entries in the output buffer
(output fifo).

null

string

If the content of a column matches the string
specified in the null () parameter, the con-
tents of the column will be replaced with an
SQL NULL value. If unset (by default), the
option does not match on any string. See the
Example 6.17, “Using SQL NULL val-
ues” (p. 139) for details.

Name Type Default Description
password string [n/a Password of the database user.
table string [n/a Name of the database table to use (can include

macros). When using macros, note that some
databases limit the length of table names.

time_zone()

timezone [unspecified

offset in
seconds

Convert timestamps to the timezone specified
by this option. If this option is not set then
the original timezone information in the mes-
sage is used.

type mssql,|n/a Specifies the type of the database, i.e., the DBI
mysql, database driver to use. Use the mssqgl option
oracle, to send logs to an MSSQL database. See the
pgsql, or examples of the databases on the following
sqlite3 sections for details.
username string n/a Name of the database user.
values string list["${R_YEAR}-${R_MONTH} -[The parts of the message to store in the fields
$ { R _ D A Y }|specified in the columns parametet.
${R_HOUR}:${R_MIN}:${R_SEC}",
"$FACILITY", "$LEVEL", "$HOST",
"$PROGRAM", "$PID", "$MS-
GONLY"
Table 6.11. Options for sql()
/, Note
¢ If you specify host="1ocalhost", syslog-ng will use a socket to connect to the local database server. Use
host="127.0.0.1"to force TCP communication between syslog-ng and the local database server.
To specify the socket to wuse, set and export the MYSQL UNIX PORT environment variable, e.g,
MYSQL_UNIX_PORT=/var/lib/mysql/mysql.sock; export MYSQL_UNIX_PORT.
Example 6.14. Using the sql() driver
The following example sends the log messages into a PostgreSQL database running on the 1 ogserver host. The messages
; are inserted into the 1ogs database, the name of the table includes the exact date and the name of the host sending the

messages. The syslog-ng application automatically creates the required tables and columns, if the user account used to connect
to the database has the required privileges.

destination d_sql {
sql (type (pgsql)
host ("logserver") username ("syslog-ng") password ("password")
database ("logs")
table ("messages ${HOST} S${R YEAR}S$S{R MONTH}S{R DAY}")
columns ("datetime", "host", "program", "pid", "message")
values("$R_DATE", "SHOST", "S$PROGRAM", "$PID", "SMSGONLY")
indexes ("datetime", "host", "program", "pid", "message"));

}i
The following example specifies the type of the database columns as well:
destination d_sql {

sql (type (pgsql)
host ("logserver") username ("syslog-ng") password ("password")

sql()

database ("logs")

table ("messages S${HOST} S${R YEAR}S{R MONTH}S{R DAY}")

columns ("datetime varchar(16)", "host varchar(32)", "program varchar(20)",
"pid varchar(8)", "message varchar (200)")

Values("$R_DATE", "SHOST", "SPROGRAM", "SPID", "SMSGONLY")

indexes ("datetime", "host", "program", "pid", "message"));

}i

Example 6.15. Using the sql() driver with an Oracle database

The following example sends the log messages into an Oracle database running on the Jogserver host, which must be
setin the /etc/tnsnames.ora file. The messages are inserted into the LOGS database, the name of the table includes
the exact date when the messages were sent. The syslog-ng application automatically creates the required tables and columns,
if the user account used to connect to the database has the required privileges.

destination d sql {

sgl (type (oracle)

username ("syslog-ng") password ("password")

database ("LOGS")

table ("msgs S${R_YEAR}${R MONTH}S{R DAY}")

columns ("datetime varchar (16)", "host varchar (32)", "program varchar (32)", "pid
varchar (8)", "message varchar2")

values ("SR _DATE", "S$HOST", "$PROGRAM", "$PID", "SMSGONLY")

indexes ("datetime", "host", "program", "pid", "message"));

}i

The Oracle Instant Client retrieves the address of the database server from the /etc/tnsnames. ora file. Edit or create
this file as needed for your configuration. A sample is provided below.

LOGS =

(DESCRIPTION =

(ADDRESS LIST =

(ADDRESS = (PROTOCOL = TCP)
(HOST = logserver)

(PORT = 1521))
)

(CONNECT DATA
(SERVICE NAME = EXAMPLE.SERVICE)
)

)

Example 6.16. Using the sql() driver with an MSSQL database

The following example sends the log messages into an MSSQL database running on the Iogserver host. The messages
are inserted into the syslogng database, the name of the table includes the exact date when the messages were sent. The
syslog-ng application automatically creates the required tables and columns, if the user account used to connect to the database
has the required privileges.

destination d mssqgl {
sgl (type (mssgl) host ("logserver") port("1433")
username ("syslogng") password("syslogng") database ("syslogng")
table ("msgs_S${R YEAR}S${R MONTH}S${R DAY}")columns ("datetime varchar(16)", "host
varchar (32)",
"program varchar(32)", "pid varchar(8)", "message varchar (4096)")
Values("$R_DATE", "SHOST", "SPROGRAM", "SPID", "SMSGONLY")
indexes ("datetime", "host", "program", "pid", "message"));

}i

The date format used by the MSSQL database must be explicitly set in the /etc/locales.conf file of the syslog-ng
server. Edit or create this file as needed for your configuration. A sample is provided below.

[default]
date = "$Y-%m-%d SH:%M:%3"

Example 6.17. Using SQL NULL values
The null () parameter of the SQL driver can be used to replace the contents of a column with a special SQL NULL value.

’ To replace every column that contains an empty string with NULL, use the null ("") option, e.g.,

destination d sql {

the null () parameter:

destination d sqgl {

"SMSGONLY")

6.2.5. syslog()

sql (type (pgsql)
host ("logserver") username ("syslog-ng") password ("password")

database ("logs")

table ("messages ${HOST} ${R YEAR}${R MONTH}$S{R DAY}")
columns ("datetime", "host", "program", "pid", "message")
Values("$R_DATE", "SHOST", "$PROGRAM", "S$PID", "SMSGONLY")
indexes ("datetime", "host", "program", "pid", "message")
null (""));

}i

To replace only a specific column (e.g,, pid) if it is empty, assign a default value to the column, and use this default value in

sql (type (pgsal)
host ("logserver") username ("syslog-ng") password ("password")

database ("logs")

table ("messages ${HOST} S${R YEAR}S$S{R MONTH}S$S{R DAY}")
columns ("datetime", "host", "program", "pid", "message")
values ("$R_DATE", "S$HOST", "$PROGRAM", "${PID:-QENULLG@}",

indexes ("datetime", "host", "program", "pid", "message")
null ("@GE@NULLQ@")) ;
}i

Ensure that the default value you use does not appear in the actual log messages, because other occurrences of this string will
be replaced with NULL as well.

The syslog () driver sends messages to a remote host (e.g;, a syslog-ng server or relay) on the local intranet or
internet using the new standard syslog protocol developed by IETF (see Section 2.15.2, “IETF-syslog mes-
sages” (p. 22) for details about the protocol). The protocol supports sending messages using the UDP, TCP, or

the encrypted TLS networking protocols.

The required arguments of the driver are the address of the destination host (where messages should be sent) and

the transport method (networking protocol).

The udp transport method automatically sends multicast packets if a multicast destination address is specified. The

tcp and t1s methods do not support multicasting,

Declaration:

syslog (host transport [options]);

These destinations have the following options:

Name

Type

Default

Description

flags()

no_multi_line,
syslog-pro-
tocol

empty set

Flags influence the behavior of the driver.

The no-multi-1ine flagdisables line-breaking in the messages;
the entire message is converted to a single line.

The syslog-protocol flag instructs the driver to format the
messages according to the new IETF syslog protocol standard. If
this flag is enabled, macros used for the message have effect only for
the text of the message, the message header is formatted to the new
standard. Note that this flag is not needed for the syslog driver.

flush_lines()

number

Use global
setting;

Specifies how many lines are flushed to a destination at a time. Syslog-
ng waits for this number of lines to accumulate and sends them off]
in a single batch. Setting this number high increases throughput as
fully filled frames are sent to the network, but also increases message
latency. The latency can be limited by the use of the
flush timeout option.

flush_timeout()

time in milli-
seconds

Use global
setting,

Specifies the time syslog-ng waits for lines to accumulate in its output
buffer. See the f1ush 1ines option for more information.

frac_digits()

number

0

The syslog-ng application can store fractions of a second in the
timestamps ~ according the ISO8601 The
frac digits () parameter specifies the number of digits stored.
The digits storing the fractions are padded by zeros if the original
timestamp of the message specifies only seconds. Fractions can always
be stored for the time the message was received. Note that syslog-
ng can add the fractions to non-ISO8601 timestamps as well.

to format..

fsync()

yes or no

no

Forcesan fsync () call on the destination fd after each write. Note:
enabling this option may seriously degrade performance.

ip_tos()

number

Specifies the Type-of-Service value of outgoing packets.

ip_ttl()

number

Specifies the Time-To-Live value of outgoing packets.

keep-alive()

yes or no

yes

Specifies whether connections to destinations should be closed when
syslog-ng is restarted (upon the receipt of a SIGHUP signal). Note
that this applies to the client (destination) side of the syslog-ng con-
nections, server-side (source) connections are always reopened after
receiving a HUP signal unless the keep-alive option is enabled
for the source. When the keep-alive option is enabled, syslog-
ng saves the contents of the output queue of the destination when
receiving a HUP signal, reducing the risk of losing messages.

localip()

string

0.0.0.0

The IP address to bind to before connecting to target.

localport()

number

0

The port number to bind to. Messages are sent from this port.

log_fifo_size()

number

Use global
setting,

The number of entries in the output buffer (output fifo).

Name

Type

Default

Description

port() or dest-
port()

number

601

The port number to connect to. Note that the default port numbers
used by syslog-ng do not comply with the latest RFC which was
published after the release of syslog-ng 3.0.2, therefore the default
port numbers will change in the future releases.

so_broadcast()

yes of no

no

This option controls the SO BROADCAST socket option required
to make syslog-ng send messages to a broadcast address. See the
socket(7) manual page for details.

so_keepalive()

yes ot no

no

Enables keep-alive messages, keeping the socket open. This only ef-
fects TCP and UNIX-stream sockets. See the socket(7) manual page
for details.

so_rcvbuf()

number

Specifies the size of the socket receive buffer in bytes. See the
socket(7) manual page for details.

so_sndbuf()

number

Specifies the size of the socket send buffer in bytes. See the socket(7)
manual page for details.

spoof_source()

yes or no

no

Enables source address spoofing. This means that the host running
syslog-ng generates UDP packets with the source IP address matching
the original sender of the message. It is useful when you want to
perform some kind of preprocessing via syslog-ng then forward
messages to your central log management solution with the source
address of the original sender. This option only works for UDP
destinations though the original message can be received by TCP as
well. This option is only available if syslog-ng was compiled using
the ——enable-spoof-source configuration option.

suppress()

seconds

0 (disabled)

If several identical log messages would be sent to the destination
without any other messages between the identical messages (for ex-
ample, an application repeated an error message ten times), syslog-
ng can suppress the repeated messages and send the message only
once, followed by the Last message repeated n times.
message. The parameter of this option specifies the number of]
seconds syslog-ng waits for identical messages.

template()

string

A format
conforming
to the de-
fault logfile
format.

Specifies a template defining the logformat to be used in the destin-
ation. Macros are described in Section 6.5, “Macros” (p. 153). Please
note that for network destinations it might not be appropriate to
change the template as it changes the on-wire format of the syslog
protocol which might not be tolerated by stock syslog receivers (like
syslogd or syslog-ng itself). For network destinations make sure
the receiver can cope with the custom format defined.

template_es-

cape()

yes or no

no

Turns on escaping ' and " in templated output files. This is useful
for generating SQL statements and quoting string contents so that
parts of the log message are not interpreted as commands to the SQL
servef.

tcp(), tep6(), udp(), and udp6(), *

Name Type Default Description
throttle() number 0 Sets the maximum number of messages sent to the destination per
second. Specifying 0 or a lower value sets the output limit to unlim-
ited.
time_zone() timezone off-|unspecified |Convert timestamps to the timezone specified by this option. If this
set in seconds option is not set then the original timezone information in the mes-
sage is used.
tls() tls options n/a This option sets various TLS specific options like key/ certificate files
and trusted CA locations. TLS can be used only with the tcp
transport protocols. See Section 6.10, “TLS options” (p. 173) for
more information.
transport udp, tcp, or tls |tcp Specifies the protocol used to receive messages from the source.
ts_format() rfc3164, bsd,|rfc3164 Override the global timestamp format (set in the global
rfc3339, iso ts format () parameter) for the specific destination. See also
Section 5.7, “A note on timezones and timestamps” (p. 90).
Table 6.12. Options for systog() destinations
Example 6.18. Using the syslog() driver
4’ destination d tcp { syslog(ip"10.1.2.3" transport ("tcp") port(1999);

6.2.6. tcp(), tcp6(), udp(), and udp6(),

localport (999)) ;

}i

}i

If name resolution is configured, the hostname of the target server can be used as well.

destination d tcp { syslog(ip"target host" transport ("tcp") port (1999);
localport (999));

Send the log messages using TLS encryption and use mutual authentication. See Section 6.10, “T'LS options” (p. 173) for details
on the encryption and authentication options.

destination d syslog tlsf{

syslog("10.100.20.40"

transport ("tls")

port (6514)

tls (peer-verify(required-trusted)

ca dir('/opt/syslog-ng/etc/syslog-ng/keys/ca.d/")

key file('/opt/syslog-ng/etc/syslog-ng/keys/client key.pem')

cert file('/opt/syslog-ng/etc/syslog-ng/keys/client certificate.pem'))
)iti

This driver sends messages to another host on the local intranet or internet using the UDP or TCP protocol. The
tcp6 () and udpb () drivers use the IPv6 network protocol.

Both drivers have a single required argument specifying the destination host address, where messages should be
sent, and several optional parameters. Note that this differs from source drivers, where local bind address is implied,
and none of the parameters are required.

tep(), tep6(), udp(), and udp6(), 5K

The udp () and udp6 () drivers automatically send multicast packets if a multicast destination address is specified.
The tcp () and tcpé6 () drivers do not support multicasting.

Declaration:
tcp (host [options]
udp (host [options]
tcp6 (host [options
udp6 (host [options

4

.

14

)
) 2
1):
1)

These destinations have the following options:

tcp(), tep6(), udp(), and udp6(), *

Name

Type

Default

Description

flags()

no_multi_line,
syslog-pro-
tocol

empty set

Flags influence the behavior of the driver.

The no-multi-1ine flagdisables line-breaking in the messages;
the entire message is converted to a single line.

The syslog-protocol flag instructs the driver to format the
messages according to the new IETF syslog protocol standard. If
this flag is enabled, macros used for the message have effect only for
the text of the message, the message header is formatted to the new
standard. Note that this flag is not needed for the sy slog driver.

flush_lines()

number

Use global
setting;

Specifies how many lines are flushed to a destination at a time. Syslog-
ng waits for this number of lines to accumulate and sends them off]
in a single batch. Setting this number high increases throughput as
fully filled frames are sent to the network, but also increases message
latency. The latency can be limited by the use of the
flush timeout option.

flush_timeout()

time in milli-
seconds

Use global
setting,

Specifies the time syslog-ng waits for lines to accumulate in its output
buffer. See the f1ush 1ines option for more information.

frac_digits()

number

0

The syslog-ng application can store fractions of a second in the
timestamps ~ according the ISO8601 The
frac digits () parameter specifies the number of digits stored.
The digits storing the fractions are padded by zeros if the original
timestamp of the message specifies only seconds. Fractions can always
be stored for the time the message was received. Note that syslog-
ng can add the fractions to non-ISO8601 timestamps as well.

to format..

fsync()

yes or no

no

Forcesan fsync () call on the destination fd after each write. Note:
enabling this option may seriously degrade performance.

ip_tos()

number

Specifies the Type-of-Service value of outgoing packets.

ip_ttl()

number

Specifies the Time-To-Live value of outgoing packets.

keep-alive()

yes or no

yes

Specifies whether connections to destinations should be closed when
syslog-ng is restarted (upon the receipt of a SIGHUP signal). Note
that this applies to the client (destination) side of the syslog-ng con-
nections, server-side (source) connections are always reopened after
receiving a HUP signal unless the keep-alive option is enabled
for the source. When the keep-alive option is enabled, syslog-
ng saves the contents of the output queue of the destination when
receiving a HUP signal, reducing the risk of losing messages.

localip()

string

0.0.0.0

The IP address to bind to before connecting to target.

localport()

number

0

The port number to bind to. Messages are sent from this port.

log_fifo_size()

number

Use global
setting,

The number of entries in the output buffer (output fifo).

tcp(), tep6(), udp(), and udp6(), *

Name

Type

Default

Description

port() or dest-
port()

number

514

The port number to connect to. Note that the default port numbers
used by syslog-ng do not comply with the latest RFC which was
published after the release of syslog-ng 3.0.2, therefore the default
port numbers will change in the future releases.

so_broadcast()

yes of no

no

This option controls the SO BROADCAST socket option required
to make syslog-ng send messages to a broadcast address. See the
socket(7) manual page for details.

so_keepalive()

yes ot no

no

Enables keep-alive messages, keeping the socket open. This only ef-
fects TCP and UNIX-stream sockets. See the socket(7) manual page
for details.

so_rcvbuf()

number

Specifies the size of the socket receive buffer in bytes. See the
socket(7) manual page for details.

so_sndbuf()

number

Specifies the size of the socket send buffer in bytes. See the socket(7)
manual page for details.

spoof_source()

yes or no

no

Enables source address spoofing. This means that the host running
syslog-ng generates UDP packets with the source IP address matching
the original sender of the message. It is useful when you want to
perform some kind of preprocessing via syslog-ng then forward
messages to your central log management solution with the source
address of the original sender. This option only works for UDP
destinations though the original message can be received by TCP as
well. This option is only available if syslog-ng was compiled using
the ——enable-spoof-source configuration option.

suppress()

seconds

0 (disabled)

If several identical log messages would be sent to the destination
without any other messages between the identical messages (for ex-
ample, an application repeated an error message ten times), syslog-
ng can suppress the repeated messages and send the message only
once, followed by the Last message repeated n times.
message. The parameter of this option specifies the number of]
seconds syslog-ng waits for identical messages.

template()

string

A format
conforming
to the de-
fault logfile
format.

Specifies a template defining the logformat to be used in the destin-
ation. Macros are described in Section 6.5, “Macros” (p. 153). Please
note that for network destinations it might not be appropriate to
change the template as it changes the on-wire format of the syslog
protocol which might not be tolerated by stock syslog receivers (like
syslogd or syslog-ng itself). For network destinations make sure
the receiver can cope with the custom format defined.

template_es-

cape()

yes or no

no

Turns on escaping ' and " in templated output files. This is useful
for generating SQL statements and quoting string contents so that
parts of the log message are not interpreted as commands to the SQL
servet.

unix-stream() & unix-dgram()

Name Type Default Description
throttle() number 0 Sets the maximum number of messages sent to the destination per
second. Specifying 0 or a lower value sets the output limit to unlim-
ited.
time_zone() timezone off-|unspecified |Convert timestamps to the timezone specified by this option. If this
set in seconds option is not set then the original timezone information in the mes-

sage is used.

tls() tls options n/a This option sets vatrious TLS specific options like key/ certificate files
and trusted CA locations. TLS can be used only with the tcp
transport protocols. See Section 6.10, “TLS options” (p. 173) for
more information.

ts_format() rfc3164, bsd,|rfc3164 Override the global timestamp format (set in the global
rfc3339, iso ts format () parameter) for the specific destination. See also
Section 5.7, “A note on timezones and timestamps” (p. 90).

Table 6.13. Options for tep, tep6, udp, and ndpG destinations

Example 6.19. Using the tcp() dtiver

" destination d tcp { tcp("10.1.2.3" port(1999); localport(999)); 1};

If name resolution is configured, the hostname of the target server can be used as well.

destination d tcp { tcp("target host" port(1999); localport(999)); };
To send messages using the IETF-syslog message format, enable the syslog-protocol flag:

destination d tcp { tcp("10.1.2.3" port(1999); flags(syslog-protocol) };

6.2.7. unix-stream() & unix-dgram()

These drivers send messages to a unix socket in either SOCK STREAM or SOCK DGRAM mode.
Both drivers have a single required argument specifying the name of the socket to connect to.

Declaration:
unix-stream(filename [options]):;
unix-dgram (filename [options]);

The unix-stream () and unix-dgram () destinations have the following options:

unix-stream() & unix-dgram()

Name

Type

Default

Description

flags()

no_multi_line,
syslog-pro-
tocol

empty set

Flags influence the behavior of the driver.

The no-multi-1ine flagdisables line-breaking in the messages;
the entire message is converted to a single line.

The syslog-protocol flag instructs the driver to format the
messages according to the new IETF syslog protocol standard. If
this flag is enabled, macros used for the message have effect only
for the text of the message, the message header is formatted to the
new standard. Note that this flag is not needed for the syslog
driver.

flush_lines()

number

Use global
setting;

Specifies how many lines are flushed to a destination at a time. Sys-
log-ng waits for this number of lines to accumulate and sends them
off in a single batch. Setting this number high increases throughput
as fully filled frames are sent to the network, but also increases
message latency. The latency can be limited by the use of the
flush timeout option.

flush_timeout()

time in milli-
seconds

Use global
setting,

Specifies the time syslog-ng waits for lines to accumulate in its output
buffer. See the f1ush 1ines option for more information.

frac_digits()

number

0

The syslog-ng application can store fractions of a second in the
timestamps ~ according the ISO8601 The
frac digits () parameter specifies the number of digits stored.
The digits storing the fractions are padded by zeros if the original
timestamp of the message specifies only seconds. Fractions can al-
ways be stored for the time the message was received. Note that
syslog-ng can add the fractions to non-ISO8601 timestamps as well.

to format..

fsync()

yes or no

no

Forces an fsync () call on the destination fd after each write.
Note: enabling this option may seriously degrade performance.

log_fifo_size()

number

Use global
setting;

The number of entries in the output buffer (output fifo).

keep-alive()

yes of no

yes

Specifies whether connections to destinations should be closed when
syslog-ng is restarted (upon the receipt of a SIGHUP signal). Note
that this applies to the client (destination) side of the syslog-ng
connections, server-side (source) connections are always reopened
after receiving a HUP signal unless the keep-alive option is
enabled for the source. When the keep-alive optionis enabled,
syslog-ng saves the contents of the output queue of the destination
when receiving a HUP signal, reducing the risk of losing messages.

so_broadcast()

yes of no

no

This option controls the SO BROADCAST socket option required
to make syslog-ng send messages to a broadcast address. See the
socket(7) manual page for details.

unix-stream() & unix-dgram()

Name

Type

Default

Description

so_keepalive()

yes or no

no

Enables keep-alive messages, keeping the socket open. This only
effects TCP and UNIX-stream sockets. See the socket(7) manual
page for details.

so_tcvbuf()

number

Specifies the size of the socket receive buffer in bytes. See the
socket(7) manual page for details.

so_sndbuf()

number

Specifies the size of the socket send buffer in bytes. See the
socket(7) manual page for details.

suppress()

seconds

0 (disabled)

If several identical log messages would be sent to the destination
without any other messages between the identical messages (for
example, an application repeated an error message ten times), syslog-
ng can suppress the repeated messages and send the message only
once, followed by the Last message repeated n times.
message. The parameter of this option specifies the number of
seconds syslog-ng waits for identical messages.

template()

string

A
conforming
to the de-
fault logfile
format.

format

Specifies a template defining the logformat to be used in the destin-
ation. Macros are described in Section 6.5, “Macros” (p. 153). Please
note that for network destinations it might not be appropriate to
change the template as it changes the on-wire format of the syslog
protocol which might not be tolerated by stock syslog receivers (like
syslogd or syslog-ng itself). For network destinations make sure
the receiver can cope with the custom format defined.

template_es-

cape()

yes or no

no

Turns on escaping ' and " in templated output files. This is useful
for generating SQL statements and quoting string contents so that
parts of the log message are not interpreted as commands to the
SQL server.

throttle()

number

Sets the maximum number of messages sent to the destination per
second. Specifying 0 or a lower value sets the output limit to unlim-
ited.

time_zone()

timezone off-
set in seconds

unspecified

Convert timestamps to the timezone specified by this option. 1f this
option is not set then the original timezone information in the
message is used.

ts_format()

rfc3164, bsd,
rfc3339, iso

rfc3164

Override the global timestamp format (set in the global
ts format () parameter) for the specific destination. See also
Section 5.7, “A note on timezones and timestamps” (p. 90).

Table 6.14. Options for unix-stream() and unix-dgram()

Example 6.20. Using the unix-stream() driver

destination d unix stream { unix-stream("/var/run/logs");

bi

usertty() *

6.2.8. usertty()

This driver writes messages to the terminal of a logged-in user.

The usertty () driver has a single required argument, specifying a username who should receive a copy of
matching messages.

Declaration:
usertty (username) ;

The usertty () does not have any further options nor does it support templates.

Example 6.21. Using the usertty() driver

; destination d usertty { usertty("root"); };

6.3. Log path flags

Flags influence the behavior of syslog-ng, and the way it processes messages. The following flags may be used in
the log paths, as described in Section 4.5, “Log paths” (p. 61).

Flag Description

catchall This flag means that the source of the message is ignored, only the filters are taken into account
when matching messages. A log statement using the catchall flag processes every message that
arrives to any of the defined sources.

fallback This flag makes a log statement 'fallback’. Fallback log statements process messages that wete not
processed by other, 'non-fallback' log statements.

final This flag means that the processing of log messages processed by the log statement ends here, other
log statements appearing later in the configuration file will not process the messages processed by
the log statement labeled as 'final'. Note that this does not necessarily mean that matching messages
will be stored only once, as there can be matching log statements processed prior the current one.

flow-control | Enables flow-control to the log path, meaning that syslog-ng will stop reading messages from the
sources of this log statement if the destinations are not able to process the messages at the required
speed. If disabled, syslog-ng will drop messages if the destination queues are full. If enabled, syslog-
ng will only drop messages if the destination queues/window sizes are impropetly sized.

Table 6.15. Log statement flags

3 Warning
The final, fallback,and catchall flags apply only for the top-level log paths, they have no effect on embedded log
paths.

Filter functions *

\ Example 6.22. Using log path flags
Let's suppose that you have two hosts (myhost A and myhost B) that run two applications each (application A
; and application B), and you collect the log messages to a central syslog-ng server. On the server, you create two log
paths:

m one that processes only the messages sent by myhost A;and

m one that processes only the messages sent by application A.
This means that messages sent by application Arunning on myhost A will be processed by both log paths, and the
messages of application Brunning on myhost Bwill notbe processed at all.

m Ifyouadd the final flag to the first log path, then only this log path will process the messages of myhost A,

so the second log path will receive only the messages of application Arunning on myhost B.

m If you create a third log path that includes the fallback flag, it will process the messages not processed by
the first two log paths, in this case, the messages of application Brunning on myhost B.

m Adding a fourth log path with the catchall flag would process every message received by the syslog-ng
servet.

log { source(s_localhost); destination(d file); flags(catchall); };

6.4. Filter functions

The following functions may be used in the filter statement, as described in Section 4.6, “Filters” (p. 65).

Filter functions *

Name Synopsis Description

facility() facility(facility[,facility]) ~ |Match messages having one of the listed facility code. An alternate
syntax permits the use an arbitrary facility codes.

facility() facility(<numeric facility| An alternate syntax for facility permitting the use of an arbitrary

code>) facility code. Facility codes 0-23 are predefined and can be referenced

by their usual name. Facility codes above 24 are not defined but can
be used by this alternate syntax.

filter() filter(filtername) Call another filter rule and evaluate its value.

host() host(regexp) Match messages by using a regular expression against the hostname

field of log messages.

level() or prior-
ity()

level(pril,pril..pri2[,pri3]])

Match messages based on priority.

match()

match(regexp)

Match a regular expression to the headers and the message itself (i.e.,
the values returned by the MSGHDR and MSG macros). Note that in
syslog-ng version 2.1 and earlier, the match () filter was applied only
to the text of the message, excluding the headers. This functionality
has been moved to the message () filter. To limit the scope of the
match to a specific part of the message (identified with a macro), use
thematch (regexp value ("MACRO")) syntax. Do norinclude
the § sign in the parameter of the value () option.

message()

message(regexp)

Match a regular expression to the text of the log message, excluding
the headers (i.e., the value returned by the MSG macros). Note that in
syslog-ng version 2.1 and earlier, this functionality was performed by
the match () filter.

netmask()

netmask(ip/mask)

Select only messages sent by a host whose IP address belongs to the
specified IP subnet. Note that this filter checks the IP address of the
last-hop relay (the host that actually sent the message to syslog-ng), not
the contents of the HOST field of the message.

program()

program(regexp)

Match messages by using a regular expression against the program name
tield of log messages.

source()

string

Select messages of a source statement. This filter can be used in embed-
ded log statements if the parent statement contains multiple soutrce
groups — only messages originating from the selected source group
are sent to the destination of the embedded log statement.

tags()

tag

Select messages labeled with the specified tag. Every message automat-
has the tag of its
.source.<id of the source statement> format. This
option is available only in syslog-ng 3.1 and later.

source in

ically

Table 6.16. Filter functions in syslog-ng

The host (), match (),and program () filter functions accept regular expressions as parameters. The exact
type of the regular expression to use can be specified with the type () option. The following expression types

are available:

Filter functions *

Name |Description

posix |Use POSIX regular expressions. If the type () parameter is not specified, syslog-ng uses POSIX regular
expressions by default. For additional details on the use and flags of regular expressions, see Section 6.8,
“Regular expressions” (p. 168).

pcre [Use PCRE regular expressions. This is available only if syslog-ng was compiled with the ——enable-pcre
option. Execute the syslog-ng -V command to list the options supported by your binary. For additional
details on the use and flags of regular expressions, see Section 6.8, “Regular expressions” (p. 168).

string (Match the strings literally, without regular expression support. By default, only identical strings are matched.
For partial matches, use the f1ags ("prefix") orthe flags ("substring") flags.

Table 6.17. Filter match types

The level () filter accepts the following levels: emerg, alert, crit, err, warning, notice, info,

debug.

The facility () filter accepts both the name and the numerical code of the facility or the importance level.
The syslog-ng application recognizes the following facilities: (Note that some of these facilities are available only
on specific platforms.)

Numerical Code Facility name |Facility

0 kern kernel messages

1 user user-level messages

2 mail mail system

3 daemon system daemons

4 auth security/authorization messages

5 syslog messages generated internally by syslogd
6 lpr line printer subsystem

7 news network news subsystem

8 uucp UUCP subsystem

9 cron clock daemon

10 auth security/authorization messages

11 ttp FTP daemon

12 NTP subsystem

13 log audit

14 log alert

15 cron clock daemon

16-23 local0..Jocal7 |locally used facilities (localO-local7)

Table 6.18. syslog Message Facilities recognized by the facility() filter

6.5. Macros

Certain parts of syslog-ng (e.g., destination filenames and message content templates) can refer to one or more
macros, which get expanded as a message is processed. The table below summarizes the macros available in syslog-

ng.

Macros can be included by prefixing the macro name with a $ sign, just like in Bourne compatible shells. Regarding
braces around macro names, the following two formats are equivalent "$MSG" and "$ {MSG} ".

Default values for macros can also be specified by appending the : — characters and the default value to the macro,

e.g,
S{HOST:-default hostname}

Macros can be used to format messages, and also in the name of destination files. However, they cannot be used
in sources as wildcards, for example, to read messages from files or directories that include a date in their name.

Name

Description

BSDTAG

Facility/priority information in the format used by the FreeBSD syslogd: a
priority number followed by a letter that indicates the facility. The priority
number can range from 0 to 7. The facility letter can range from A to Y, where
A corresponds to facility number zero (LOG_KERN), B corresponds to facility
1 LOG_USER), etc.

DATE, R_DATE, S_DATE

Date of the message using the BSD-syslog style timestamp format
(month/day/hour/minute/second, each expressed in two digits). This is the
original syslog time stamp without year information, e.g: Jun 13 15:58:00.

DAY, R_DAY, S_DAY

The day the message was sent.

FACILITY

The facility that sent the message.

FULLDATE, R_FULLDATE,
S_FULLDATE

A nonstandard format for the date of the message using the same format as
DATE, but including the year as well, e.g: 2006 Jun 13 15:58:00.

FULLHOST

The full FQDN of the host name chain (without trimming chained hosts), in-
cluding the domain name. To use this macro, make sure that the
keep hostname ()_option is enabled.

FULLHOST_FROM

FQDN of the host that sent the message to syslog-ng as resolved by syslog-ng
using DNS. If the message traverses several hosts, this is the last host in the
chain. To use this macro, make sure that the _keep hostname ()_ option
is enabled.

HOUR, R_HOUR, S_HOUR

The hour of day the message was sent.

HOST

The name of the source host where the message originates from. If the message
traverses several hosts and the _.chain hostnames ()_ option is on, the
first host in the chain is used. To use this macro, make sure that the
keep hostname ()_option is enabled.

HOST_FROM Name of the host that sent the message to syslog-ng, as resolved by syslog-ng
using DNS. If the message traverses several hosts, this is the last host in the
chain. To use this macro, make sure that the _keep hostname ()_ option
is enabled.

ISODATE, R_ISODATE,|Date of the message in the ISO 8601 compatible standard timestamp format

S_ISODATE (yyyy-mm-ddThh:mm:ss+-ZONE), e.g.:

2006-06-13T15:58:00.123+01:00. If possible, it is recommended
to use ISODATE for timestamping. Note that syslog-ng can produce fractions
of a second (e.g, milliseconds) in the timestamp by using the frac digits ()
global or pet-destination option.

MIN, R_MIN, S_MIN

The minute the message was sent.

MONTH, R_MONTH,
S_MONTH

The month the message was sent as a decimal value, prefixed with a zero if]
smaller than 10.

MONTH_ABBREV,
R_MONTH_ABBREV,
S_MONTH_ABBREV

The English abbreviation of the month name (3 letters).

Name Description

M ONTH _ N A M E ,|The English name of the month name.
R_MONTH_NAME,
S_MONTH_NAME

M ONTH _ W E E K ,|The number of the week in the given month (0-5). The week with numerical
R_MONTH_WE E K ,|value 1 is the first week containing a Monday. The days of month before the
S_MONTH_WEEK first Monday are considered week 0. For example, if a 31-day month begins on
a Sunday, then the 1st of the month is week 0, and the end of the month (the
30th and 31st) is week 5.

MSG or MESSAGE Text contents of the log message without the program name and pid. Note that
this has changed in syslog-ng version 3.0; in earlier versions this macro included

the program name and the pid. In syslog-ng 3.0, the MSG macro became equi-
valent with the MSGONLY macro. The program name and the pid together are
available in the MSGHDR macro.

MSGHDR The name and the pid of the program that sent the log message in PROGRAM :
PID format. Includes a trailing whitespace. Note that the macro returns an
empty value if both the program and pid fields of the message are empty.

MSGONLY Message contents without the program name or pid.

PID The PID of the program sending the message.

PRI The priority and facility encoded as a 2 or 3 digit decimal number as it is present
in syslog messages.

PRIORITY or LEVEL The priority of the message.

PROGRAM The name of the program sending the message. Note that the content of the

$PROGRAM variable may not be completely trusted as it is provided by the
client program that constructed the message.

SDATA.SDID.SDNAME The syslog-ng application automatically parses the STRUCTURED-DATA part
of IETT-syslog messages, which can be referenced in macros. For example, if
a log message contains the following structured data: [exampleSDIDE@O
iut="3" eventSource="Application"
eventID="1011"] [examplePriority@0 class="high"] you
can use macros like: $ { SDATA.EXAMPLE . EVENTSOURCE } — this would
return the Application string in this case.

SEC, R_SEC, S_SEC The second the message was sent.

SEQNUM The sequence number of the message is a unique identifier of the message
between the end-points. The syslog-ng client calculates this number when pro-
cessing a new message from a local source; it is not calculated for relayed mes-
sages. The sequence number increases for every message, and is not lost even
if syslog-ng is reloaded or restarted. The sequence number is a part of every
message that uses the new IETF-syslog protocol
(. SDATA.meta.sequenceld),and canbeadded to BSD-syslog messages
using this macro.

Message parsers *

Name

Description

SOURCEIP

IP address of the host that sent the message to syslog-ng. (I.e. the IP address
of the hostin the FULLHOST FROMmacro.) Please note that when a message
traverses several relays, this macro contains the IP of the last relay.

STAMP, R_STAMP, S_STAMP

A timestamp formatted according to the _ts format ()_global or per-des-

tination option.

TAG

The priority and facility encoded as a 2 digit hexadecimal number.

TZ,R_TZ,S_TZ

Equivalent to TZOFFSET, used to mean the time zone name abbreviation in
syslog-ng 1.6.x.

TZOFFSET,
S_TZOFFSET

R_TZOFFSET,

The time-zone as hour offset from GMT; e.g.: =07 : 00. In syslog-ng 1.6.x this
used to be —0700 but as ISODATE requires the colon it was added to
TZOFFSET as well.

UNIXTIME,
S_UNIXTIME

R_UNIXTIME,

Standard unix timestamp, represented as the number of seconds since
1970-01-01T00:00:00.

YEAR, R_YEAR, S_YEAR

The year the message was sent.

WEEK, R_WEEK, S_WEEK

The week number of the year, prefixed with a zero for the first nine week of
the year. (The first Monday in the year marks the first week.)

WEEK_ABBREYV,
R_WEEK_ABBREV,
S_WEEK_ABBREV

The English abbreviation of the name of the day (3 letters).

WEEK_DAY, R_WEEK_DAY,
S_WEEK_DAY

The day of the week as a numerical value (1-7).

WEEKDAY,
S_WEEKDAY

R_WEEKDAY,

The 3-letter name of the day of week the message was sent, e.g. Thu.

WEEK_DAY_NAME,
R_WEEK_DAY_NAME,
S_WEEK_DAY_NAME

The English name of the day.

6.6. Message parsers

Table 6.19. Available macros

The following sections provide reference for the parsers available in syslog-ng,

m To segment structured messages like comma-separated values, see Section 6.6.1, “CSV parsers” (p. 1506).

m To classify messages using a pattern database, see Section 6.6.2, “Pattern databases” (p. 160).

6.6.1. CSV parsers

The syslog-ng application can separate parts of log messages (i.e., the contents of the $MSG macro) to named fields
(columns). These fields act as user-defined macros that can be referenced in message templates, file- and tablenames,

etc.

CSV parsers *

To create a parser, define the columns of the message, the delimiter or separator characters, and optionally the
characters that are used to escape the delimiter characters (quote-pairs).

Declaration:
parser parser name {
csv-parser (columnl, column2, ...)

delimiters ()
quote-pairs ()

)2

Column names work like macros. Always use a prefix to identify the columns of the parsers, e.g,
MYPARSERI1.COLUMN1, MYPARSERZ.COLUMNZ, etc. Column names starting with a dot (e.g.,, . HOST) are
reserved for use by syslog-ng.

CSV parsers *

Name Synopsis Description

csv-parser |csv-parser(columns("PARS-|Specifies the type of parser to use, and the name of the columns to
ER.COLUMNT1", "PARS-[separate messages to. Currently only the csv-parserisimplemen-
ER.COLUMN?2", ...)) ted, which can separate columns based on delimiter characters and

strings.

delimiters |delimiters("<delimiter_charac-|The character that separates the columns in the message.
ters>")

flags() drop-invalid, escape-none, es-|When the drop-invalidoptionis set, the parser does not process

cape-backslash, escape-

double-char, greedy, strip-

whitespace

messages that have less columns than defined in the parser. Using this
option practically turns the parser into a special filter, that matches
messages that have the predifined number of columns (using the
specified delimiters).

The escape-none, escape-backslash,
escape-double-char flags set the escaping rules used by the
patset.

The greedy option assigns the remainder of the message to the last
column, regardless of the delimiter characters set. You can use this
option to process messages where the number of columns varies.

The strip-whitespace flag removes trailing whitespaces from
the beginning and the end of the columns.

quote-pairs()

quote-pairs('<quote_pairs>")

List quote-pairs between single quotes. Delimiter characters enclosed
between quote characters are ignored. Note that the beginning and
ending quote character does not have to be identical, e.g., [} can also
be a quote-pair.

template() [template("${<macro-|The macro that contains the part of the message that the parser will
name>}") process. It can also be a macro created by a previous patser of the log
path. By default, this is empty and the parser processes the entire
message.
Table 6.20. Parser parameters
Example 6.23. Segmenting hostnames separated with a dash
The following example separates hostnames like example-1 and example-2 into two parts.

}i

destination d file { file("/var/log/messages-${HOSTNAME.NAME:-examplehost}");
log { source(s_local); parser(p_hostname segmentation); destination(d file);};

parser p hostname segmentation {
csv-parser (columns ("HOSTNAME .NAME",
delimiters ("-")
flags (escape—none)
template ("${HOST}")) ;

"HOSTNAME.ID")

bi

CSV parsers

Example 6.24. Parsing Apache log files

The following parser processes the log of Apache web servers and separates them into different fields. Apache log messages
’ can be formatted like:

o

h

o°

1

o
o°

u %t \"%r\" %>s %b \"%{Referer}i\" \"${User-Agent}i\" T Sv"

Here is a sample message:

192.168.1.1 - - [31/Dec/2007:00:17:10 +0100] "GET /cgi-bin/example.cgi HTTP/1.1"
200 2708 "-" "curl/7.15.5 (i4 86-pc-linux-gnu) libcurl/7.15.5 OpenSSL/0.9.8c
z1ib/1.2.3 1libidn/0.6.5" 2 example.balabit

To parse such logs, the delimiter character is set to a single whitespace (delimiters (" ")). Whitespaces between quotes
and brackets are ignored (quote-pairs ('""[]")).

parser p_ apache {
csv-parser (columns ("APACHE.CLIENT IP", "APACHE.IDENT NAME", "APACHE.USER NAME",

"APACHE.TIMESTAMP", "APACHE.REQUEST URL", "APACHE.REQUEST STATUS",
"APACHE.CONTENT LENGTH", "APACHE.REFERER", "APACHE.USER AGENT",
"APACHE.PROCESS TIME", "APACHE.SERVER NAME")
flags (escape-double-char, strip-whitespace)
delimiters (" ")
quote-pairs ('""[]1")
)i
}i

The results can be used for example to separate log messages into different files based on the APACHE.USER_NAME field.
If the field is empty, the nouser name is assigned.

log { source(s_local);
parser (p_apache); destination(d file);};
}i
destination d file { file("/var/log/messages-${APACHE.USER NAME:-nouser}"); };

Example 6.25. Segmenting a part of a message
The following example splits the timestamp of a parsed Apache log message into separate fields.

parser p apache timestamp {

csv-parser (columns ("APACHE.TIMESTAMP.DAY", "APACHE.TIMESTAMP.MONTH",
"APACHE.TIMESTAMP.YEAR", "APACHE.TIMESTAMP.HOUR", "APACHE.TIMESTAMP.MIN",
"APACHE.TIMESTAMP.MIN", "APACHE.TIMESTAMP.ZONE")

delimiters("/: ")

flags (escape-none)

template ("${APACHE.TIMESTAMP}")) ;

}i
log { source(s_local);

log { parser(p_apache); parser(p_apache timestamp); destination(d file);};

}i

Example 6.26. Adding the end of the message to the last column

If the greedy option is enabled, the syslog-ng application adds the not-yet-parsed part of the message to the last column,
’ ignoring any delimiter characters that may appear in this part of the message.

For example, you receive the following comma-separated message: example 1, example2, example3, and you
segment it with the following parser:

csv_parser (columns ("COLUMN1", "COLUMN2", "COLUMN3") delimiters(","));

The COLUMNI1, COLUMNZ2, and COLUMN 3 variables will contain the strings examplel, example?2, and example3,
respectively. If the message looks like example 1, example2, example3, some more information,then
any text appearing after the third comma (i.e., some more information) is not parsed, and possibly lost if you use
only the variables to reconstruct the message (for example, to send it to different columns of an SQL table).

Pattern databases *

Using the greedy flag will assign the remainder of the message to the last column, so that the COLUMN1, COLUMNZ2, and
COLUMN 3 variables will contain the strings examplel, exampleZ2,and example3, some more information.

csv_parser (columns ("COLUMN1", "COLUMN2", "COLUMN3") delimiters(",") flags(greedy)):

6.6.2. Pattern databases
6.6.2.1. Using pattern parsers

Pattern parsers attempt to parse a part of the message using rules specific to the type of the parser. Parsers are en-
closed between @ characters. The syntax of parsers is the following:

m a beginning @ character;

m the type of the parser written in capitals;

m optionally a name;

m parameters of the parser, if any;

m a closing @ character.

Example 6.27. Pattern parser syntax
A simple parser:

@STRING@E

A named parser:
@STRING:myparser name@

A named parser with a parameter:
@STRING:myparser name:*Q@

A parser with a parameter, but without a name:

@STRING: : *@

The following parsers are available:

B @ANYSTRING@: Parses everything to the end of the message; you can use it to collect everything
that is not parsed specifically to a single macro. In that sense its behavior is similar to the greedy ()
option of the CSV parser.

B @DOUBLE@: An obsolete alias of the @FLOAT@ parset.

B @ESTRING(@: This parser has a required parameter that acts as the stopcharacter: the parser parses
everything until it find the stopcharacter. For example to stop by the next " (double quote) character,
use @ESTRING: :"@. As of syslog-ng 3.1, it is possible to specify a stopstring instead of a single
character, e.g., @ESTRING: : stop here. @.

B @WFLOAT@: A floating-point number that may contain a dot (.) character. (Up to syslog-ng 3.1, the
name of this parser was @DOUBLEQ@.)

B @IPr4@: Parses an IPv4 IP address (numbers separated with a maximum of 3 dots).

Pattern databases *

B @IPv6(@: Parses any valid IPv6 IP address.
B @IPrANY@: Parses any IP address.

B @NUMBER@: A sequence of decimal (0-9) numbers (e.g,, 1, 0687, etc.). Note that if the number starts
with the Ox characters, it is parsed as a hexadecimal number, but only if at least one valid character follows

0x.

B @OSTRING(@: Parse a string between the quote characters specified as parameter. Note that the quote
character can be different at the beginning and the end of the quote, e.g: @OSTRING: : "@ parses
everything between two quotation marks ('), while @QSTRING : <>@ parses from an opening bracket
to the closing bracket.

B @STRING@: A sequence of alphanumeric characters (0-9, A-z), not including any whitespace. Optionally,
other accepted characters can be listed as parameters (e.g., to parse a complete sentence, add the
whitespace as parameter, like: @STRING: : @). Note that the @ character cannot be a parameter, nor
can line-breaks or tabs.

Patterns and literals can be mixed together. For example, to parse a message that begins with the Host : string
followed by an IP address (e.g., Host: 192.168.1. 1), the following pattern can be used: Host : @I Pv4@.

10

/4

€

Note
Note that using parsers is a CPU-intensive operation. Use the ESTRING and QSTRING parsers whenever possible, as these
can be processed much faster than the other parsers.

Example 6.28. Using the STRING and ESTRING parsers

For example, if the message is user=joe 96 group=somegroup, @STRING:mytext : @ parses only to the first non-
alphanumeric character (=), parsing only user. @STRING :mytext : =@ parses the equation mark as well, and proceeds
to the next non-alphanumeric character (the whitespace), resulting in user=7joe 96 being parsed. @STRING :mytext :=
@ will parse the whitespace as well, and proceed to the next non-alphanumeric non-equation mark non-whitespace character,
resulting in user=joe96 group=somegroup.

Of course, usually it is better to parse the different values separately, like this: "user=@STRING:user@
group=@STRING:group@".

If the username or the group may contain non-alphanumeric characters, you can either include these in the second parameter
of the parser (as shown at the beginning of this example), or use an ESTRING parser to parse the message till the next
whitespace: "user=@ESTRING:user: @group=@ESTRING:group: @".

6.6.2.2. Filtering messages based on classification

The results of message classification and parsing can be used in custom filters and file and database templates as
well. There are two built-in macros in syslog-ng OSE that allow you to use the results of the classification: the

.classifier.class macro contains the class assigned to the message (e.g, violation, security, or unknown),
while the .classifier.rule id macro contains the identifier of the message pattern that matched the

message.

Example 6.29. Using classification results for filtering messages
To filter on a specific message class, create a filter that checks the .classifier_class macro, and use this filter in a log statement.

filter fi class violation {
match ("violation"
value (".classifier.class")

Pattern databases

type ("string")
) i
}i

log {
source (s_all);
parser (pattern db);
filter (fi class violation);
destination(di class violation);

}i

Filtering on the unknown class selects messages that did not match any rule of the pattern database. Routing these messages
into a separate file allows you to periodically review new or unknown messages.

To filter on messages matching a specific classification rule, create a filter that checks the .classifier_rule_id macro. The
unique identifier of the rule (e.g,, e1e9c0d8-13bb-11de-8293-000c2922ed0a) is the 1d attribute of the rule in
the XML database.

filter fi class rule {
match ("ele9c0d8-13bb-11de-8293-000c2922ed0a"
value (".classifier rule id")
type ("string")
) i
}i

The message-segments parsed by the pattern parsers can also be used as macros as well. To accomplish this, you
have to add a name to the parser, and then you can use this name as a macro that refers to the parsed value of the

message.
Example 6.30. Using pattern parsers as macros
For example, you want to parse messages of an application that look like "Transaction: <type>.'", where <type>
3 is a string that has different values (e.g,, refused, accepted, incomplete, etc.). To parse these messages, you can use the following

pattern:
'Transaction: @ESTRING::.Q'

Here the @ESTRING(@ parser parses the message until the next full stop character. To use the results in a filter or a filename
template, include a name in the parser of the pattern, e.g.:

'Transaction: @ESTRING:TRANSACTIONTYPE:.@'

After that, add a custom template to the logpath that uses this template. For example, to select every accepted transaction,
use the following custom filter in the log path:

match ("accepted" wvalue ("TRANSACTIONTYPE")) ;

/ Note
. The above mactos can be used in database columns and filename templates as well, if you create custom templates for the
E destination or logspace.

Use a consistent naming scheme for your macros, for example, APPLICATIONNAME MACRONAME.

6.6.2.3. Creating pattern databases

Pattern databases are XML files that contain rules describing the message patterns. For sample pattern databases,
see Section 4.9.1, “Downloading sample pattern databases” (p. 73).

Pattern databases *

6.6.2.3.1. What's new in the syslog-ng pattern database format V3

The V3 database format has the following differences compared to the original V1 format:

m The rules that are applied to the messages of a program can be separated into multiple rulesets.

m The program pattern of the rulesets can be empty; such rulesets act as fallback rulesets that are applied
to the log messages if no program pattern is matching or when a message does not have a program part.

m Rules can contain multiple patterns to cover messages that have multiple formats (e.g., multilingual
messages).

m Tags can be defined in the rules; these tags are automatically assigned to messages matching the patterns
of the rule.

m Static named values can be defined in the rules; these are automatically assigned to messages matching
the patterns of the rule. The assigned values can be used in filters and macros.

m It is also possible to include sample messages in the rules, and also the expected values of the parsers.
These can be used to test the behavior of the patterns.

6.6.2.3.2. The syslog-ng pattern database format

The following scheme describes the V3 format of the pattern database. This format is used by syslog-ng 3.1 and
later, and the syslog-ng Store Box (SSB) appliance version 1.1 and later (see
http:/ /www.balabit.com/network-security/syslog-ng/log-server-appliance/ for details on SSB).

For a sample database containing only a single pattern, see Example 6.31, “A V3 pattern database containing a
single rule” (p. 166).

For earlier versions of the syslog-ng pattern database formats, see Appendix 3, Deprecated pattern database schemes (p. 201).

For a summary of differences between the different syslog-ng pattern database formats, see Section 6.6.2.3.1,
“What's new in the syslog-ng pattern database format V3” (p. 163).

Tip
Q D ‘ Use the pdbtool utility that is bundled with syslog-ng to test message patterns and convert existing databases to the latest
o r format. See pdbtool(1) (p. 185) for details.

ALY

m <patterndb>: The container element of the pattern database. For example:
<patterndb version='3' pub date='2009-10-25'>
m version: The schema version of the pattern database. The current version is 3.

B pubdate: The publication date of the XML file.

m <ruleset>: A container element to group log patterns for an application or program. For example:

<ruleset name='su' 1d='480ded478-d4a6-4a7f-bead-0c0245d361lel'>

http://www.balabit.com/network-security/syslog-ng/log-server-appliance/

Pattern databases *

A <patterndb> element may contain any number of <ruleset> elements.

name: The name of the application. Note that the function of this attribute is to make the database
mote teadable, syslog-ng uses the <pattern> element to identify the applicatons sending log
messages.

zd: A unique ID of the application, for example, the md5 sum of the name attribute.
description: OPTIONAL — A description of the ruleset or the application.
url: OPTIONAL — An URL referring to further information about the ruleset or the application.

pattern: The name of the application — syslog-ng matches this value to the SPROGRAM header of
the syslog message to find the rulesets applicable to the syslog message. This element is also called
program pattern.E.g,

<pattern>su</pattern>

Note

If the <pattern>eclement of a ruleset is not specified, -ng will use this ruleset as a fallback ruleset: it will
apply the ruleset to messages that have an empty PROGRAM header, or if none of the program patterns
matched the PROGRAM header of the incoming message.

<rules>: A container element for the rules of the ruleset.

* <rule>: An element containing message patterns and how a message that matches these patterns
is classified. For example:

<rule provider='balabit'
id='£f57196aa-75fd-11dd-9bba-001e6806451b"'

class='violation'>

Note
If the following characters appear in the message, they must be escaped in the rule as follows:

* @ Use @@, c.g, user@@example. com
e <:Use <,
e > Use >

* &: Use &

The <rules> element may contain any number of <rule> elements.

e provider: The provider of the rule. This is used to distinguish between who supplied the rule; i.e., if
it has been created by BalaBit, or added to the xml by a local user.

* - The globally unique ID of the rule.

* class: The class of the rule — syslog-ng assigns this class to the messages matching a pattern of this

rule.

Pattern databases *

* <patterns>: An element containing the patterns of the rule. If a <patterns> element contains
multiple <pattern> elements, the class of the <rule> is assigned to every syslog message matching
any of the patterns.

* <pattern>: A pattern describing a log message. This elementis also called message pattern.
For example:

<pattern>+ ?2? root-</pattern>

¢ description: OPTIONAL — A description of the pattern or the log message matching the
pattern.

e urls: OPTIONAL — An element containing one or more URLs referring to further information
about the patterns or the matching log messages.

e url: OPTIONAL — An URL referring to further information about the patterns or the
matching log messages.

* values: OPTIONAL — Name-value pairs that are assigned to messages matching the patterns,
for example, the representation of the event described in the message in Common Event Format
(CEF). The names can be used as macros to reference the assigned values.

* value: OPTIONAL — Contains the value of the name-value pair that is assigned to the
message. For example:

<value name=".classifier.outcome">/Success</value>

* name: The name of the name-value pair. It can also be used as a macro to reference the assigned
value.

* examples: OPTIONAL — A container element for sample log messages that should be recog-
nized by the pattern. These messages can be used also to test the patterns and the parsers.

e example: OPTIONAL — A container element for a sample log message.

* test_message: OPTIONAL — A sample log message that should match this pattern. For
example:

<test message>Content filter has been enabled</test message>

* test_values: OPTIONAL — A container element to test the results of the parsers used
in the pattern.

* test_value: OPTIONAL — The expected value of the parser when matching the pattern
to the test message. For example:

<test value
name=".dict.ContentFilter">enabled</test value>

* name: The name of the parser to test.

e tags: OPTIONAL — An element containing custom keywords (tags) about the messages
matching the patterns. The tags can be used to label specific events (e.g., user logons). It is also
possible to filter on these tags later (see Section 4.6.3, “Tagging messages” (p. 68) for details).

Pattern databases

e tag: OPTIONAL — A keyword or tags applied to messages matching the rule. For example:

<tags><tag>UserLogin</tag></tags>

Example 6.31. A V3 pattern database containing a single rule
The following pattern database contains a single rule that matches a log message of the ssh application. A sample log message

’ looks like:
Accepted password for sampleuser from 10.50.0.247 port 42156 ssh2
The following is a simple pattern database containing a matching rule.

<patterndb version='3' pub date='2009-04-17"'>
<ruleset name='ssh' 1d='123456678"'>
<pattern>ssh</pattern>
<rules>
<rule provider='me' 1d='182437592347598' class='system'>
<patterns>
<pattern>Accepted @QSTRING:SSH.AUTH METHOD: (@
for@QSTRING:SSH_USERNAME: @from\ @QSTRING:SSH_CLIENT_ADDRESS: @port
@NUMBER:SSH_PORT_NUMBER:@ ssh2</pattern>
</patterns>
</rule>
</rules>
</ruleset>
</patterndb>

Note that the rule uses macros that refer to parts of the message, for example, you can use the $SSH USERNAME macro
refer to the username used in the connection.

The following is the same example, but with a test message and test values for the parsers.

<patterndb version='3' pub date='2009-04-17"'>
<ruleset name='ssh' 1d='123456678"'>
<pattern>ssh</pattern>
<rules>
<rule provider='me' id='182437592347598"' class='system'>
<patterns>
<pattern>Accepted @GQSTRING:SSH.AUTH METHOD: (@
for@QSTRING: SSH USERNAME: @from\ @QSTRING:SSH CLIENT ADDRESS: @port
@NUMBER:SSH PORT NUMBER:@ ssh2</pattern>
</patterns>
<examples>
<example>
<test message>Accepted password for sampleuser from
10.50.0.247 port 42156 ssh2</test message>
<test values>
<test value
name="SSH.AUTH METHOD">password</test value>
<test value
name="SSH USERNAME">sampleuser</test value>
<test value
name="SSH CLIENT ADDRESS">10.50.0.247</test_value>
<test value
name="SSH PORT NUMBER">42156</test value>
</test_values>
</example>
</examples>
</rule>
</rules>
</ruleset>
</patterndb>

Rewriting messages *
O (&

6.7. Rewriting messages

The syslog-ng application can rewrite parts of log messages: it can search and replace text, and also set a specific
field to a specified value. Rewriting messages is often used in conjunction with message parsing Section 6.6, “Message

parsers” (p. 1506).

To create replace a part of the log message, define the string or regular expression to replace, the string to replace
the original text (macros can be used as well), and the field of the message that the rewrite rule should process.
Substitution rules can operate on any value available via macros, e.g,, HOST, MESSAGE, PROGRAM, or any
user-defined macros created using parsers (see Section 6.6, “Message parsers” (p. 156) for details).

As of syslog-ng 3.1, it is also possible to rewrite the structured-data fields of messages complying to the RFC5424
(IETF-syslog) message format. Substitution rules use the following syntax:

Declaration:
rewrite <name of the rule>

{subst ("<string or regular expression to find>", "<replacement string>",
value (<field name>) type() flags());};

The type () and flags () options are optional. The type () specifies the type of regular expression to use;
while the f1ags () are the flags of the regular expressions (see Section 6.8, “Regular expressions” (p. 168) for
details):

Name |Description

posix [Use POSIX regular expressions. If the type () parameter is not specified, syslog-ng uses POSIX regular
expressions by default.

pcre |Use PCRE regular expressions. This is available only if syslog-ng was compiled with the ——enable-pcre
option. Execute the syslog-ng -V command to list the options supported by your binary.

string | Match the strings literally, without regular expression support. By default, only identical strings are matched.
For partial matches, use the flags ("prefix") orthe flags ("substring") flags.

Table 6.21. Rewrite rule types

Example 6.32. Using substitution rules
The following example replaces the first occurrence of the string I Pin the text of the message with the string TP-Address.

rewrite r rewrite subst{subst ("IP", "IP-Address", value ("MESSAGE"));};
To replace every occurrence, use:

rewrite r rewrite subst{subst("IP", "IP-Address", value ("MESSAGE"),
flags("global"));};

Multiple substitution rules are applied sequentially; the following rules replace the first occurrence of the string TP with the
string TP-Addresses.

rewrite r rewrite subst{subst ("IP", "IP-Address", value ("MESSAGE"));
subst ("Address", "Addresses", value ("MESSAGE")):;};

To set a field of the message to a specific value, define the string to include in the message, and the field where it
should be included. Setting a field can operate on any value available via macros, e.g.,, HOST, MESSAGE, PRO-

Regular expressions *

GRAM, or any user-defined macros created using parsers (see Section 6.6, “Message parsers” (p. 156) for details.).
Note that this operation completely replaces any previous value of that field. Use the following syntax:

Declaration:
rewrite <name of the rule>
{set ("<string to include>", value (<field name>) flags ()}

Example 6.33. Setting message fields to a particular value
The following example sets the HOST field of the message to myhost.

rewrite r rewrite set{set ("myhost", value ("HOST"));};
The following example sets the sequence ID field of the RFC5424-formatted (IETF-syslog) messages to a fixed value.

rewrite r sd { set("55555" value (".SDATA.meta.sequenceId")); };

6.8. Regular expressions

Filters and substitution rewrite rules can use regular expressions. The regular expressions can use up to 255 regexp
matches (${1} ... ${255}), but only from the last filter and only if the f1ags ("store-matches")
tlag was set for the filter. For case-insensitive searches, use the f1ags ("ignore-case") option.

By default, syslog-ng uses POSIX-style regular expressions, but if compiled with the ——enable-pcre option,
Perl Compatible Regular Expressions can be used as well. To use Perl Compatible Regular Expressions (PCRE),
add the type ("pcre'") option after the regular expression. Note that PCRE expressions can be used only if
syslog-ng was explicitly compiled with the ——enable-pcre option. Execute the syslog-ng -V command to list
the options supported by your binary.

Posix regular expressions have the following flag options:

Name Description

global Usable only in rewrite rules; match for every occurrence of the expression, not only the first one.

ignore-case |Disable case-sensitivity.

store-matches |Store the matches of the regular expression into the $1, ... $255 variables. Matches from
the last filter expression can be referenced in regular expressions
utf8 Use UTF-8 matching,

Table 6.22. Posix gptions

Example 6.34. Using Posix regular expressions

’ filter f message { message ("keyword" flags("utf8" "ignore-case"));

PCRE regular expressions have the following flag options:

Global options *

Name Description

global Usable only in rewrite rules; match for every occurrence of the expression, not only the first one.

ignore-case |Disable case-sensitivity.

nobackref Do not store back references for the matches — improves performance.

store-matches |Store the matches of the regular expression into the $1, ... $255 variables. Named matches
(also called named subpatterns), e.g., (?<name>. ..), are stored as well. Matches from the last
filter expression can be referenced in regular expressions

unicode Use Unicode support for UTF-8 matches: UTF-8 character sequences are handled as single charac-
ters.

utf8 An alias for the unicode flag.

Table 6.23. PCRE options

Example 6.35. Using PCRE regular expressions

3 rewrite r rewrite subst
{subst ("a*", "?", field("message") type("pcre") flags("utf8"
"global™)); };

6.9. Global options

The following options can be specified in the options statement, as described in Section 4.11, “Configuring global
syslog-ng options” (p. 70).

Global options *

Name

Accepted val-
ues

Default

Description

bad_hostname() [regular expres-|no A regexp containing hostnames which should not be handled as
sion hostnames.

chain_hostnames() |yes ot no no Enable or disable the chained hostname format.

check_hostname() |yes or no no Enable or disable checking whether the hostname contains valid
characters.

create_dirs() yes or no no Enable or disable directory creation for destination files.

dir_group() groupid root The default group for newly created directories.

dir_owner() userid root The default owner of newly created directories.

dir_perm() permission value |0700 The default permission for newly created directories.

dns_cache() yes or no yes Enable or disable DNS cache usage.

dns_cache_expire() |number 3600 Number of seconds while a successful lookup is cached.

dns_cache_ex-|number 60 Number of seconds while a failed lookup is cached.

pire_failed()

dns_cache_hosts() |filename unset Name of a file in /etc/hosts format that contains static IP-
>hostname mappings. Use this option to resolve hostnames locally
without using a DNS. Note that any change to this file triggers a
reload in syslog-ng and is instantaneous.

dns_cache_size() [number 1007 Number of hostnames in the DNS cache.

time_zone() timezone offset[uns p e -[Convert timestamps to the timezone specified by this option. If
in seconds cified this option is not set then the original timezone information in the
message is used.
flush_lines() number 0 Specifies how many lines are flushed to a destination at a time.
Syslog-ng waits for this number of lines to accumulate and sends
them off in a single batch. Setting this number high increases
throughput as fully filled frames are sent to the network, but also
increases message latency. The latency can be limited by the use
of the flush timeout option.
flush_timeout() time in milli- {10000 Specifies the time syslog-ng waits for lines to accumulate in its
seconds output buffer. See the f1ush lines () option for more inform-
ation.
group() groupid root The default group of output files. By default, syslog-ng changes

the privileges of accessed files (e.g.,, /dev/null)to root.root
0600. To disable modifying privileges, use this option with the
-1 value.

Global options *

Name

Accepted val-
ues

Default

Description

keep_hostname()

yes or no

no

Enable or disable hostname rewriting. Enable this option to use
hostname-related macros. This option can be specified globally,
and per-source as well. The local setting of the source overrides
the global option if available. When relaying messages, enable this
option on the syslog-ng server and also on every relay, otherwise
syslog-ng will treat incoming messages as if they were sent by the
last relay.

keep_timestamp()

yes or no

yes

Specifies whether syslog-ng should accept the timestamp received
from the sending application or client. If disabled, the time of re-
ception will be used instead. This option can be specified globally,
and per-source as well. The local setting of the source overrides
the global option if available.

log_fifo_size()

number

1000

The number of lines fitting to the output queue. Note that it is not
possible to set this option lower than 1000.

log_msg_size()

number

8192

Maximum length of a message in bytes.

normalize_host-
names()

yes or no

no

Normalize hostnames, which currently translates to converting
them to lower case. (requires 1.9.9)

owner()

usetid

root

The default owner of output files. By default, syslog-ng changes
the privileges of accessed files (e.g.,, /dev/null)to root.root
0600. To disable modifying privileges, use this option with the
-1 value.

mark()

number

1200

An alias for the obsolete mark freq() option, retained for
compatibility with syslog-ng version 1.6.x.

mark_freq()

number

1200

The number of seconds between two MARK messages. MARK|
messages are generated when there was no message traffic to in-
form the receiver that the connection is still alive. Note that only
local messages postpone the sending of the MARK message, relayed
messages do not. If set to zero (0), no MARK messages are sent.

perm()

permission value

0600

The default permission for output files. By default, syslog-ng
changes the privileges of accessed files (e.g., /dev/null) to
root.root 0600. To disable modifying privileges, use this
option with the —1 value.

recv_time_zone()

time offset (e.g.:
+03:00)

local
timezone

Specifies the time zone associated with the incoming messages, if]|
not specified otherwise in the message or in the source driver. See
also Section 2.5, “Timezone handling” (p. 10) and Section 5.7, “A
note on timezones and timestamps” (p. 90) for details.

send_time_zone()

time offset (e.g.:
+03:00)

local
timezone

Specifies the time zone associated with the messages sent by syslog-
ng, if not specified otherwise in the message or in the destination
driver. See Section 2.5, “Timezone handling” (p. 10) for details.

Global options *

Name Accepted val-|Default |Description
ues
stats_freq() number 600 The period between two STATS messages in seconds. STATS are

log messages sent by syslog-ng, containing statistics about dropped
log messages. Set to 0 to disable the STATS messages.

stats_level() 0,1,2,0r3 0 Specifies the detail of statistics syslog-ng collects about the pro-
cessed messages.

m Level O collects only statistics about the sources and
destinations

m Level 1 contains details about the different connections
and log files, but has a slight memory overhead

m Level 2 contains detailed statistics based on the host-
name.

m Level 3 contains detailed statistics based on various
message parameters like facility, severity, or tags.

Note that level 2 and 3 increase the memory requirements and
CPU load.

stats_reset() yes or no no If enabled, the statistics of orphaned objects (object that were
present earlier in the syslog-ng configuration file, but have been
deleted) are automatically deleted when the configuration is re-

loaded.

sync() o r|number 0 Obsolete aliases for f1ush lines ()

sync_freq() (DE-

PRECATED)

time_reap() number 60 The time to wait in seconds before an idle destination file is closed.

time_reopen() number 60 The time to wait in seconds before a dead connection is reestab-
lished.

time_sleep() number 0 The time to wait in milliseconds between each invocation of the
poll () iteration.

ts_format() rfc3164, bsd,|rfc3164 |Specifies the timestamp format used when syslog-ng itself formats

rfc3339, iso a timestamp and nothing else specifies a format (e.g: STAMP
macros, internal messages, messages without original timestamps).
See also Section 5.7, “A note on timezones and
timestamps” (p. 90).

TLS options *

Name Accepted val-|Default |Description
ues

use_dns() yes, no, per-|yes Enable or disable DNS usage. The
sist_only persist_only

option attempts to resolve hostnames locally from file (e.g., from
/etc/hosts). syslog-ng blocks on DNS queries, so enabling
DNS may lead to a Denial of Service attack. To prevent DoS,
protect your syslog-ng network endpoint with firewall rules, and
make sure that all hosts which may get to syslog-ng are resolvable.
This option can be specified globally, and per-source as well. The
local setting of the source overrides the global option if available.

use_fqdn() yes or no no Add Fully Qualified Domain Name instead of short hostname.
This option can be specified globally, and per-source as well. The
local setting of the source overrides the global option if available.

use_time_recvd() [yes or no no This option controls how the time related macros are expanded
(DEPRECATED) in filename and content templates. If set to yes, then the non-pre-
fixed versions of the time related macros (e.g.: HOUR instead of
R _HOUR and S_HOUR) refer to the time when the message was
received, otherwise it refers to the timestamp which is in the mes-
sage.

NOTE: The timestamps in the messages are generated by the ori-
ginating host and might not be accurate.

This option is deprecated as many users assumed that it controls
the timestamp as it is written to logfiles/destinations, which is not
the case. To change how messages are formatted, specify a content-
template referring to the appropriate prefixed (S or R) time
macro.

Table 6.24. List of global options supported in syslog-ng

6.10. TLS options

The syslog-ng application is able to encrypt incoming and outgoing syslog message flows using SSL/TLS, if the
TCP transport protocol (the tcp () or tcp6 () sources or destination) is used.

> Note
@ E The format of the TLS connections used by syslog-ng is similar to using syslog-ng and stunnel, but the source IP information
is not lost.

To encrypt connections, use the t1s () option in the source and destination statements.

The tls() option can include the following settings:

TLS options *

Name |Accep-[D e -[Description
ted val- (fault
ues
ca_dir() [Direct-[none |Name of a directory, that contains a set of trusted CA certificates in PEM format. The CA certifi
oty after the 32-bit hash of the subject's name. This naming can be created using the c_rehash utility it
name
cert_file() [File -|none [Name of a file, that contains an X.509 certificate in PEM format, suitable as a TLS certificate, mat
name
crl_dir() |Direct-|none [Name of a directory that contains the Certificate Revocation Lists for trusted CAs. Similartly to ca
o r y bit hash of the name of the issuing CAs as filenames. The extension of the files must be . r0.
name
key_file() |[File -|none [Name of a file, that contains an unencrypted private key in PEM format, suitable as a TLS key.
name
peer_veri- |option-[r e -[Verification method of the peer, the four possible values is a combination of two properties of v:
ty() al-trus-|quired- [is required to provide a certificate (required or optional prefix), and whether the certificate provic
ted | |trusted [not. For untrusted certificates only the existence of the certificate is checked, but it does not hav
option- accepts the certificate even if it is expired, signed by an unknown CA, or its CN and the name of t
al-un-
trusted
| re-
quired-
trusted
| re-
quired-
untrus-
ted
t r us -|list of|none |[To acceptconnections only from hosts using certain certificates signed by the trusted CAs, list the
ted_dn() |accep- accepted certificates in this parameter. E.g,, using trusted dn ("*, O=Example Inc, ST=
ted dis- will accept only certificates issued for the Example Inc organization in Some-State state.
tin -
guished
names
t r us -|list of|none |[To accept connections only from hosts using certain certificates having specific SHA-1 fingerpri:
ted_keys()|accep- the accepted certificates in this parat
t e d trusted keys ("SHAl1:00:EF:ED:A4:CE:00:D1:14:A4:AB:43:00:EF:00:91
SHA-1 "SHA1:0C:42:00:3E:B2:60:36:64:00:E2:83:F0:80:46:AD:00:A8:9D:00:
finger-
prints
Table 6.25. List of TLS options
Note

When using the trusted keys () and trusted dn () parameters, note the following:

m First, the trusted keys () parameter is checked. If the fingerprint of the peer is listed, the certificate val-
idation is performed.

TLS options *

m If the fingerprint of the peer is not listed in the t rusted keys () parameter, the trusted dn () para-
meter is checked. If the DN of the peer is not listed in the trusted dn () parameter, the authentication of
the peer fails and the connection is closed.

Appendix 1. The syslog-ng manual pages

Name

syslog-ng — syslog-ng system logger application
Synopsis

syslog-ng [options]

Description

NOTE: This manual page covers both editions of syslog-ng: syslog-ng Open Source Edition and the commercial
syslog-ng Premium Edition. Features that are only included in the Premium Edition are marked with an asterisk
(*). For details, see the official syslog-ng website: http://www.balabit.com/network-security/syslog-ng/.

This manual page is only an abstract; for the complete documentation of syslog-ng, see
The syslog-ng Administrator Guide [http://www.balabit.com/support/documentation/].

The syslog-ng application is a flexible and highly scalable system logging application. Typically, syslog-ng is used
to manage log messages and implement centralized logging, where the aim is to collect the log messages of several
devices on a single, central log server. The different devices - called syslog-ng clients - all run syslog-ng, and collect
the log messages from the various applications, files, and other sources. The clients send all important log messages
to the remote syslog-ng server, where the server sorts and stores them.

Options

--cfgfile <file> or -f <file> Use the specified configuration file.

--chroot <dir> or -C <dir> Change root to the specified directory after reading the configura-
tion file. The directory must be set up accordingly. Note that it is
not possible to reload the syslog-ng configuration after chrooting;

--debug or -d Start syslog-ng in debug mode.

--enable-core Enable syslog-ng to write core files in case of a crash to help sup-
port and debugging.

--fd-limit Set the minimal number of required file descriptors (fd-s); this sets
how many files syslog-ng can keep open simultaneously. Default
value: 4096. Note that this does not override the global ulimit
setting of the host.

--foreground or -F Do not daemonize, run in the foreground.

--group <group> or -g <group> Switch to the specified group after initializing the configuration

file.
--help or -h Display a brief help message.
--no-caps Run syslog-ng as root, without capability-support. This is the de-

fault behavior. On Linux, it is possible to run syslog-ng as non-
root with capability-support if syslog-ng was compiled with the

http://www.balabit.com/network-security/syslog-ng/
http://www.balabit.com/support/documentation/
http://www.balabit.com/support/documentation/

--persist-file <persist-file> or -R
<persist-file>

--pidfile <pidfile> or -p <pidfile>

--process-mode <pidfile>

--qdisk-dir <path> or -Q <path>

--stdetr or -e

--syntax-only or -s

--user <user> or -u <user>

--verbose or -v

--version ot -V

Files

/opt/syslog-ng/etc/syslog-ng/

-—enable-1linux-caps option enabled. (Execute syslog-ng
--version to display the list of enabled build parameters.)

Set the path and name of the syslog-ng.persist file where
the persistent options and data are stored.

Set path to the PID file where the pid of the main process is stored.

Sets how to run syslog-ng: in the foreground (mainly used for
debugging), in the background as a daemon, or in
safe-background mode. By default, syslog-ng runs in
safe-background mode. This mode creates a supervisor
process called supervising syslog-ng,thatrestarts syslog-
ng if it crashes.

Specify the location of the file used for disk-based buffering. By
default, this file is located at /var/1ib/syslog-ng/.

Log internal messages of syslog-ng to stderr. Mainly used for de-
bugging purposes in conjunction with the —-foreground op-
tion.

Verify that the configuration file is syntactically correct and exit.

Switch to the specified user after initializing the configuration file
(and optionally chrooting). Note that it is not possible to reload
the syslog-ng configuration if the specified user has no privilege
to create the /dev/1log file.

Enable verbose logging used to troubleshoot syslog-ng.

Display version number and compilation information.

/opt/syslog-ng/etc/syslog-ng/syslog-ng.conf

See also

syslog-ng.conf(5)

The syslog-ng Administrator Guide [http://www.balabit.com/support/documentation/]

If you experience any problems or need help with syslog-ng, wvisit the
syslog-ng mailing list [https://lists.balabit.hu/mailman/listinfo/syslog-ng]

For news and notifications about the documentation of syslog-ng, visit the
BalaBit Documentation Blog [http://robert.blogs.balabit.com].

http://www.balabit.com/support/documentation/
http://www.balabit.com/support/documentation/
https://lists.balabit.hu/mailman/listinfo/syslog-ng
https://lists.balabit.hu/mailman/listinfo/syslog-ng
http://robert.blogs.balabit.com
http://robert.blogs.balabit.com

Author
This manual page was written by the BalaBit Documentation Team <documentation@balabit.com>.
Copyright

Copyright © 2000-2009 BalaBit I'T Security Ltd. Published under the Creative Commons Attribution-Noncommercial-
No Detivative Works (by-nc-nd) 3.0 license. See http://creativecommons.org/ for details. The latest version is always
available at http://www.balabit.com/support/documentation.

http://creativecommons.org/
http://www.balabit.com/support/documentation

Name

syslog-ng.conf — syslog-ng configuration file
Synopsis

syslog-ng.conf

Description

NOTE: This manual page covers both editions of syslog-ng: syslog-ng Open Source Edition and the commercial
syslog-ng Premium Edition. Features that are only included in the Premium Edition are marked with an asterisk
(*). For details, see the official syslog-ng website: http://www.balabit.com/network-security/syslog-ng/.

This manual page is only an abstract; for the complete documentation of syslog-ng, see
The syslog-ng Administrator Guide [http://www.balabit.com/support/documentation/].

The syslog-ng application is a flexible and highly scalable system logging application. Typically, syslog-ng is used
to manage log messages and implement centralized logging, where the aim is to collect the log messages of several
devices on a single, central log server. The different devices - called syslog-ng clients - all run syslog-ng, and collect
the log messages from the various applications, files, and other sources. The clients send all important log messages
to the remote syslog-ng server, where the server sorts and stores them.

The syslog-ng application reads incoming messages and forwards them to the selected destinations. The syslog-ng
application can receive messages from files, remote hosts, and other sozrces.

Log messages enter syslog-ng in one of the defined sources, and are sent to one or more destinations.

Sources and destinations are independent objects; /g paths define what syslog-ng does with a message, connecting
the sources to the destinations. A log path consists of one or more sources and one or more destinations; messages
arriving to a source are sent to every destination listed in the log path. A log path defined in syslog-ng is called a
log statement.

Optionally, log paths can include fi/fers. Filters are rules that select only certain messages, for example, selecting only
messages sent by a specific application. 1f a log path includes filters, syslog-ng sends only the messages satisfying
the filter rules to the destinations set in the log path.

Configuring syslog-ng

Global objects (e.g,, sources, destinations, log paths, or filters) are defined in the syslog-ng configuration file. Object
definitions consist of the following elements:

m Dype of the object: One of source, destination, log, filter, parser, rewrite rule, or
template.

W [dentifier of the object: A unique name identifying the object. When using a reserved word as an identifier,
enclose the identifier in quotation marks.

http://www.balabit.com/network-security/syslog-ng/
http://www.balabit.com/support/documentation/
http://www.balabit.com/support/documentation/

Tip
Q D ¢ Use identifiers that refer to the type of the object they identify. For example, prefix source objects with s,
[P destinations with d_, and so on.

W Parameters: The parameters of the object, enclosed in braces {parameters}.
W Semicolon: Object definitions end with a semicolon (/).

The syntax is summarized as follows:

The syntax of log statements is as follows:

log {
source (sl); source(s2);
optional element (filterl|parserl|rewritel);
optional element (filterZ2|parserZ|rewrite2) ;...
destination(dl); destination (d2):;
flags(flagl[, flag2...1]);
}i

The following log statement sends all messages arriving to the localhost to a remote server.

source s localhost { tcp(ip(127.0.0.1) port(1999)); 1}’
destination d tcp { tcp("10.1.2.3" port(1999); localport(999)); };
log { source(s localhost); destination(d tcp); };

The syslog-ng application has a number of global options governing DNS usage, the timestamp format used, and
other general points. Each option may have parameters, similarly to driver specifications. To set global options,
add an option statement to the syslog-ng configuration file using the following syntax:

options { optionl (params); option2 (params); ... };

The sources, destinations, and filters available in syslog-ng are listed below. For details, see
The syslog-ng Administrator Guide [http://www.balabit.com/support/documentation/].

http://www.balabit.com/support/documentation/
http://www.balabit.com/support/documentation/

Name Description
internal() Messages generated internally in syslog-ng.

file()

Opens the specified file and reads messages.

pipe(), fifo

Opens the specified named pipe and reads messages.

program)

Opens the specified application and reads messages from its standard output.

sun-stream(), sun-streams

Opens the specified STREAMS device on Solaris systems and reads incoming mes-
sages.

syslog()

Listens for incoming messages using the new IETF-standard syslog protocol.

tc tcpb Listens on the specified TCP port for incoming messages using the BSD-syslog
protocol over IPv4 and IPv6 networks, respectively.
ud udp6 Listens on the specified UDP port for incoming messages using the BSD-syslog

protocol over IPv4 and IPv6 networks, respectively.

unix-dgram()

Opens the specified unix socket in SOCK DGRAM mode and listens for incoming

messages.
unix-stream() Opens the specified unix socket in SOCK_STREAM mode and listens for incoming
messages.
Table 1.1. Sonrce drivers available in syslog-ng
Name Description
file() Writes messages to the specified file.
fifo(), pipe Writes messages to the specified named pipe.

prog ram()

Forks and launches the specified program, and sends messages to its standard input.

sql()

Sends messages into an SQL database. In addition to the standard syslog-ng packages, the
sqgl () destination requires database-specific packages to be installed. Refer to the section
appropriate for your platform in Chapter 3, Installing syslog-ng (p. 20).

syslog()

Sends messages to the specified remote host using the IETF-syslog protocol. The IETF
standard supports message transport using the UDP, TCP, and TLS networking protocols.

tep() and tep6()

Sends messages to the specified TCP port of a remote host using the BSD-syslog protocol
over IPv4 and IPvG, respectively.

udp() and udp6()

Sends messages to the specified UDP port of a remote host using the BSD-syslog protocol
over IPv4 and IPvG, respectively.

unix-degram()

Sends messages to the specified unix socket in SOCK DGRAM style (BSD).

unix-stream() Sends messages to the specified unix socket in SOCK STREAM style (Linux).
usertty() Sends messages to the terminal of the specified user, if the user is logged in.

Table 1.2. Destination drivers available in syslog-ng

Name Synopsis Description

facility() facility(facility[,facility]) ~ |Match messages having one of the listed facility code. An alternate
syntax permits the use an arbitrary facility codes.

facility() facility(<numeric facility| An alternate syntax for facility permitting the use of an arbitrary

code>) facility code. Facility codes 0-23 are predefined and can be referenced

by their usual name. Facility codes above 24 are not defined but can
be used by this alternate syntax.

filter() filter(filtername) Call another filter rule and evaluate its value.

host() host(regexp) Match messages by using a regular expression against the hostname

field of log messages.

level() or prior-
ity()

level(pril,pril..pri2[,pri3]])

Match messages based on priority.

match()

match(regexp)

Match a regular expression to the headers and the message itself (i.e.,
the values returned by the MSGHDR and MSG macros). Note that in
syslog-ng version 2.1 and earlier, the match () filter was applied only
to the text of the message, excluding the headers. This functionality
has been moved to the message () filter. To limit the scope of the
match to a specific part of the message (identified with a macro), use
thematch (regexp value ("MACRO")) syntax. Do norinclude
the § sign in the parameter of the value () option.

message()

message(regexp)

Match a regular expression to the text of the log message, excluding
the headers (i.e., the value returned by the MSG macros). Note that in
syslog-ng version 2.1 and earlier, this functionality was performed by
the match () filter.

netmask()

netmask(ip/mask)

Select only messages sent by a host whose IP address belongs to the
specified IP subnet. Note that this filter checks the IP address of the
last-hop relay (the host that actually sent the message to syslog-ng), not
the contents of the HOST field of the message.

program()

program(regexp)

Match messages by using a regular expression against the program name
tield of log messages.

source()

string

Select messages of a source statement. This filter can be used in embed-
ded log statements if the parent statement contains multiple soutrce
groups — only messages originating from the selected source group
are sent to the destination of the embedded log statement.

tags()

tag

Select messages labeled with the specified tag. Every message automat-
has the tag of its
.source.<id of the source statement> format. This
option is available only in syslog-ng 3.1 and later.

source in

ically

Files

Table 1.3. Filter functions in syslog-ng

/opt/syslog-ng/etc/syslog-ng/

/opt/syslog-ng/etc/syslog-ng/syslog-ng.conf

See also

syslog-ng(8)

The syslog-ng Administrator Guide [http://www.balabit.com/support/documentation/|

If you experience any problems or need help with syslog-ng, visit
syslog-ng mailing list [https://lists.balabit.hu/mailman/listinfo/syslog-ng]

For news and notifications about the documentation of syslog-ng, visit
BalaBit Documentation Blog [http://robert.blogs.balabit.com].

Author
This manual page was written by the BalaBit Documentation Team <documentation@balabit.com>.

Copyright

the

the

Copyright © 2000-2009 BalaBit I'T Security Ltd. Published under the Creative Commons Attribution-Noncommercial-
No Detivative Works (by-nc-nd) 3.0 license. See http://creativecommons.org/ for details. The latest version is always

available at http://www.balabit.com/support/documentation.

http://www.balabit.com/support/documentation/
http://www.balabit.com/support/documentation/
https://lists.balabit.hu/mailman/listinfo/syslog-ng
https://lists.balabit.hu/mailman/listinfo/syslog-ng
http://robert.blogs.balabit.com
http://robert.blogs.balabit.com
http://creativecommons.org/
http://www.balabit.com/support/documentation

Name

pdbtool — An application to test and convert syslog-ng pattern database rules
Synopsis

pdbtool [command] [options]

Description

This manual page is only an abstract; for the complete documentation of syslog-ng and pdbtool, see
The syslog-ng Administrator Guide [http://www.balabit.com/support/documentation/].

The syslog-ng application can match the contents of the log messages to a database of predefined message patterns
(also called patterndb). By comparing the messages to the known patterns, syslog-ng is able to identify the exact
type of the messages, tag the messages, and sort them into message classes. The message classes can be used to
classify the type of the event described in the log message. The functionality of the pattern database is similar to
that of the logcheck project, but the syslog-ng approach is faster, scales better, and is much easier to maintain
compared to the regular expressions of logcheck.

The pdbtool application is a utility that can be used to:

B test message patterns;
m convert an older pattern database to the latest database format;
B merge pattern databases into a single file;

m dump the RADIX tree built from the pattern database (or a part of it) to explore how the pattern
matching works.

The match command

match [options|

Use the match command to test the rules in a pattern database. The command tries to match the specified message
against the patterns of the database, evaluates the parsers of the pattern, and also displays which part of the message
was parsed successfully. The command returns with a 0 (success) or I (no match) return code and displays the
following information:

m the class assigned to the message (e.g;, system, violation, etc.),

m the ID of the rule that matched the message, and

m the values of the parsers (if there were parsers in the matching pattern).
The match command has the following options:

--color-out or -c Color the terminal output to highlight the part of the message that was

successfully parsed.

--debug-pattern or -D Print debugging information about the pattern matching,

http://www.balabit.com/support/documentation/
http://www.balabit.com/support/documentation/

--message or -M The text of the log message to match (only the $MESSAGE part without
the syslog headers).

--pdb or -p Name of the pattern database file to use.

--program or -P Name of the program to use, as contained in the $ PROGRAM part of

the syslog message.

Example:

pdbtool match -p patterndb.xml -P sshd -M "Accepted publickey for myuser
from 127.0.0.1 port 59357 ssh2"

The merge command

merge [options]

Use the merge command to combine separate pattern database files into a single file (pattern databases are usually
stored in separate files per applications to simplify maintenance). If a file uses an older database format, it is auto-
matically updated to the latest format (V3). See the
The syslog-ng Administrator Guide [http://www.balabit.com/support/documentation/] for details on the
different pattern database versions.
--directory or -D The directory that contains the pattern database XML files to be merged.
--pdb or -p Name of the output pattern database file.

Example:

pdbtool merge --directory /home/me/mypatterns/ --pdb
/var/lib/syslog-ng/patterndb.xml

Currently it is not possible to convert a file without merging, so if you only want to convert an older pattern database
file to the latest format, you have to copy it into an empty directory.

The merge command

dump [options]

Display the RADIX tree built from the patterns. This shows how are the patterns represented in syslog-ng and it
might also help to track down pattern-matching problems. The dump utility can dump the tree used for matching
the PROGRAM or the MSG parts.

--pdb or -p Name of the pattern database file to use.

--program or -P Displays the RADIX tree built from the patterns belonging to the
$PROGRAM application.

--program-tree or -T Display the $ PROGRAM tree.

Example and sample output:

pdbtool dump -p patterndb.xml -P 'sshd'

http://www.balabit.com/support/documentation/
http://www.balabit.com/support/documentation/

1 p 1
'assword for'
QQSTRING:(@
'from'
@QQSTRING:@
'port '
@NUMBER:@ rule id='fc49054e-75fd-11dd-9bba-001e6806451b"
' ssh' rule id='£fc55cf86-75fd-11dd-9bba-001e6806451b"
'2' rule id='fc4b7982-75fd-11dd-9%0ba-001e6806451b"
'ublickey for'
@QQSTRING:@
'from'
QQSTRING:(@
'port
@NUMBER:@ rule id='fc4d377c-75fd-11dd-9%0ba-001e6806451b"
' ssh' rule id='fcb544lac-75£d-11dd-9bba-001e6806451b"
'2' rule id='fc44a9fe-75£d-11dd-9bba-001e6806451b"
Files

/opt/syslog-ng/bin/pdbtool

/opt/syslog-ng/etc/syslog-ng/syslog-ng.conf
See also

The syslog-ng Administrator Guide [http://www.balabit.com/support/documentation/|

syslog-ng.conf(5)
syslog-ng(8)

If you experience any problems or need help with syslog-ng, visit
syslog-ng mailing list [https://lists.balabit.hu/mailman/listinfo/syslog-ng]

For news and notifications about the documentation of syslog-ng, visit
BalaBit Documentation Blog [http://robert.blogs.balabit.com].

Author

This manual page was written by the BalaBit Documentation Team <documentation@balabit.com>.

the

the

http://www.balabit.com/support/documentation/
http://www.balabit.com/support/documentation/
https://lists.balabit.hu/mailman/listinfo/syslog-ng
https://lists.balabit.hu/mailman/listinfo/syslog-ng
http://robert.blogs.balabit.com
http://robert.blogs.balabit.com

Copyright

Copyright © 2000-2009 BalaBit I'T Secutity Ltd. Published under the Creative Commons Attribution-Noncommercial-
No Detivative Works (by-nc-nd) 3.0 license. See http://creativecommons.org/ for details. The latest version is always
available at http://www.balabit.com/support/documentation.

http://creativecommons.org/
http://www.balabit.com/support/documentation

Name

loggen — Generate syslog messages at a specified rate
Synopsis

loggen [options|target [port]

Description

NOTE: The loggen application is distributed with the syslog-ng system logging application, and is usually part of
the syslog-ng package. The latest version of the syslog-ng application is available at the official syslog-ng website:
http://www.balabit.com/network-security/syslog-ng/.

This manual page is only an abstract; for the complete documentation of syslog-ng, see
The syslog-ng Administrator Guide [http://www.balabit.com/support/documentation/].

The loggen application is tool to test and stress-test your syslog server and the connection to the server. It can send
syslog messages to the server at a specified rate, using a number of connection types and protocols.

Options
--csv or -C Send statistics of the sent messages to stdout as CSV. This can be
used for plotting the message rate.
--dgram or -D Use datagram socket (UDP or unix-dgram) to send the messages
to the target.
--help or -h Display a brief help message.
--inet or -i Use the TCP (by default) or UDP (when used together with the -

--interval <seconds> or -I
<seconds>

--no-framing or -F

--rate <message/second> or -r
<message/second>

--read-file or -R

--size of -s

--skip-tokens

-dgram option) protocol to send the messages to the target.

The number of seconds loggen will run. Default value: 10

Do not use the framing of the IETF-syslog protocol style, even if
the syslog-proto option is set.

The number of messages generated per second. Default value:
1000

Read the messages from a file and send them to the target. See
also the ——skip-tokens option.

The size of a syslog message in bytes. Default value: 256

Skip the specified number of space-separated tokens (words) at
the beginning of every line. For example, if the messages in the
filelook like foo bar message, -—skip-tokens 2 skips
the foo bar part of the line, and sends only the message part.

http://www.balabit.com/network-security/syslog-ng/
http://www.balabit.com/support/documentation/
http://www.balabit.com/support/documentation/

Works only when used together with the ——read-file para-
meter.

--stream or -S Use a stream socket (TCP or unix-stream) to send the messages
to the target.

--syslog-proto or -P Use the new IETF-syslog message format as specified in REC5424.
By default, loggen uses the legacy BSD-syslog message format (as
described in RFC3164). See also the ——no-framing option.

--unix or -x Use a UNIX domain socket to send the messages to the target.

--use-ssl or -U Use an SSL-encrypted channel to send the messages to the target.
Note that it is not possible to check the certificate of the target,
or to perform mutual authentication.

--verbose or -V Display the actual speed of sending messages in messages/second.
Example

The following command generates 100 messages per second for ten minutes, and sends them to port 2010 of the
localhost via TCP. Each message is 300 bytes long;

loggen --size 300 --rate 100 --interval 600 127.0.0.1 2010
The following command is similar to the one above, but uses the UDP protocol.

loggen --inet --dgram --size 300 --rate 100 --interval 600 127.0.0.1 2010
Files
/opt/syslog-ng/bin/loggen

See also

syslog-ng.conf(5)

The syslog-ng Administrator Guide [http://www.balabit.com/support/documentation/|

If you experience any problems or need help with loggen or syslog-ng, wvisit the
syslog-ng mailing list [https://lists.balabit.hu/mailman/listinfo/syslog-ng]

Author

This manual page was written by the BalaBit Documentation Team <documentation@balabit.com>.

http://www.balabit.com/support/documentation/
http://www.balabit.com/support/documentation/
https://lists.balabit.hu/mailman/listinfo/syslog-ng
https://lists.balabit.hu/mailman/listinfo/syslog-ng

Copyright

Copyright © 2000-2009 BalaBit I'T Secutity Ltd. Published under the Creative Commons Attribution-Noncommercial-
No Detivative Works (by-nc-nd) 3.0 license. See http://creativecommons.org/ for details. The latest version is always
available at http://www.balabit.com/support/documentation.

http://creativecommons.org/
http://www.balabit.com/support/documentation

Name

syslog-ng-ctl — Display message statistics and enable verbose, debug and trace modes in syslog-ng Open Source
Edition

Synopsis
syslog-ng-ctl [command] [options]
Description

NOTE: The syslog-ng-ctl application is distributed with the syslog-ng Open Source Edition system logging applic-
ation, and is usually part of the syslog-ng package. The latest version of the syslog-ng application is available at the
official syslog-ng website: http://www.balabit.com/network-security/syslog-ng/.

This manual page is only an abstract; for the complete documentation of syslog-ng, see
The syslog-ng Open Source Edition Administrator Guide [http://www.balabit.com/support/documentation/].

The syslog-ng-ctl application is a utility that can be used to:

m cnable/disable various syslog-ng messages for troubleshooting;

m display statistics about the processed messages.
Enabling troubleshooting messages

command [options]

Use the syslog-ng-ctl <command> --set=on command to display verbose, trace, or debug messages. If you are
trying to solve configuration problems, the debug (and occassionally trace) messages ate usually sufficient; debug
messages are needed mostly for finding software errors. After solving the problem, do not forget to turn these
messages off using the syslog-ng-ctl <command> --set=off. Note that enabling debug messages does not enable
verbose and trace messages.

Use syslog-ng-ctl <command> without any parameters to display whether the particular type of messages are
enabled or not.

If you need to use a non-standard control socket to access syslog-ng, use the syslog-ng-ctl <command> --set=on
--control=<socket> command to specify the socket to use.

verbose Print verbose messages to stdert.
trace Print trace messages of how messages are processed to stderr.
debug Print debug messages to stderr.

Example:

syslog-ng-ctl verbose --set=on

http://www.balabit.com/network-security/syslog-ng/
http://www.balabit.com/support/documentation/
http://www.balabit.com/support/documentation/

The stats command

stats [options]

Use the validate command to validate the signatures and timestamps of a logstore file. The validate command
has the following options:

--control=<socket> or -c Specify the socket to use to access syslog-ng. Only needed when
using a non-standard socket.

Example:
syslog-ng-ctl stats
An example output:

src.internal;s all#0;;a;processed; 6445
src.internal;s all#0;;a;stamp;1268989330
destination;df auth;;a;processed; 404
destination;df news dot notice;;a;processed;0
destination;df news dot err;;a;processed;0
destination;d ssb;;a;processed; 7128
destination;df uucp;;a;processed;0

source;s all;;a;processed; 7128

destination;df mail;;a;processed;0

destination;df user;;a;processed;l

destination;df daemon;;a;processed;l
destination;df debug;;a;processed;15
destination;df messages;;a;processed; 54
destination;dp xconsole;;a;processed; 671
dst.tcp;d network#0;10.50.0.111:514;a;dropped; 5080
dst.tcp;d network#0;10.50.0.111:514;a;processed; 7128
dst.tcp;d network#0;10.50.0.111:514;a;stored;2048
destination;df syslog;;a;processed; 6724
destination;df facility dot warn;;a;processed;0
destination;df news dot crit;;a;processed;0
destination;df lpr;;a;processed;0

destination;du all;;a;processed;0
destination;df facility dot info;;a;processed;0
center; ;received;a;processed; 0

destination;df kern;;a;processed;70

center; ;queued;a;processed; 0
destination;df facility dot err;;a;processed;0

Files

/opt/syslog-ng/sbin/syslog-ng-ctl

See also

The syslog-ng Administrator Guide [http://www.balabit.com/support/documentation/]

syslog-ng.conf(5)
syslog-ng(8)

If you experience any problems or need help with syslog-ng, visit the
syslog-ng mailing list [https://lists.balabit.hu/mailman/listinfo/syslog-ng]

For news and notifications about the documentation of syslog-ng, visit the
BalaBit Documentation Blog [http://robert.blogs.balabit.com].

Author
This manual page was written by the BalaBit Documentation Team <documentation@balabit.com>.
Copyright

Copyright © 2000-2009 BalaBit I'T Security Ltd. Published under the Creative Commons Attribution-Noncommercial-
No Derivative Works (by-nc-nd) 3.0 license. See http://creativecommons.otg/ for details. The latest version is always
available at http://www.balabit.com/support/documentation.

http://www.balabit.com/support/documentation/
http://www.balabit.com/support/documentation/
https://lists.balabit.hu/mailman/listinfo/syslog-ng
https://lists.balabit.hu/mailman/listinfo/syslog-ng
http://robert.blogs.balabit.com
http://robert.blogs.balabit.com
http://creativecommons.org/
http://www.balabit.com/support/documentation

Preamble *

Appendix 2. GNU General Public License

Version 2, June 1991
Copyright © 1989, 1991 Free Software Foundation, Inc.

Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301
USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Version 2, June 1991

2.1. Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the
GNU General Public License is intended to guarantee your freedom to share and change free software - to make
sure the software is free for all its users. This General Public License applies to most of the Free Software Found-
ation's softwate and to any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed
to make sure that you have the freedom to distribute copies of free software (and charge for this service if you
wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to
surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must
show them these terms so they know their rights.

We protect your rights with two steps:

1. copyright the software, and

2. offer you this license which gives you legal permission to copy, distribute and/or modify the software.
Also, for each authot's protection and ours, we want to make certain that everyone understands that there is no
warranty for this free software. If the software is modified by someone else and passed on, we want its recipients

to know that what they have is not the original, so that any problems introduced by others will not reflect on the
original authors' reputations.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTTON AND MODIFICATION *

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistrib-
utors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent
this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

2.2. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
2.2.1. Section 0

This License applies to any program or other work which contains a notice placed by the copyright holder saying
it may be distributed under the terms of this General Public License. The “Program”, below, refers to any such
program or work, and a “work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications
and/or translated into another language. (Hereinafter, translation is included without limitation in the term
“modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside its
scope. The act of running the Program is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

2.2.2. Section 1

You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and dis-
claimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and
give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection
in exchange for a fee.

2.2.3. Section 2

You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program,
and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also
meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the files and the
date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under
the terms of this License.

c. If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you

provide a warranty) and that users may redistribute the program under these conditions, and telling the
user how to view a copy of this License. (Exception: If the Program itself is interactive but does not
normally print such an announcement, your work based on the Program is not required to print an an-
nouncement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived
from the Program, and can be reasonably considered independent and separate works in themselves, then this License,
and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute
the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each
and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather,
the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based
on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope
of this License.

2.2.4. Section 3

You may copy and distribute the Program (or a work based on it, under Section 2 in object code or executable
form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code, which must be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no
more than your cost of physically performing source distribution, a complete machine-readable copy
of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; of,

c. Accompany it with the information you received as to the offer to distribute corresponding source code.
(This alternative is allowed only for noncommercial distribution and only if you received the program
in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable
work, complete source code means all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of the executable. However, as a special
exception, the source code distributed need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of the operating system on which the execut-
able runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place counts as distribution of the source code, even
though third parties are not compelled to copy the source along with the object code.

2.2.5. Section 4

You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights, from you under this License
will not have their licenses terminated so long as such parties remain in full compliance.

2.2.6. Section 5

You are not required to accept this License, since you have not signed it. However, nothing else grants you permission
to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept
this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the
Program or works based on it.

2.2.7. Section 6

Hach time you redistribute the Program (or any work based on the Program), the recipient automatically receives
a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions.
You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties to this License.

2.2.8. Section 7

If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited
to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict
the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute
so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a
consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-
free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only
way you could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the
section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest
validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distri-
bution system, which is implemented by public license practices. Many people have made generous contributions
to the wide range of software distributed through that system in reliance on consistent application of that system;
it is up to the author/donor to decide if he or she is willing to distribute softwate through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

2.2.9. Section 8

If the distribution and/or use of the Program is restricted in certain countties either by patents or by copyrighted
interfaces, the original copyright holder who places the Program under this License may add an explicit geograph-
ical distribution limitation excluding those countties, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.

2.2.10. Section 9

The Free Software Foundation may publish revised and/or new versions of the General Public License from time
to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License
which applies to it and “any later version”, you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free Software Foundation.

2.2.11. Section 10

If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different,
write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation,
write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the
two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse
of software generally.

2.2.12. NO WARRANTY Section 11

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORM-
ANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU AS-
SUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

2.2.13. Section 12

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A

How to Apply These Terms to Your New Programs

FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
2.3. How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to
achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to
most effectively convey the exclusion of warranty; and each file should have at least the “copyright” line and a
pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.> Copytight (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO
WARRANTY; for details type “show w”. This is free software, and you are welcome to redistribute it under certain
conditions; type “show ¢” for details.

The hypothetical commands “show w”” and “show ¢” should show the appropriate parts of the General Public Li-
cense. Of course, the commands you use may be called something other than “show w”” and “show ¢”; they could
even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright
disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program “Gnomovision” (which makes passes at
compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your program
is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library.
If this is what you want to do, use the GNU Library General Public License instead of this License.

The syslog-ng pattern database format V1 *

Appendix 3. Deprecated pattern database schemes

This appendix describes the older versions of the syslog-ng pattern database. These descriptions are only for reference,
if you want to create a pattern database, you are recommended to use the latest format: V3, which is supported by
syslog-ng version 3.1 and later, and the syslog-ng Store Box version 1.1 and later.

Note

Note that V3 is backwards compatible with the V2 format, meaning that applications that support V3 can use pattern databases
in the V2 format as well (but not V1). To convert your existing pattern databases to the V3 format, use the pdbtool application
bundled with syslog-ng 3.1 and later. See the manual page of pdbtool for details.

3.1. The syslog-ng pattern database format V1

The XML schema of the V1 pattern database used in syslog-ng OSE and PE 3.0.X is described below. Newer
versions syslog-ng 3.1 and later use an updated V3 format that is described in Section 6.6.2.3, “Creating pattern
databases” (p. 162).

Note

Note that V3 is backwards compatible with the V2 format, meaning that applications that support V3 can use pattern databases
in the V2 format as well (but not V1). To convert your existing pattern databases to the V3 format, use the pdbtool application
bundled with syslog-ng 3.1 and later. See the manual page of pdbtool for details.

m <patterndb>: The container element of the pattern database. For example:

<patterndb version='l' pub date='2008-08-25'>

m yersion: The schema version of the pattern database. The current version is 2.
W pubdate: The publication date of the XML file.

m <program>: A container element to group log patterns for an application or program. For example:
<program name='su' 1d='480ded478-d4a6-4a7f-bead-0c0245d36lel'>
<patterndb> element may contain any number of <program> clements.

e name: The name of the application. Note that the function of this attribute is to make the database
more readable, syslog-ng uses the <pattern> clement to identify the applications sending log
messages.

* id- A unique ID of the application, for example, the md5 sum of the name attribute.

* pattern: The name of the application — syslog-ng matches this value to the SPROGRAM header of
the syslog message to find the rulesets applicable to the syslog message. This element is also called
program pattern.E.g,

<pattern>su</pattern>

The syslog-ng pattern database format V1 *

¢ description: OPTIONAL — A description of the ruleset or the application.
e url: OPTIONAL — An URL referring to further information about the ruleset or the application.
e <rules>: A container element for the rules of the ruleset.

* <rule>: An element containing message patterns and how a message that matches these patterns

is classified. For example:

<rule provider='balabit'
id="'£f57196aa-75fd-11dd-9bba-001e6806451b"' class='violation'>

Note
If the following characters appear in the message, they must be escaped in the rule as follows:

* @ Use @@, e.g, user@@example. com

e <:Use <,
e >:Use >/

* &: Use &

The <rules> element may contain any number of <rule> elements.

e provider: The provider of the rule. This is used to distinguish between who supplied the rule; i.e., if
it has been created by BalaBit, or added to the xml by a local user.

* - The globally unique ID of the rule.

* class: The class of the rule — syslog-ng assigns this class to the messages matching a pattern of this

rule.

* <pattern>: A pattern describing a log message. This element is also called message pattern.
For example:

<pattern>+ ??? root-</pattern>

Example 3.1. A V1 pattern database containing a single rule
The following pattern database contains a single rule that matches log messages of the PF packet-filtering application. A
3 sample log message looks like:

PF: DROP filter/INPUT IN=ethO OUT= MAC=00:1A:4B:80:90:C9:00:1A:4B:80:90:C6
SRC=192.168.155.11 DST=192.168.155.1 LEN=60 TOS=0x10 PREC=0x00 TTL=64 ID=51939
DF PROTO=TCP SPT=34407 DPT=80 WINDOW=32792 RES=0x00 SYN URGP=0

The following is a simple pattern database containing a matching rule.

<patterndb version='l' pub date='2009-04-17"'>
<program name='PF'>
<pattern>PF</pattern>
<rule id='1l' class="pf'>

<pattern>@STRING:PF.VERDICTQ@ Q@STRING:PF.CHAIN:/@
IN=QSTRING:PF.IN IFACEQ@ OUT= MAC=@STRING:PF.MAC::@ SRC=QIPV4:PF.SRC IP@
DST=@IPV4:PF.DST IP@ LEN=@NUMBER:PF.PKT LEN@ TOS=Q@STRING:PF.TOS@
PREC=@STRING:PF.PREC@ TTL=@NUMBER:PF.TTL@ ID=@NUMBER:PF.IDQ DF
PROTO=@STRING:PF.PROTOQ@ SPT=Q@NUMBER:PF.SRC_ PORT@ DPT=Q@NUMBER:PF.DST PORTQ
WINDOW=@NUMBER:PF.TCP_WINDOWE@ RES=@STRING:PF.RES@ SYN
URGP=QNUMBER: PF.TCP_URGP@</pattern>

The syslog-ng pattern database format V2 *

</rule>
</program>
</patterndb>

Note that the rule uses macros that refer to parts of the message, for example, you can use the $PF.DST IP macro refer
to the destination IP address of the logged connection+.

3.2. The syslog-ng pattern database format V2

The XML schema of the V2 pattern database is described below. Newer versions syslog-ng and the syslog-ng Store
Box use an updated V3 format that is described in Section 6.6.2.3, “Creating pattern databases” (p. 162).

Note

Note that V3 is backwards compatible with the V2 format, meaning that applications that support V3 can use pattern databases
in the V2 format as well (but not V1). To convert your existing pattern databases to the V3 format, use the pdbtool application
bundled with syslog-ng 3.1 and later. See the manual page of pdbtool for details.

The following scheme describes the V2 format of the pattern database. This format is used by the syslog-ng Store
Box (SSB) appliance version 1.0.x (see http:/ /www.balabit.com/network-security/syslog-ng/log-server-appliance/
for details).

For a sample database containing only a single pattern, see Example 3.2, “A V2 pattern database containing a single

rule” (p. 205).
m <patterndb>: The container element of the pattern database. For example:

<patterndb version='2' pub date='2008-08-25"'>

m version: The schema version of the pattern database. The current version is 2.
B pubdate: The publication date of the XML file.

m <ruleset>: A container element to group log patterns for an application or program. For example:
<ruleset name='su' id='480de478-d4at-4a7f-bead-0c0245d36lel"'>
A <patterndb> element may contain any number of <ruleset> clements.

* name: The name of the application. Note that the function of this attribute is to make the database
more readable, syslog-ng uses the <pattern> element to identify the applications sending log
messages.

* id: A unique 1D of the application, for example, the md5 sum of the name attribute.
* description: OPTIONAL — A description of the ruleset or the application.
* url: OPTIONAL — An URL referring to further information about the ruleset or the application.

* pattern: The name of the application — syslog-ng matches this value to the SPROGRAM header of
the syslog message to find the rulesets applicable to the syslog message. This element is also called
program pattern.E.g,

http://www.balabit.com/network-security/syslog-ng/log-server-appliance/

The syslog-ng pattern database format V2 *

<pattern>su</pattern>

Note

If the <pattern>eclement of a ruleset is not specified, -ng will use this ruleset as a fallback ruleset: it will
apply the ruleset to messages that have an empty PROGRAM header, or if none of the program patterns
matched the PROGRAM header of the incoming message.

e <rules>: A container element for the rules of the ruleset.

* <rule>: An element containing message patterns and how a message that matches these patterns
is classified. For example:

<rule provider='balabit'

id='£57196aa-75fd-11dd-9bba-001e6806451b"'

class='violation'>

Note
If the following characters appear in the message, they must be escaped in the rule as follows:

* @ Use @@, e.g, user@@example. com

e <:Use <,
e >:Use >

* &: Use &

The <rules> element may contain any number of <rule> elements.

e provider: The provider of the rule. This is used to distinguish between who supplied the rule; i.e., if
it has been created by BalaBit, or added to the xml by a local user.

7d: The globally unique 1D of the rule.

* class: The class of the rule — syslog-ng assigns this class to the messages matching a pattern of this

rule.

* <patterns>: An element containing the patterns of the rule. If a <patterns> element contains
multiple <pattern> elements, the class of the <trule> is assigned to every syslog message matching
any of the patterns.

* <pattern>: A pattern describing a log message. This element is also called message pattern.
For example:

<pattern>+ ?2?? root-</pattern>

* description: OPTIONAL — A description of the pattern or the log message matching the
pattern.

* urls: OPTIONAL — An element containing one or more URLs referring to further information
about the patterns or the matching log messages.

The syslog-ng pattern database format V2

e url: OPTIONAL — An URL referring to further information about the patterns or the
matching log messages.

e tags: OPTIONAL — An element containing custom keywords (tags) about the rules. The tags
can be used to label specific events (e.g, user logons).

* tag: OPTIONAL — A keyword or tags applied to messages matching the rule. For example:

<tags><tag>UserlLogin</tag></tags>

Example 3.2. A V2 pattern database containing a single rule
The following pattern database contains a single rule that matches a log message of the ssh application. A sample log message
3 looks like:

Accepted password for sampleuser from 10.50.0.247 port 42156 ssh2
The following is a simple pattern database containing a matching rule.

<patterndb version='2' pub date='2009-04-17"'>
<ruleset name='ssh' 1d='123456678"'>
<pattern>ssh</pattern>
<rules>
<rule provider='me' id='182437592347598"' class='system'>
<patterns>
<pattern>Accepted @QSTRING:SSH.AUTH METHOD: (@
for@QSTRING:SSH_USERNAME: @from\ @QSTRING:SSH_CLIENT_ADDRESS: @port
@NUMBER:SSH_PORT_NUMBER:@ ssh2</pattern>
</patterns>
</rule>
</rules>
</ruleset>
</patterndb>

Note that the rule uses macros that refer to parts of the message, for example, you can use the $SSH USERNAME macro
refer to the username used in the connection.

Appendix 4. Creative Commons Attribution
Non-commercial No Derivatives (by-nc-nd) License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COM-
MONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT
AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED
UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED. BY EXERCISING ANY RIGHTS TO
THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS
LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LI-
CENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPT-
ANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and other pre-existing works,
such as a translation, adaptation, derivative work, arrangement of music or other alterations of a lit-
erary or artistic work, or phonogram or performance and includes cinematographic adaptations or
any other form in which the Work may be recast, transformed, or adapted including in any form
recognizably derived from the original, except that a work that constitutes a Collection will not be
considered an Adaptation for the purpose of this License. For the avoidance of doubt, where the
Work is a musical work, performance or phonogram, the synchronization of the Work in timed-re-
lation with a moving image ("'synching") will be considered an Adaptation for the purpose of this
License.

b. "Collection" means a collection of literary or artistic works, such as encyclopedias and anthologies,
or performances, phonograms or broadcasts, or other works or subject matter other than works
listed in Section 1(f) below, which, by reason of the selection and arrangement of their contents,
constitute intellectual creations, in which the Work is included in its entirety in unmodified form
along with one or more other contributions, each constituting separate and independent works in
themselves, which together are assembled into a collective whole. A work that constitutes a Collection
will not be considered an Adaptation (as defined above) for the purposes of this License.

c. "Distribute" means to make available to the public the original and copies of the Work through sale
or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work under the terms
of this License.

e. "Original Authotr" means, in the case of a literary or artistic work, the individual, individuals, entity
or entities who created the Work or if no individual or entity can be identified, the publisher; and in
addition (i) in the case of a performance the actors, singers, musicians, dancers, and other persons
who act, sing, deliver, declaim, play in, interpret or otherwise perform literary or artistic works or
expressions of folklore; (ii) in the case of a phonogram the producer being the person or legal entity
who first fixes the sounds of a performance or other sounds; and, (iii) in the case of broadcasts, the
organization that transmits the broadcast.

f. "Work" means the literary and/or artistic work offered under the terms of this License including
without limitation any production in the literary, scientific and artistic domain, whatever may be the
mode or form of its expression including digital form, such as a book, pamphlet and other writing;

a lecture, address, sermon or other work of the same nature; a dramatic or dramatico-musical work;
a choreographic work or entertainment in dumb show; a musical composition with or without words;
a cinematographic work to which are assimilated works expressed by a process analogous to cinema-
tography; a work of drawing, painting, architecture, sculpture, engraving or lithography; a photographic
work to which are assimilated works expressed by a process analogous to photography; a work of
applied art; an illustration, map, plan, sketch or three-dimensional work relative to geography, topo-
graphy, architecture or science; a performance; a broadcast; a phonogram; a compilation of data to
the extent it is protected as a copyrightable work; or a work performed by a variety or circus performer
to the extent it is not otherwise considered a literary or artistic work.

g "You" means an individual or entity exercising rights under this License who has not previously vi-
olated the terms of this License with respect to the Work, or who has received express permission
from the Licensor to exercise rights under this License despite a previous violation.

h. "Publicly Perform" means to perform public recitations of the Work and to communicate to the
public those public recitations, by any means or process, including by wire or wireless means or
public digital performances; to make available to the public Works in such a way that members of
the public may access these Works from a place and at a place individually chosen by them; to perform
the Work to the public by any means or process and the communication to the public of the per-
formances of the Work, including by public digital performance; to broadcast and rebroadcast the
Work by any means including signs, sounds or images.

i. "Reproduce" means to make copies of the Work by any means including without limitation by sound
or visual recordings and the right of fixation and reproducing fixations of the Work, including storage
of a protected performance or phonogram in digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any uses free from
copyright or rights arising from limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. Ligense Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide,
royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise
the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce
the Work as incorporated in the Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated in Collections.

The above rights may be exercised in all media and formats whether now known or hereafter devised.
The above rights include the right to make such modifications as are technically necessary to exercise
the rights in other media and formats, but otherwise you have no rights to make Adaptations. Subject
to 8(f), all rights not expressly granted by Licensor are hereby reserved, including but not limited to the
rights set forth in Section 4(d).

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the fol-
lowing restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms of this License. You must
include a copy of, or the Uniform Resource Identifier (URI) for, this License with every copy of the
Work You Distribute or Publicly Perform. You may not offer or impose any terms on the Work
that restrict the terms of this License or the ability of the recipient of the Work to exercise the rights
granted to that recipient under the terms of the License. You may not sublicense the Work. You
must keep intact all notices that refer to this License and to the disclaimer of warranties with every

copy of the Work You Distribute or Publicly Perform. When You Distribute or Publicly Perform
the Work, You may not impose any effective technological measures on the Work that restrict the
ability of a recipient of the Work from You to exercise the rights granted to that recipient under the
terms of the License. This Section 4(a) applies to the Work as incorporated in a Collection, but this
does not require the Collection apart from the Work itself to be made subject to the terms of this
License. If You create a Collection, upon notice from any Licensor You must, to the extent practicable,
remove from the Collection any credit as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3 above in any manner that is
primarily intended for or directed toward commercial advantage or private monetary compensation.
The exchange of the Work for other copyrighted works by means of digital file-sharing or otherwise
shall not be considered to be intended for or directed toward commercial advantage or private
monetary compensation, provided there is no payment of any monetary compensation in connection
with the exchange of copyrighted works.

c. If You Distribute, or Publicly Perform the Work or Collections, You must, unless a request has been
made pursuant to Section 4(a), keep intact all copyright notices for the Work and provide, reasonable
to the medium or means You are utilizing: (i) the name of the Original Author (or pseudonym, if
applicable) if supplied, and/or if the Original Author and/or Licensor designate another party or
patties (e.g, a sponsor institute, publishing entity, journal) for attribution ("Attribution Parties") in
Licensot's copyright notice, terms of service or by other reasonable means, the name of such party
or parties; (ii) the title of the Work if supplied; (iii) to the extent reasonably practicable, the URI, if
any, that Licensor specifies to be associated with the Work, unless such URI does not refer to the
copyright notice or licensing information for the Work. The credit required by this Section 4(c) may
be implemented in any reasonable manner; provided, however, that in the case of a Collection, at a
minimum such credit will appear, if a credit for all contributing authors of Collection appears, then
as part of these credits and in a manner at least as prominent as the credits for the other contributing
authors. For the avoidance of doubt, You may only use the credit required by this Section for the
purpose of attribution in the manner set out above and, by exercising Your rights under this License,
You may not implicitly or explicitly assert or imply any connection with, sponsorship or endorsement
by the Original Author, Licensor and/or Attribution Parties, as appropriate, of You or Your use of
the Work, without the separate, express prior written permission of the Original Author, Licensor
and/or Attribution Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to collect
royalties through any statutory or compulsory licensing scheme cannot be waived, the Licensor
reserves the exclusive right to collect such royalties for any exercise by You of the rights granted
under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties
through any statutory or compulsory licensing scheme can be waived, the Licensor reserves the
exclusive right to collect such royalties for any exercise by You of the rights granted under this
License if Your exercise of such rights is for a purpose or use which is otherwise than noncom-
mercial as permitted under Section 4(b) and otherwise waives the right to collect royalties through
any statutory or compulsory licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to collect royalties, whether individually
ot, in the event that the Licensor is a member of a collecting society that administers voluntary
licensing schemes, via that society, from any exercise by You of the rights granted under this Li-

cense that is for a purpose or use which is otherwise than noncommercial as permitted under
Section 4(b).

e. Exceptas otherwise agreed in writing by the Licensor or as may be otherwise permitted by applicable
law, if You Reproduce, Distribute or Publicly Perform the Work either by itself or as part of any
Collections, You must not distort, mutilate, modify or take other derogatory action in relation to the
Work which would be prejudicial to the Original Author's honor or reputation.

5. Representations, Warranties and Disclaimer UNLESS OTHERWISE MUTUALLY AGREED BY THE
PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRES-
ENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WAR-
RANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY,
OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE.
SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES,
SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO
EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPE-
CIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING
OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You
of the terms of this License. Individuals or entities who have received Collections from You under
this License, however, will not have their licenses terminated provided such individuals or entities
remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination
of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of
the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to
release the Work under different license terms or to stop distributing the Work at any time; provided,
however that any such election will not serve to withdraw this License (or any other license that has
been, or is required to be, granted under the terms of this License), and this License will continue
in full force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to the
recipient a license to the Work on the same terms and conditions as the license granted to You under
this License.

b. If any provision of this License is invalid or unenforceable under applicable law;, it shall not affect
the validity or enforceability of the remainder of the terms of this License, and without further action
by the parties to this agreement, such provision shall be reformed to the minimum extent necessary
to make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to unless
such waiver or consent shall be in writing and signed by the party to be charged with such waiver
ot consent.

d. This License constitutes the entire agreement between the parties with respect to the Work licensed
here. There are no understandings, agreements or representations with respect to the Work not
specified here. Licensor shall not be bound by any additional provisions that may appear in any
communication from You. This License may not be modified without the mutual written agreement
of the Licensor and You.

e. The rights granted under, and the subject matter referenced, in this License were drafted utilizing
the terminology of the Berne Convention for the Protection of Literary and Artistic Works (as
amended on September 28, 1979), the Rome Convention of 1961, the WIPO Copyright Treaty of
1996, the WIPO Performances and Phonograms Treaty of 1996 and the Universal Copyright Con-
vention (as revised on July 24, 1971). These rights and subject matter take effect in the relevant jur-
isdiction in which the License terms are sought to be enforced according to the corresponding pro-
visions of the implementation of those treaty provisions in the applicable national law. If the standard
suite of rights granted under applicable copyright law includes additional rights not granted under
this License, such additional rights are deemed to be included in the License; this License is not in-
tended to restrict the license of any rights under applicable law.

Glossary

alias IP
authentication
auditing policy
BSD-syslog protocol

CA

certificate

client mode

destination
destination driver

destination, network
destination, local
disk buffer

disk queue
domain name

embedded log statement

filter

gateway

An additional IP address assigned to an interface that already has an IP address.
The normal and alias IP addresses both refer to the same physical interface.

The process of verifying the authenticity of a user or client before allowing access
to a network system or service.

The auditing policy determines which events are logged on host running Microsoft
Windows operating systems.

The old syslog protocol standard described in RFC 3164
http:/ /www.ietf.org/rfc/rfc3164.txt. Sometimes also referred to as the legacy-
syslog protocol.

A Certificate Authority (CA) is an institute that issues certificates.

A certificate is a file that uniquely identifies its owner. Certificates contains in-
formation identifying the owner of the certificate, a public key itself, the expiration
date of the certificate, the name of the CA that signed the certificate, and some
other data.

In client mode, syslog-ng collects the local logs generated by the host and forwards
them through a network connection to the central syslog-ng server or to a relay.

A named collection of configured destination drivers.
A communication method used to send log messages.

A destination that sends log messages to a remote host (i.e., a syslog-ng relay or
server) using a network connection.

A destination that transfers log messages within the host, e.g., writes them to a
file, or passes them to a log analyzing application.

The Premium Edition of syslog-ng can store messages on the local hard disk if
the central log server or the network connection to the server becomes unavailable.

See disk buffer.
The name of a network, e.g.: balabit.com.

A log statement that is included in another log statement to create a complex log

path.
An expression to select messages.

A device that connect two or more parts of the network, e.g.: your local intranet
and the external network (the Internet). Gateways act as entrances into other
networks.

http://www.ietf.org/rfc/rfc3164.txt

high availability

host
hosthame

IETTF-syslog protocol

key pair

license

log path

logstore

LSH

log source host

log statement

name server

Oracle Instant Client

output buffer

output queue

overflow queue

parser

High availability uses a second syslog-ng server unit to ensure that the logs are
received even if the first unit breaks down.

A computer connected to the network.
A name that identifies a host on the network.

The syslog-protocol standard developed by the Internet Engineering Task Force
(IETF), described in RFC 5424-5428
http:/ /www.ietf.org/internet-drafts/draft-ietf-syslog-protocol-23.txt.

A private key and its related public key. The private key is known only to the
owner; the public key can be freely distributed. Information encrypted with the
private key can only be decrypted using the public key.

The syslog-ng license determines the number of distinct hosts (clients and relays)
that can connect to the syslog-ng server.

A combination of sources, filters, parsers, rewrite rules, and destinations: syslog-
ng examines all messages arriving to the sources of the logpath and sends the
messages matching all filters to the defined destinations.

A binary logfile format that can encrypt, compress, and timestamp log messages.
See log source host.

A host or network device (including syslog-ng clients and relays) that sends logs
to the syslog-ng server. Log source hosts can be servers, routers, desktop com-
puters, or other devices capable of sending syslog messages or running syslog-

ng.
See log path.
A network computer storing the IP addresses corresponding to domain names.

The Oracle Instant Client is a small set of libraries, which allow you to connect
to an Oracle Database. A subset of the full Oracle Client, it requires minimal in-
stallation but has full functionality.

A part of the memory of the host where syslog-ng stores outgoing log messages
if the destination cannot accept the messages immediately.

Messages from the output queue are sent to the target syslog-ng server. The syslog-
ng application puts the outgoing messages directly into the output queue, unless
the output queue is full. The output queue can hold 64 messages, this is a fixed
value and cannot be modified.

See output buffer.

A set of rules to segment messages into named fields ot columns.

http://www.ietf.org/internet-drafts/draft-ietf-syslog-protocol-23.txt

ping

port

Public-key authentication

regular expression

relay mode

rewrite rule

template

server mode

source

source, network

source, local

source driver

SSL

syslog-ng

syslog-ng agent

syslog-ng client

syslog-ng Premium Edition

A command that sends a message from a host to another host over a network
to test connectivity and packet loss.

A number ranging from 1 to 65535 that identifies the destination application of
the transmitted data. E.g.: SSH commonly uses port 22, web servers (HTTP) use
port 80, etc.

An authentication method that uses encryption key pairs to verify the identity of
a user or a client.

A regular expression is a string that describes or matches a set of strings. The
syslog-ng application supports extended regular expressions (also called POSIX
modern regular expressions).

In relay mode, syslog-ng receives logs through the network from syslog-ng clients
and forwards them to the central syslog-ng server using a network connection.

A set of rules to modify selected elements of a log message.

A user-defined structure that can be used to restructure log messages or automat-
ically generate file names.

In server mode, syslog-ng acts as a central log-collecting server. It receives mes-
sages from syslog-ng clients and relays over the network, and stores them locally
in files, or passes them to other applications, e.g., log analyzers.

A named collection of configured source drivers.

A source that receives log messages from a remote host using a network connec-
tion. The following sources are network sources: tcp (), tcp6 (), udp (),
udpé6 ().

A source that receives log messages from within the host, e.g., from a file.
A communication method used to receive log messages.
See TL.S.

The syslog-ng application is a flexible and highly scalable system logging applica-
tion, typically used to manage log messages and implement centralized logging.

The syslog-ng agent for Windows is a log collector and forwarder application for
the Microsoft Windows platform. It collects the log messages of the Windows-
based host and forwards them to a syslog-ng server using regular or SSL-encrypted
TCP connections.

A host running syslog-ng in client mode.

The syslog-ng Premium Edition is the commercial version of the open-source
application. It offers additional features, like encrypted message transfer and an
agent for Microsoft Windows platforms.

syslog-ng relay
syslog-ng server

TLS

traceroute

unix domain socket

A host running syslog-ng in relay mode.
A host running syslog-ng in server mode.

Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL),
are cryptographic protocols which provide secure communications on the Internet.
The syslog-ng application can encrypt the communication between the clients
and the server using TLS to prevent unauthorized access to sensitive log messages.

A command that shows all routing steps (the path of a message) between two
hosts.

A Unix domain socket (UDS) or IPC socket (inter-procedure call socket) is a
virtual socket, used for inter-process communication.

reference, 127

sql() driver, 55, 135

syslog() driver, 59, 139

tep() driver, 60, 142

A tep6() driver, 60, 142
udp() driver, 60, 142
udp6() driver, 60, 142
unix-dgram() driver, 61, 146
unix-stream() driver, 61, 146
usertty() driver, 61, 149

destinations, 4, 9, 52

Index

AIX

installing syslog-ng, 32

redirecting errorlog to syslog-ng, 33
artificial ignorance

message classification, 160

authentication, 11, 76 defining, 43, 53
FreeTDS configuration, 36
B Microsoft SQL Server configuration, 36
batch processing, 86 MSSQL configuration, 36
sql() configuration, 57-59, 137-139
C disk queue (see disk buffer)
CentOS download
installing syslog-ng, 32 pattern databases, 73
certificates, 11 dropping messages, 90
chroots, 88
classifying messages E
concepts of, 12 embedded log statements, 6
configuration, 72 encrypting log messages, 11, 76
creating databases, 162 error solving, 84
filtering, 73, 161
pattern matching concepts, 15 F
client mode, 8 facilities, 21, 24, 86, 153

compatibility with Snare, 93, 96, 100, 106, 109, 117, 124

- fail-over, 19
compiling syslog-ng OSE, 34

failure script, 85

configuration file fd limit. 127
including other files, 41 file des;riptors 127
configuring syslog-ng filters, 4, 9, 65, 68, 87
on Linux/Unix, 40 Lo

.) . defining, 65
Coordinated Universal Time, 90 facilities, , 152

core files, 84

facili d priority (level) ranges, 67
CSV parsers, 156 acility and priority (level) ranges

priorities, 152
reference, 150

D

tags, 68
daylight saving changes, 11 wildcards, 67
defining global objects, 41 flags, 62, 149
deleting syslog-ng, 36 flow-control, 16, 64
destination drivers, 9, 52 example, 65
database driver, 55, 135 multiple destinations, 18

file() driver, 53, 127

list of, 53,182

pipe() driver, 54, 130
program() driver, 55, 133

formatting messages, 12

G

global objects, 9
defining, 41
global options, 76

reference, 169

I

installation path, 26
installing syslog-ng, 26

from DEB package, 33

from RPM package, 32

in silent mode, 32

on AIX, 32

on CentOS, 32

on clients and relays, 27

on logservers, 29

on Red Hat Enterprise Server, 32

on SUSE Linux Enterprise Server, 32
installing syslog-ng OSE from source, 34

L
local time, 22, 24
log messages, structure, 20
BSD-syslog protocol, 20
IETF-syslog protocol, 22
legacy-syslog protocol, 20
RFC 3164, 20
RFC 5424, 22
log paths, 4, 61
defining, 61
flags, 62, 149
flow-control, 16, 64-65
log pipes (see embedded log statements)
log statements, 4, 10 (see log paths)
embedded, 6
log statistics, 45
on unix-socket, 46
logging procedure, 5
losing messages, 19

M

macros, 9, 12
reference, 153
message
statistics, 46
message classification, 72-73, 161-162
message facilities, 21, 24, 153

message filtering
using parsers, 73
message loss, 19
message parsing, 70, 72-73, 156, 161
message statistics, 46
message templates, 12
Microsoft SQL
sql() configuration, 58
Microsoft SQL Server configuration, 36
modes of operation, 7
client mode, 8
relay mode, 8
server mode, 9
MSSQL
sql() configuration, 58-59, 138
mutual authentication, 11, 79

N

name resolution, 86-87
local, 88

number of open files, 127

O

optimizing syslog-ng performance, 87
regular expressions, 68
options, 10
reference, 169
Oracle
sql() configuration, 57-58, 138
output buffer, 17, 64
output queue, 18
overflow queue (see output buffer)
overriding facility, 44

P

parallel connections, 86

parameters
log_fetch_limit() , 16, 64, 86
log_fifo_size() , 16, 64, 86
log_iw_size() , 17, 64
max_connections() , 17, 64, 86
time_sleep(), 86

parsers, 4,9, 70, 72-73, 161
reference, 156

parsing messages, 70, 72-73, 156, 160-161
concepts of, 12
filtering parsed messages, 73

pattern database, 72-73, 161-162, 166, 202, 205
creating parsers, 160
structure of, 13
using the results, 73
pattern databases
concepts of, 12
pattern matching precedence, 15
pattern matching
procedure of, 15
patterndb
download, 73
PostgreSQL
sql() configuration, 57, 137
preventing message loss (see flow-control)

R

reading messages form external applications, 98
Red Hat Enterprise Server
installing syslog-ng, 32
regular expressions, 65, 68, 87, 168
case-insensitive, 67
escaping, 67
pcre, 168
posix, 151
relay mode, 8
removing syslog-ng, 36
replacing message text, 75, 167
rewrite
reference, 167
rewrite rules, 4, 10, 75
rewriting messages, 75, 167
concepts of, 12

S

sedding messages, 75, 167
segmenting messages, 70, 156
server mode, 9
setting facility, 44
setting message fields, 75, 167
skipping messages, 90
Snare
receiving Snare-compatible messages, 93, 96, 100,
100, 109, 117, 124
Snare-compatibility, 93, 96, 100, 106, 109, 117, 124
source drivers, 9, 43
file() driver, 47, 91
internal() driver, 91
list of, 45, 182

pipe() driver, 48, 95

program() driver, 98

reference, 91

sun-streams() driver, 49, 102

syslog() driver, 49, 108

tep() driver, 50, 113

tep6() driver, 50, 113

udp() driver, 50, 113

udp6() driver, 50, 113

unix-dgram() driver, 121

unix-stream() driver, 121
sources, 4, 9, 43

on different platforms, 44
splitting messages, 70, 156
SQL NULL values, 139
statistics, 45-46
supported architectures, 3
supported operating systems, 3
SUSE Linux Enterprise Server

installing syslog-ng, 32
syslog-ng

troubleshooting, 84
syslog-ng agent

Snare-compatibility, 93, 96, 100, 106, 109, 117, 124
syslog-ng binaries

location of, 26
syslog-ng clients

configuring, 81
syslog-ng relays

configuring, 82
syslog-ng servers

configuring, 83
syslog-ng.conf, 40

includes, 41

T
tagging messages, 68, 165
tags, 68, 165
templates, 10, 12, 69
defining, 70
example, 70
timestamp, 22, 24, 86, 90
timezone
in chroots, 89
timezones, 10, 90
TLS, 11, 49, 51, 108, 114
configuring, 76, 79
reference, 173

transport layer security (see TLS)
troubleshooting, 84

core files, 84

failure scrip, 85

syslog-ng, 84-85

U

ulimit, 127

uninstalling syslog-ng, 36
UTC, 90

	The syslog-ng Open Source Edition 3.1 Administrator Guide
	Table of Contents
	Preface
	1. Summary of contents
	2. Target audience and prerequisites
	3. Products covered in this guide
	4. Typographical conventions
	5. Contact and support information
	5.1. Sales contact
	5.2. Support contact
	5.3. Training

	6. About this document
	6.1. What is new in this main edition of The syslog-ng Administrator Guide?
	6.2. Feedback
	6.3. Acknowledgments

	Chapter 1. Introduction to syslog-ng
	1.1. What syslog-ng is
	1.2. What syslog-ng is not
	1.3. Why is syslog-ng needed?
	1.4. What is new in syslog-ng Open Source Edition 3.1?
	1.5. Who uses syslog-ng?
	1.6. Supported platforms

	Chapter 2. The concepts of syslog-ng
	2.1. The philosophy of syslog-ng
	2.2. Logging with syslog-ng
	2.2.1. Embedded log statements

	2.3. Modes of operation
	2.3.1. Client mode
	2.3.2. Relay mode
	2.3.3. Server mode

	2.4. Global objects
	2.5. Timezone handling
	2.6. Daylight saving changes
	2.7. Secure logging using TLS
	2.8. Formatting messages, filenames, directories, and tablenames
	2.9. Segmenting messages
	2.10. Modifying messages
	2.11. Classifying log messages
	2.11.1. The structure of the pattern database
	2.11.2. How pattern matching works
	2.11.3. Artificial ignorance

	2.12. Managing incoming and outgoing messages with flow-control
	2.12.1. Flow-control and multiple destinations

	2.13. High availability support
	2.14. Possible causes of losing log messages
	2.15. The structure of a log message
	2.15.1. BSD-syslog or legacy-syslog messages
	2.15.1.1. The PRI message part
	2.15.1.2. The HEADER message part
	2.15.1.3. The MSG message part

	2.15.2. IETF-syslog messages
	2.15.2.1. The PRI message part
	2.15.2.2. The HEADER message part
	2.15.2.3. The STRUCTURED-DATA message part
	2.15.2.4. The MSG message part

	Chapter 3. Installing syslog-ng
	3.1. Installing syslog-ng using the .run installer
	3.1.1. Installing syslog-ng in client or relay mode
	3.1.2. Installing syslog-ng in server mode
	3.1.3. Installing syslog-ng without user-interaction

	3.2. Installing syslog-ng on RPM-based platforms (Red Hat, SUSE, AIX)
	3.3. Installing syslog-ng on Debian-based platforms
	3.4. Compiling syslog-ng from source
	3.5. Uninstalling syslog-ng
	3.6. Configuring Microsoft SQL Server to accept logs from syslog-ng

	Chapter 4. Configuring syslog-ng
	4.1. The syslog-ng configuration file
	4.1.1. Including configuration files

	4.2. Defining global objects
	4.2.1. Notes about the configuration syntax

	4.3. Sources and source drivers
	4.3.1. Collecting internal messages
	4.3.1.1. Log statistics

	4.3.2. Collecting messages from text files
	4.3.3. Collecting messages from named pipes
	4.3.4. Collecting messages on Sun Solaris
	4.3.5. Collecting messages using the IETF syslog protocol
	4.3.6. Collecting messages from remote hosts using the BSD syslog protocol
	4.3.7. Collecting messages from UNIX domain sockets

	4.4. Destinations and destination drivers
	4.4.1. Storing messages in plain-text files
	4.4.2. Sending messages to named pipes
	4.4.3. Sending messages to external applications
	4.4.4. Storing messages in an SQL database
	4.4.4.1. Using the sql() driver with an Oracle database
	4.4.4.2. Using the sql() driver with a Microsoft SQL database

	4.4.5. Sending messages to a remote logserver using the IETF-syslog protocol
	4.4.6. Sending messages to a remote logserver using the legacy BSD-syslog protocol
	4.4.7. Sending messages to UNIX domain sockets
	4.4.8. usertty()

	4.5. Log paths
	4.5.1. Using embedded log statements
	4.5.2. Configuring flow-control

	4.6. Filters
	4.6.1. Using filters
	4.6.2. Optimizing regular expressions in filters
	4.6.3. Tagging messages

	4.7. Templates and macros
	4.8. Parsing messages
	4.9. Classifying messages
	4.9.1. Downloading sample pattern databases
	4.9.2. Using parser results in filters and templates
	4.9.2.1. Filtering messages based on classification

	4.10. Rewriting messages
	4.11. Configuring global syslog-ng options
	4.12. Encrypting log messages with TLS
	4.13. Mutual authentication using TLS
	4.14. Configuring syslog-ng clients
	4.15. Configuring syslog-ng relays
	4.16. Configuring syslog-ng servers
	4.17. Troubleshooting syslog-ng
	4.17.1. Creating syslog-ng core files
	4.17.2. Running a failure script
	4.17.3. Stopping syslog-ng

	Chapter 5. Best practices and examples
	5.1. General recommendations
	5.2. Handling lots of parallel connections
	5.3. Handling large message load
	5.4. Using name resolution in syslog-ng
	5.4.1. Resolving hostnames locally

	5.5. Collecting logs from chroot
	5.6. Replacing klogd on Linux
	5.7. A note on timezones and timestamps
	5.8. Dropping messages

	Chapter 6. Reference
	6.1. Source drivers
	6.1.1. internal()
	6.1.2. file()
	6.1.3. pipe()
	6.1.4. program()
	6.1.5. sun-streams() driver
	6.1.6. syslog()
	6.1.7. tcp(), tcp6(), udp() and udp6()
	6.1.8. unix-stream() and unix-dgram()

	6.2. Destination drivers
	6.2.1. file()
	6.2.2. pipe()
	6.2.3. program()
	6.2.4. sql()
	6.2.5. syslog()
	6.2.6. tcp(), tcp6(), udp(), and udp6(),
	6.2.7. unix-stream() & unix-dgram()
	6.2.8. usertty()

	6.3. Log path flags
	6.4. Filter functions
	6.5. Macros
	6.6. Message parsers
	6.6.1. CSV parsers
	6.6.2. Pattern databases
	6.6.2.1. Using pattern parsers
	6.6.2.2. Filtering messages based on classification
	6.6.2.3. Creating pattern databases
	6.6.2.3.1. What's new in the syslog-ng pattern database format V3
	6.6.2.3.2. The syslog-ng pattern database format

	6.7. Rewriting messages
	6.8. Regular expressions
	6.9. Global options
	6.10. TLS options

	Appendix 1. The syslog-ng manual pages
	syslog-ng
	Synopsis
	Description
	Options
	Files
	See also
	Author
	Copyright

	syslog-ng.conf
	Synopsis
	Description
	Configuring syslog-ng
	Files
	See also
	Author
	Copyright

	pdbtool
	Synopsis
	Description
	The match command
	The merge command
	The merge command
	Files
	See also
	Author
	Copyright

	loggen
	Synopsis
	Description
	Options
	Example
	Files
	See also
	Author
	Copyright

	syslog-ng-ctl
	Synopsis
	Description
	Enabling troubleshooting messages
	The stats command
	Files
	See also
	Author
	Copyright

	Appendix 2. GNU General Public License
	2.1. Preamble
	2.2. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	2.2.1. Section 0
	2.2.2. Section 1
	2.2.3. Section 2
	2.2.4. Section 3
	2.2.5. Section 4
	2.2.6. Section 5
	2.2.7. Section 6
	2.2.8. Section 7
	2.2.9. Section 8
	2.2.10. Section 9
	2.2.11. Section 10
	2.2.12. NO WARRANTY Section 11
	2.2.13. Section 12

	2.3. How to Apply These Terms to Your New Programs

	Appendix 3. Deprecated pattern database schemes
	3.1. The syslog-ng pattern database format V1
	3.2. The syslog-ng pattern database format V2

	Appendix 4. Creative Commons Attribution Non-commercial No Derivatives (by-nc-nd) License
	Glossary
	Index

