[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Exim performs various transformations on the sender and recipient addresses of all messages that it handles, and also on the messages' header lines. Some of these are optional and configurable, while others always take place. All of this processing, except rewriting as a result of routing, and the addition or removal of header lines while delivering, happens when a message is received, before it is placed on Exim's queue.
Some of the automatic processing takes place by default only for
"locally-originated" messages. This adjective is used to describe messages
that are not received over TCP/IP, but instead are passed to an Exim process on
its standard input. This includes the interactive "local SMTP" case that is
set up by the -bs
command line option.
Note: Messages received over TCP/IP on the loopback interface (127.0.0.1 or ::1) are not considered to be locally-originated. Exim does not treat the loopback interface specially in any way.
If you want the loopback interface to be treated specially, you must ensure that there are appropriate entries in your ACLs.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Processing that happens automatically for locally-originated messages (unless
suppress_local_fixups
is set) can also be requested for messages that are
received over TCP/IP. The term "submission mode" is used to describe this
state. Submission mode is set by the modifier
control = submission |
in a MAIL, RCPT, or pre-data ACL for an incoming message (see sections ACL modifiers and Use of the control modifier). This makes Exim treat the message as a local submission, and is normally used when the source of the message is known to be an MUA running on a client host (as opposed to an MTA). For example, to set submission mode for messages originating on the IPv4 loopback interface, you could include the following in the MAIL ACL:
warn hosts = 127.0.0.1 control = submission |
There are some options that can be used when setting submission mode. A slash is used to separate options. For example:
control = submission/sender_retain |
Specifying sender_retain
has the effect of setting local_sender_retain
true and local_from_check
false for the current incoming message. The first
of these allows an existing Sender: header in the message to remain, and
the second suppresses the check to ensure that From: matches the
authenticated sender. With this setting, Exim still fixes up messages by adding
Date: and Message-ID: header lines if they are missing, but makes no
attempt to check sender authenticity in header lines.
When sender_retain
is not set, a submission mode setting may specify a
domain to be used when generating a From: or Sender: header line. For
example:
control = submission/domain=some.domain |
The domain may be empty. How this value is used is described in sections
The From: header line and The Sender: header line. There is also a name
option
that allows you to specify the user's full name for inclusion in a created
Sender: or From: header line. For example:
accept authenticated = * control = submission/domain=wonderland.example/\ name=${lookup {$authenticated_id} \ lsearch {/etc/exim/namelist}} |
Because the name may contain any characters, including slashes, the name
option must be given last. The remainder of the string is used as the name. For
the example above, if ‘/etc/exim/namelist’ contains:
bigegg: Humpty Dumpty |
then when the sender has authenticated as bigegg, the generated Sender: line would be:
Sender: Humpty Dumpty <bigegg@wonderland.example> |
By default, submission mode forces the return path to the same address as is
used to create the Sender: header. However, if sender_retain
is
specified, the return path is also left unchanged.
Note: The changes caused by submission mode take effect after the predata ACL. This means that any sender checks performed before the fix-ups use the untrusted sender address specified by the user, not the trusted sender address specified by submission mode. Although this might be slightly unexpected, it does mean that you can configure ACL checks to spot that a user is trying to spoof another's address.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
RFC 2821 specifies that CRLF (two characters: carriage-return, followed by linefeed) is the line ending for messages transmitted over the Internet using SMTP over TCP/IP. However, within individual operating systems, different conventions are used. For example, Unix-like systems use just LF, but others use CRLF or just CR.
Exim was designed for Unix-like systems, and internally, it stores messages using the system's convention of a single LF as a line terminator. When receiving a message, all line endings are translated to this standard format. Originally, it was thought that programs that passed messages directly to an MTA within an operating system would use that system's convention. Experience has shown that this is not the case; for example, there are Unix applications that use CRLF in this circumstance. For this reason, and for compatibility with other MTAs, the way Exim handles line endings for all messages is now as follows:
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
By default, Exim expects every envelope address it receives from an external host to be fully qualified. Unqualified addresses cause negative responses to SMTP commands. However, because SMTP is used as a means of transporting messages from MUAs running on personal workstations, there is sometimes a requirement to accept unqualified addresses from specific hosts or IP networks.
Exim has two options that separately control which hosts may send unqualified
sender or recipient addresses in SMTP commands, namely
sender_unqualified_hosts
and recipient_unqualified_hosts
. In both
cases, if an unqualified address is accepted, it is qualified by adding the
value of qualify_domain
or qualify_recipient
, as appropriate.
Unqualified addresses in header lines are automatically qualified for messages
that are locally originated, unless the -bnq
option is given on the command
line. For messages received over SMTP, unqualified addresses in header lines
are qualified only if unqualified addresses are permitted in SMTP commands. In
other words, such qualification is also controlled by
sender_unqualified_hosts
and recipient_unqualified_hosts
,
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Messages that have come from UUCP (and some other applications) often begin with a line containing the envelope sender and a timestamp, following the word "From". Examples of two common formats are:
From a.oakley@berlin.mus Fri Jan 5 12:35 GMT 1996 From f.butler@berlin.mus Fri, 7 Jan 97 14:00:00 GMT |
This line precedes the RFC 2822 header lines. For compatibility with Sendmail,
Exim recognizes such lines at the start of messages that are submitted to it
via the command line (that is, on the standard input). It does not recognize
such lines in incoming SMTP messages, unless the sending host matches
ignore_fromline_hosts
or the -bs
option was used for a local message
and ignore_fromline_local
is set. The recognition is controlled by a
regular expression that is defined by the uucp_from_pattern
option, whose
default value matches the two common cases shown above and puts the address
that follows "From" into $1
.
When the caller of Exim for a non-SMTP message that contains a "From" line is
a trusted user, the message's sender address is constructed by expanding the
contents of uucp_sender_address
, whose default value is "$1". This is
then parsed as an RFC 2822 address. If there is no domain, the local part is
qualified with qualify_domain
unless it is the empty string. However, if
the command line -f
option is used, it overrides the "From" line.
If the caller of Exim is not trusted, the "From" line is recognized, but the sender address is not changed. This is also the case for incoming SMTP messages that are permitted to contain "From" lines.
Only one "From" line is recognized. If there is more than one, the second is treated as a data line that starts the body of the message, as it is not valid as a header line. This also happens if a "From" line is present in an incoming SMTP message from a source that is not permitted to send them.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
RFC 2822 makes provision for sets of header lines starting with the string ‘Resent-’ to be added to a message when it is resent by the original recipient to somebody else. These headers are Resent-Date:, Resent-From:, Resent-Sender:, Resent-To:, Resent-Cc:, Resent-Bcc: and Resent-Message-ID:. The RFC says:
Resent fields are strictly informational. They MUST NOT be used in the normal processing of replies or other such automatic actions on messages.
This leaves things a bit vague as far as other processing actions such as
address rewriting are concerned. Exim treats Resent-
header lines as
follows:
Resent-
header lines of the same type. For example, a rule that rewrites
From: also rewrites Resent-From:.
Resent-
header lines but no Resent-Date:,
Resent-From:, or Resent-Message-Id:, they are added as necessary. It is
the contents of Resent-Message-Id: (rather than Message-Id:) which are
included in log lines in this case.
Resent-
header lines are present.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Whenever Exim generates an autoreply, a bounce, or a delay warning message, it includes the header line:
Auto-Submitted: auto-replied |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If Exim is called with the -t
option, to take recipient addresses from a
message's header, it removes any Bcc: header line that may exist (after
extracting its addresses). If -t
is not present on the command line, any
existing Bcc: is not removed.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If a locally-generated or submission-mode message has no Date: header line,
Exim adds one, using the current date and time, unless the
suppress_local_fixups
control has been specified.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Delivery-date: header lines are not part of the standard RFC 2822 header
set. Exim can be configured to add them to the final delivery of messages. (See
the generic delivery_date_add
transport option.) They should not be present
in messages in transit. If the delivery_date_remove
configuration option is
set (the default), Exim removes Delivery-date: header lines from incoming
messages.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Envelope-to: header lines are not part of the standard RFC 2822 header set.
Exim can be configured to add them to the final delivery of messages. (See the
generic envelope_to_add
transport option.) They should not be present in
messages in transit. If the envelope_to_remove
configuration option is set
(the default), Exim removes Envelope-to: header lines from incoming
messages.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If a submission-mode message does not contain a From: header line, Exim adds one if either of the following conditions is true:
$authenticated_id
is not empty.
$authenticated_id
and the domain is $qualify_domain
.
$authenticated_id
, and the domain is the specified domain.
$authenticated_id
is assumed to be the complete address.
A non-empty envelope sender takes precedence.
If a locally-generated incoming message does not contain a From: header
line, and the suppress_local_fixups
control is not set, Exim adds one
containing the sender's address. The calling user's login name and full name
are used to construct the address, as described in section Constructed addresses.
They are obtained from the password data by calling getpwuid()
(but see the
unknown_login
configuration option). The address is qualified with
qualify_domain
.
For compatibility with Sendmail, if an incoming, non-SMTP message has a From: header line containing just the unqualified login name of the calling user, this is replaced by an address containing the user's login name and full name as described in section Constructed addresses.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
If a locally-generated or submission-mode incoming message does not contain a
Message-ID: or Resent-Message-ID: header line, and the
suppress_local_fixups
control is not set, Exim adds a suitable header line
to the message. If there are any Resent-: headers in the message, it
creates Resent-Message-ID:. The id is constructed from Exim's internal
message id, preceded by the letter E to ensure it starts with a letter, and
followed by @ and the primary host name. Additional information can be included
in this header line by setting the message_id_header_text
and/or
message_id_header_domain
options.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
A Received: header line is added at the start of every message. The
contents are defined by the received_header_text
configuration option, and
Exim automatically adds a semicolon and a timestamp to the configured string.
The Received: header is generated as soon as the message's header lines
have been received. At this stage, the timestamp in the Received: header
line is the time that the message started to be received. This is the value
that is seen by the DATA ACL and by the local_scan()
function.
Once a message is accepted, the timestamp in the Received: header line is changed to the time of acceptance, which is (apart from a small delay while the -H spool file is written) the earliest time at which delivery could start.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Messages created by the autoreply
transport include a References:
header line. This is constructed according to the rules that are described in
section 3.64 of RFC 2822 (which states that replies should contain such a
header line), and section 3.14 of RFC 3834 (which states that automatic
responses are not different in this respect). However, because some mail
processing software does not cope well with very long header lines, no more
than 12 message IDs are copied from the References: header line in the
incoming message. If there are more than 12, the first one and then the final
11 are copied, before adding the message ID of the incoming message.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Return-path: header lines are defined as something an MTA may insert when
it does the final delivery of messages. (See the generic return_path_add
transport option.) Therefore, they should not be present in messages in
transit. If the return_path_remove
configuration option is set (the
default), Exim removes Return-path: header lines from incoming messages.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
For a locally-originated message from an untrusted user, Exim may remove an
existing Sender: header line, and it may add a new one. You can modify
these actions by setting the local_sender_retain
option true, the
local_from_check
option false, or by using the suppress_local_fixups
control setting.
When a local message is received from an untrusted user and
local_from_check
is true (the default), and the suppress_local_fixups
control has not been set, a check is made to see if the address given in the
From: header line is the correct (local) sender of the message. The address
that is expected has the login name as the local part and the value of
qualify_domain
as the domain. Prefixes and suffixes for the local part can
be permitted by setting local_from_prefix
and local_from_suffix
appropriately. If From: does not contain the correct sender, a Sender:
line is added to the message.
If you set local_from_check
false, this checking does not occur. However,
the removal of an existing Sender: line still happens, unless you also set
local_sender_retain
to be true. It is not possible to set both of these
options true at the same time.
By default, no processing of Sender: header lines is done for messages
received over TCP/IP or for messages submitted by trusted users. However, when
a message is received over TCP/IP in submission mode, and sender_retain
is
not specified on the submission control, the following processing takes place:
First, any existing Sender: lines are removed. Then, if the SMTP session is
authenticated, and $authenticated_id
is not empty, a sender address is
created as follows:
$authenticated_id
and the domain is $qualify_domain
.
$authenticated_id
, and the domain is the specified domain.
$authenticated_id
is assumed to be the complete address.
This address is compared with the address in the From: header line. If they
are different, a Sender: header line containing the created address is
added. Prefixes and suffixes for the local part in From: can be permitted
by setting local_from_prefix
and local_from_suffix
appropriately.
Note: Whenever a Sender: header line is created, the return path for
the message (the envelope sender address) is changed to be the same address,
except in the case of submission mode when sender_retain
is specified.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
When a message is delivered, the addition and removal of header lines can be specified in a system filter, or on any of the routers and transports that process the message. Section Adding and removing headers in a system filter contains details about modifying headers in a system filter. Header lines can also be added in an ACL as a message is received (see section Adding header lines in ACLs).
In contrast to what happens in a system filter, header modifications that are specified on routers and transports apply only to the particular recipient addresses that are being processed by those routers and transports. These changes do not actually take place until a copy of the message is being transported. Therefore, they do not affect the basic set of header lines, and they do not affect the values of the variables that refer to header lines.
Note: In particular, this means that any expansions in the configuration of the transport cannot refer to the modified header lines, because such expansions all occur before the message is actually transported.
For both routers and transports, the result of expanding a headers_add
option must be in the form of one or more RFC 2822 header lines, separated by
newlines (coded as "\n"). For example:
headers_add = X-added-header: added by $primary_hostname\n\ X-added-second: another added header line |
Exim does not check the syntax of these added header lines.
The result of expanding headers_remove
must consist of a colon-separated
list of header names. This is confusing, because header names themselves are
often terminated by colons. In this case, the colons are the list separators,
not part of the names. For example:
headers_remove = return-receipt-to:acknowledge-to |
When headers_add
or headers_remove
is specified on a router, its value
is expanded at routing time, and then associated with all addresses that are
accepted by that router, and also with any new addresses that it generates. If
an address passes through several routers as a result of aliasing or
forwarding, the changes are cumulative.
However, this does not apply to multiple routers that result from the use of
the unseen
option. Any header modifications that were specified by the
"unseen" router or its predecessors apply only to the "unseen" delivery.
Addresses that end up with different headers_add
or headers_remove
settings cannot be delivered together in a batch, so a transport is always
dealing with a set of addresses that have the same header-processing
requirements.
The transport starts by writing the original set of header lines that arrived
with the message, possibly modified by the system filter. As it writes out
these lines, it consults the list of header names that were attached to the
recipient address(es) by headers_remove
options in routers, and it also
consults the transport's own headers_remove
option. Header lines whose
names are on either of these lists are not written out. If there are multiple
instances of any listed header, they are all skipped.
After the remaining original header lines have been written, new header
lines that were specified by routers' headers_add
options are written, in
the order in which they were attached to the address. These are followed by any
header lines specified by the transport's headers_add
option.
This way of handling header line modifications in routers and transports has the following consequences:
$header_
xxx variables refer
to it, at all times.
headers_add
option are not accessible by means of the $header_
xxx
expansion syntax in subsequent routers or the transport.
headers_remove
in a router remain visible to subsequent routers and the transport.
headers_add
in a router cannot be removed by
a later router or by a transport.
headers_remove = subject headers_add = Subject: new subject (was: $h_subject:) |
Warning: The headers_add
and headers_remove
options cannot be used
for a redirect
router that has the one_time
option set.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
When Exim constructs a sender address for a locally-generated message, it uses the form
<user name><login@qualify_domain> |
For example:
Zaphod Beeblebrox <zaphod@end.univ.example> |
The user name is obtained from the -F
command line option if set, or
otherwise by looking up the calling user by getpwuid()
and extracting the
"gecos" field from the password entry. If the "gecos" field contains an
ampersand character, this is replaced by the login name with the first letter
upper cased, as is conventional in a number of operating systems. See the
gecos_name
option for a way to tailor the handling of the "gecos" field.
The unknown_username
option can be used to specify user names in cases when
there is no password file entry.
In all cases, the user name is made to conform to RFC 2822 by quoting all or
parts of it if necessary. In addition, if it contains any non-printing
characters, it is encoded as described in RFC 2047, which defines a way of
including non-ASCII characters in header lines. The value of the
headers_charset
option specifies the name of the encoding that is used (the
characters are assumed to be in this encoding). The setting of
print_topbitchars
controls whether characters with the top bit set (that
is, with codes greater than 127) count as printing characters or not.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
RFC 2822 states that the case of letters in the local parts of addresses cannot
be assumed to be non-significant. Exim preserves the case of local parts of
addresses, but by default it uses a lower-cased form when it is routing,
because on most Unix systems, usernames are in lower case and case-insensitive
routing is required. However, any particular router can be made to use the
original case for local parts by setting the caseful_local_part
generic
router option.
If you must have mixed-case user names on your system, the best way to proceed, assuming you want case-independent handling of incoming email, is to set up your first router to convert incoming local parts in your domains to the correct case by means of a file lookup. For example:
correct_case: driver = redirect domains = +local_domains data = ${lookup{$local_part}cdb\ {/etc/usercased.cdb}{$value}fail}\ @$domain |
For this router, the local part is forced to lower case by the default action
(caseful_local_part
is not set). The lower-cased local part is used to look
up a new local part in the correct case. If you then set caseful_local_part
on any subsequent routers which process your domains, they will operate on
local parts with the correct case in a case-sensitive manner.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
RFC 2822 forbids empty components in local parts. That is, an unquoted local part may not begin or end with a dot, nor have two consecutive dots in the middle. However, it seems that many MTAs do not enforce this, so Exim permits empty components for compatibility.
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Rewriting of sender and recipient addresses, and addresses in headers, can happen automatically, or as the result of configuration options, as described in chapter Address rewriting. The headers that may be affected by this are Bcc:, Cc:, From:, Reply-To:, Sender:, and To:.
Automatic rewriting includes qualification, as mentioned above. The other case in which it can happen is when an incomplete non-local domain is given. The routing process may cause this to be expanded into the full domain name. For example, a header such as
To: hare@teaparty |
might get rewritten as
To: hare@teaparty.wonderland.fict.example |
Rewriting as a result of routing is the one kind of message processing that does not happen at input time, as it cannot be done until the address has been routed.
Strictly, one should not do any deliveries of a message until all its addresses have been routed, in case any of the headers get changed as a result of routing. However, doing this in practice would hold up many deliveries for unreasonable amounts of time, just because one address could not immediately be routed. Exim therefore does not delay other deliveries when routing of one or more addresses is deferred.
[ << ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
This document was generated on September, 11 2009 using texi2html 1.78.