leaving the pieces of the characteristic cycles of the chains that together constitute the characteristic cycles of the local cohomology modules.
i1 : W = QQ[x_1..x_6, a_1..a_6];
|
i2 : I = minors(2, matrix{{x_1, x_2, x_3}, {x_4, 0, 0}});
o2 : Ideal of W
|
i3 : cc = {ideal W => 1};
|
i4 : B = populateCechComplexCC(I,cc)
o4 = MutableHashTable{...4...}
o4 : MutableHashTable
|
i5 : pruneCechComplexCC B
|
i6 : scan(keys B, k->if #B#k>0 then print (k=>B#k))
{0} => {ideal(x ) => 1}
4
{0, 1} => {ideal (x , x ) => 1, ideal (x , x , x ) => 1}
3 2 4 3 2
|