Download
- Gfan version 0.3 (October 12 2007, major update, some programs have changed behaviour, a new Polymake compatible format for polyhedral fans and polyhedral cones is supported, free choice of variable names)
- Gfan version 0.2.2 (July 24 2006, changes in installation script, bug fixes for non-homogeneous ideals in and xfig output, GPL license)
- Gfan version 0.2.1 (February 5 2006, support for Z/pZ as coefficient field added)
- Gfan version 0.2 (October 12 2005)
- Gfan version 0.1 (April 8 2005)
Citations
@Misc{gfan,
author = {Jensen, Anders N.},
title = {Gfan, a software system for {G}r{\"o}bner fans},
howpublished = {Available at \url{http://www.math.tu-berlin.de/~jensen/software/gfan/gfan.html}}
}
References
-
David Avis and Komei Fukuda.
A basis enumeration algorithm for convex hulls and vertex enumeration
of arrangements and polyhedra.
Discrete Computational Geometry, 8:295--313, 1992.
-
Tristram Bogart, Anders Jensen, David Speyer, Bernd Sturmfels, and Rekha Thomas.
Computing tropical varieties.
2005.
math.AG/0507563.
-
Stéphane Collart, Michael Kalkbrener, and Daniel Mall.
Converting bases with the Gröbner walk.
J. Symb. Comput., 24(3/4):465--469, 1997.
-
Komei Fukuda.
cddlib reference manual, cddlib Version 093b.
Swiss Federal Institute of Technology, Lausanne and Zürich,
Switzerland, 2003.
http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html .
-
Komei Fukuda, Anders Jensen, and Rekha Thomas.
Computing Gröbner fans.
2005.
math.AC/0509544.
-
Torbjörn Granlund et al.
GNU multiple precision arithmetic library 4.1.2, December 2002.
http://swox.com/gmp/.
-
Birkett Huber and Rekha R. Thomas.
Computing Gröbner fans of toric ideals.
Experimental Mathematics, 9(3/4):321--331, 2000.
-
Anders Jensen.
CaTS, a software system for toric state polytopes.
Available at http://www.soopadoopa.dk/anders/cats/cats.html.
-
Anders Jensen.
A non-regular Gröbner fan.
2005.
math.CO/0501352.
-
Teo Mora and Lorenzo Robbiano.
The Gröbner fan of an ideal.
J. Symb. Comput., 6(2/3):183--208, 1988.
-
Jörg Rambau.
Topcom: Triangulations of point configurations and oriented matroids.
ZIB report, 02-17, 2002.
-
Bernd Sturmfels.
Gröbner bases and Convex Polytopes, volume 8 of
University Lecture Series.
American Mathematical Society, 1996.
|