EYEDB Getting Started

Version 2.8.0

January 2006

Copyright © 2001-2006 SYSRA

Published by SYSRA
30, avenue Général Leclerc
91330 Yerres - France

home page: http://www.eyedb.org

Contents

N OOt W N

10

Starting the server L e e e e e 5
Creating a database L e e 5
Defining a simple schema with ODL 0 6
Creating and updating objects with the OQL interpreter 8
Querying objects using the OQL interpreter e 9
Manipulating objects using OQLo 10
Updating the database schema e 10
7.1 Adding indexes e 10
7.2 Adding constraints L e 11
7.3 Removing classes and schema L 12
Using the C++ Binding o o 13
8.1 Generating the specific C++ binding L o 13
8.2 A minimal client program e e e e 14
Using the Java Binding oL 17
9.1 Generating the Java code L e 17
9.2 A minimal client program L. L e e e e 18
Learning more about EYEDB Lo 19

CONTENTS

Getting Started

We will introduce EYEDB by going through some simple operations such as creating a database, defining an ODL schema,
creating and updating objects, querying objects with OQL, adding indexes and constraints, and then writing simple C++
and Java client programs.

We assume that EYEDB has been correctly installed on your computer. Refer to the installation guide for installation
information.

1 Starting the server

In the following sections, we assume that you are running all the EYEDB tools under the same Unix user as the one used
when installing EYEDB , in order not to be forced to create a new EYEDB user and give this new user the necessary
authorizations to create a database. In case this assumption is not valid, please refer to the administration guide for
further information about creating a user and assigning a user database creation permission.

For any EYEDB operation, a server must run on your computer. To check if a server is running, use the following
command:
% eyedbctl status

If a server is running, this command will print a message like:

Starting EyeDB Server

Version V2.7.5

Compiled Jan 28 2006 04:06:17
Architecture linux-x86-64
Program Pid 9159

If no server is running, it will print an error message such as:
No EyeDB Server is running on localhost:6240

To start a server, just do this:

% eyedbctl start

Then, you may try again eyedbctl status.

If you get any trouble at this step, refer to the installation and to the administration manuals.

2 Creating a database

The next step is to create a database to perform our tests.

Before creating a database, you can check that you are authorized to perform this operation, using the eyedbuserlist
command, as in:

% eyedbuserlist
name : "francois" [strict unix user]
sysaccess : SUPERUSER_SYSACCESS_MODE

If you are running the eyedbuserlist command under the same Unix user as the one used when installing EYEDB | the
command output will be a message like the one above, showing that you have superuser priviledge and are thus allowed
to create a database.

Creating a database is performed using the eyedbcreate tool, as in:

6 CONTENTS

% eyedbdbcreate foo

where foo is the name of the database.

Similarly, deleting a database is performed using the eyedbdelete tool, as in:
% eyedbdbdelete foo

where foo is the name of the database.

3 Defining a simple schema with ODL

Now that a database has been created, we are going to populate it with objects.
The first step is to define the database schema.

A standard example in databases is the well known Person class (or table in relational system) which contains a few
attributes such as a firstname, a lastname, an age, an address, a spouse and a set of children.

We will show the inheritance feature through the simple class Employee which inherits from the Person class and will
contains a simple attribute: salary.

Here is simple ODL schema for the classes Address, Person and Employee:

//
// person.odl
//

class Address {
int num;
string street;
string town;
string country;

};

class Person {
string firstname;
string lastname;
int age;
Address addr;
Person * spouse inverse Person::spouse;
set<Person *> children;

};

class Employee extends Person {
long salary;

};
A few comments about this schema:
e the Address class contains four attributes, one integer and three strings.

— integer: there are three types of ODL integers:

1. 16-bits integer, named int16 or short
2. 32-bits integer, named int32 or int
3. 64-bits integer, named int64 or long

so the num attribute is a 32-bits integer.

— string: an ODL string is under the form: string or string<N>. The first form means that the string is not
bounded, the second form means that the string contains at most N characters.

e the Person class contains six attributes: two strings, one 32-bits integer, one Person object and one set of Person
objects.

3. DEFINING A SIMPLE SCHEMA WITH ODL 7

— the third attribute addr is of Address type and is a litteral because there is no * before the attribute name.
A litteral is an object without identifier: the addr attribute is tied to a Person instance, it has no proper
existence.

— the spouse attribute is an object, not a litteral, because it is preceded by a *. An object has an identifier and
has its proper existence. The * means a reference or pointer to an object. The directive after the attribute
name inverse Person: :spouse is a relationship directive.

— the children attribute is a collection set of Person objects.

e the Employee contains seven attributes: the six Person attributes because Employee inherits from Person and 64-bits
integer attribute: salary.

To add the previous schema in the foo database, you need to use the eyedbodl tool as follows:

% eyedbodl -d foo -u person.odl

Updating ’person’ schema in database foo...
Adding class Address

Adding class Person

Adding class Employee

Done

Note that you must pass the following command line options to the eyedbodl command: -d foo to specify to which
database you are applying the schema and -u to update the database schema.

To verify that the update has correctly worked, you can generate the ODL schema from the database, as follows:

% eyedbodl -d foo --gencode=0DL

//

// EyeDB Version 2.7.5 Copyright (c) 1995-2005 SYSRA

//

// UNTITLED Schema

//

// Automatically Generated by eyedbodl at Sat Jan 28 04:21:32 2006
//

#if defined (EYEDBNUMVERSION) && EYEDBNUMVERSION != 207005
#error "This file is being compiled with a version of eyedb different from that used to create it (2.7.5)"
#endif

class Address (implementation <hash, hints = "key_count = 2048;">) {
attribute int32 num;
attribute string street;
attribute string town;
attribute string country;

};

class Person (implementation <hash, hints = "key_count = 2048;">) {
attribute string firstname;
attribute string lastname;
attribute int32 age;
attribute Address addr;
relationship Person* spouse inverse Person::spouse;
attribute set<Person*> children;

I

class Employee (implementation <hash, hints = "key_count = 2048;">) extends Person {
attribute int64 salary;

};

Note that the exact output may differ a bit from what is displayed above, depending on the EYEDB version.

By default, eyedbodl generates the ODL on the standard output. You see here that the displayed ODL is very simi-
lar to the original ODL except that the keywords attribute and relationship have been added before each attribute
declaration. The relationship keyword means that the attribute has an inverse directive.

8 CONTENTS

Note that these two keywords are optional: it is why we have not use them in our example.

Another way to check that the schema has been created within the database, is to use the eyedboql tool, as follows:

% eyedboql -d foo -c "select schema" --print
= bag(2546.2.120579:0id, 2553.2.112046:0id, 2568.2.515951:0id)
struct Address {2546.2.120579:0id} : struct : agregat : instance : object {
attribute int32 num;
attribute string street;
attribute string town;
attribute string country;
I
struct Person {2553.2.112046:0id} : struct : agregat : instance : object {
attribute string firstname;
attribute string lastname;
attribute int32 age;
attribute Address addr;
relationship Person* spouse inverse Person::spouse;
attribute set<Person*> children;
};
struct Employee {26568.2.515951:0id} : Person : struct : agregat : instance : object {
attribute string Person::firstname;
attribute string Person::lastname;
attribute int32 Person::age;
attribute Address Person::addr;
relationship Person* Person::spouse inverse Person::spouse;
attribute set<Person*> Person::children;
attribute int64 salary;
};

Again, note that the exact output may differ a bit from what is displayed above, depending on the EYEDB version.

Note that the object identifiers (oid) of the classes are displayed.

4 Creating and updating objects with the OQL interpreter

Once a schema has been created in the database, we can create and update Person and Employee instances.

Using the eyedboql monitor, we are going to perform the following operations:
1. create a person named “john wayne”
2. create a person named “mary poppins”
3. mary them
4. create 3 “john wayne” children named “babyl”, “baby2” and “baby3”
Here is the way to perform the first three step:

% eyedboql -d foo -w

Welcome to eyedboql.
Type ‘\help’ to display the command list.
Type ‘\copyright’ to display the copyright.

? john := Person(firstname : "john", lastname : "wayne", age : 72);
= 25685.2.196439:0id

? mary := Person(firstname : "mary", lastname : "poppins", age : 68);
= 2587.2.702511:0id

? john.spouse := mary;

2587.2.702511:0id

Note the -w option on the eyedboql command line, specifying that you open the foo database in write mode.

A few comments: - 7 is the eyedbogl prompt: of course, do not type this string! - := is the affectation opera-
tor. - each time you create an object, its identifier (oid) is displayed on your terminal. - because of the relationship

5. QUERYING OBJECTS USING THE OQL INTERPRETER 9

integrity constraint on the spouse attribute, the operation john.spouse := mary is equivalent to mary.spouse := john.

To create the three “john wayne” children:

? add Person(firstname : "babyl", age : 2) to john->children;
2589.2.36448:0id
add Person(firstname : "baby2", age : 3) to john->children;
2595.2.683802:0id
add Person(firstname : "baby3", age : 4) to john->children;
2597.2.134950:0id

-~

RV

At this stage, it is interesting to perform the following operation: in another terminal, launch another eyedboql
command on the same database foo and query all persons, as follows:

% eyedboql -d foo -w -c "select Person;"
= bag()

It may seem surprising that no person instance is returned, but in fact it is not: each interaction with the database
occurs within a transaction, and as long as this transaction has not been committed, the database is not modified by the
operations that have been done since the beginning of the transaction. To perform effectively these operations, you must
commit the transaction, by typing in the first eyedboql session:

? \commit
If you now query the person instances in your second eyedboql session, the five person instances will be returned:

eyedboql -d foo -w -c "select Person;"
= bag(2597.2.134950:0id, 2595.2.683802:0id, 2589.2.36448:0id, 2587.2.702511:0id, 2585.2.196439:0id)

You can now quit the first eyedboql session with the following command:

? \quit

5 Querying objects using the OQL interpreter
To query all persons in the database, launch an eyedboql session as in:

% eyedboql -d foo
Welcome to eyedboql.
Type ‘\help’ to display the command list.
Type ‘\copyright’ to display the copyright.
7 select Person;
= bag(2597.2.134950:0id, 2595.2.683802:0id, 2589.2.36448:0id, 2587.2.702511:0id, 2585.2.196439:0id)

To query all persons whose firstname is “john”:

? select Person.firstname = "john";
= bag(2585.2.196439:01id)
? \print
Person {2585.2.196439:0id} = {
firstname = "john";
lastname = "wayne";
age = 72;
addr Address = {
num = NULL;
street = NULL;
town = NULL;
country = NULL;
1
*spouse = {2587.2.702511:0id};
children set<Person*> = set {
name = "";
count = 3;

}s

10 CONTENTS

Note that the
print command allows to display the contains of the last objects returned on your terminal.

To query all persons whose firstname contains a y:

? select Person.firstname ~ "y";
= bag(2597.2.134950:0id, 2595.2.683802:0id, 2589.2.36448:0id, 2587.2.702511:0id)

6 Manipulating objects using OQL
The OQL interpreter can be used to manipulate object, for instance updating the attributes of objects returned by a query.

First, launch an eyedboql session as in:

% eyedboql -d foo -w
Welcome to eyedboql.
Type ‘\help’ to display the command list.
Type ‘\copyright’ to display the copyright.
>

The database must be opened in write mode, because we are going to modify the objects stored in the database.

To change the lastname attribute of the person whose firstname is mary:

? (select Person.firstname = "mary").lastname := "stuart";
= bag("stuart")

To increment the age attribute of all persons, we use a for loop to iterate on the result of a query:

-~

select Person.age;

bag(4, 3, 2, 68, 72)

for (p in (select Person)) { p.age += 1 ; };
select Person.age;

bag(5, 4, 3, 69, 73)

NN

7 Updating the database schema

Once created, a database schema can be updated, to add or remove attributes, add or remove classes or schema, add
indexes or contraints.

7.1 Adding indexes

To introduce the necessity of indexes, we propose to perform the following operations:

? for (x in 1 <= 50000) new Person(firstname : "xx" + string(x));
7?7 select Person.firstname = "xx20";

= bag(23336.2.420154:0id)

7 select Person.firstname = "xx10";

bag(23316.2.824639:0id)

The first operation creates 50000 person instances: as you can notice, this operation takes a few seconds. The two last
operations query person instance according to their firstname attribute. These operations also take a few seconds to
perform and take a significant amount of CPU.

A good idea is to affect an index on the attributes - for instance firstname, lastname and age - for which one wants to
perform efficient query.

This is very simple:

e add index specification to the class Person in the person.odl file as follows:

class Person {
string firstname;
char lastname;
int age;

7. UPDATING THE DATABASE SCHEMA 11

Address addr;
set<Person *> children;

index on firstname;
index on lastname;
index on age;

};

e then, use the eyedbodl tool to update the database schema:

% eyedbodl -d foo -u person.odl

Updating ’person’ schema in database foo...

Creating [NULL] hashindex ’index<type = hash, propagate = on> on Person.firstname’ on class ’Person’...
Creating [NULL] hashindex ’index<type = hash, propagate = on> on Person.lastname’ on class ’Person’...
Creating [NULL] btreeindex ’index<type = btree, propagate = on> on Person.age’ on class ’Person’...

Done

Now, you can try again to query Person instances according to its firstname, lastname or age:

% eyedboql -d foo -w

7 select Person.firstname = "xx20";
= bag(23336.2.420154:0id)
? select Person.firstname = "xx10";

bag(23316.2.824639:0id)

and you will notice that these operations are immediate.

7.2 Adding constraints

In the same way, you can add a notnull and an unique constraint on the lastname attribute within the class Person:

e add the constraint specification to the class Person within the person.odl file as follows:

class Person {
string firstname;
string lastname;
int age;
Address addr;

index on firstname;
index on lastname;
index on age;

constraint<notnull> on lastname;
constraint<unique> on lastname;

};

e then, use the eyedbodl tool to update the database schema:

% eyedbodl -d foo -u person.odl

Updating ’person’ schema in database foo...

Creating [NULL] notnull_constraint ’constraint<notnull, propagate = on> on Person.lastname’ on class ’Person’...
Creating [NULL] unique_constraint ’constraint<unique, propagate = on> on Person.lastname’ on class ’Person’...

Done

Now try to create two person instances with the same lastname attribute:

% eyedboql -d foo -w

? new Person(lastname : "curtis");
= 79902.2.884935:0id
? new Person(lastname : "curtis");

near line 2: ’new Person(lastname :

or with no lastname attribute:

? new Person();

"curtis")’ => oql error: new operator ’new<oql$db> Person(lastname:"curtis"); ’ : u

near line 3: ’new Person()’ => oql error: new operator ’new<oql$db> Person(); ’ : notnull[] constraint error: attribute

12 CONTENTS

7.3 Removing classes and schema

It is possible to remove a class in a schema using eyedbodl. For instance, to remove the class Employee in the already
introduced schema:

% eyedbodl -d foo -u --rmcls=Employee
Updating ’UNTITLED’ schema in database foo...
Removing class Employee

Done
You can then check the class removal by:

% eyedbodl -d foo --gencode=0DL

//

// EyeDB Version 2.7.5 Copyright (c) 1995-2005 SYSRA

//

// UNTITLED Schema

//

// Automatically Generated by eyedbodl at Fri Jan 27 22:51:26 2006
//

#if defined (EYEDBNUMVERSION) && EYEDBNUMVERSION != 207005
#error "This file is being compiled with a version of eyedb different from that used to create it (2.7.5)"
#endif

class Address (implementation <hash, hints = "key_count = 2048;">) {
attribute int32 num;
attribute string street;
attribute string town;
attribute string country;

I
class Person (implementation <hash, hints = "key_count = 2048;">) {
attribute string firstname;
attribute string lastname;
attribute int32 age;
attribute Address addr;
relationship Person* spouse inverse Person::spouse;
attribute set<Person*> children;
index<type = hash, hints = "key_count = 4096; initial_size = 4096; extend_coef = 1; size_max = 4096;", propagat
index<type = hash, hints = "key_count = 4096; initial_size = 4096; extend_coef = 1; size_max = 4096;", propagat
constraint<unique, propagate = on> on Person.lastname;
constraint<notnull, propagate = on> on Person.lastname;
index<type = btree, hints = "degree = 128;", propagate = on> on Person.age;
};

It is as well possible to remove entirely the database schema:

% eyedbodl -d foo -u --rmsch

Updating ’UNTITLED’ schema in database foo...

Removing [2570.2.500986:0id] hashindex ’index<type = hash, hints = "key_count = 4096; initial_size = 4096; extend_coef
Removing [2585.2.286352:0id] hashindex ’index<type = hash, hints = "key_count = 4096; initial_size = 4096; extend_coef
Removing [2599.2.7912:0id] btreeindex ’index<type = btree, hints = "degree = 128;", propagate = on> on Person.age’ from
Removing [2625.2.396262:0id] unique_constraint ’constraint<unique, propagate = on> on Person.lastname’ from class ’Pers
Removing [2620.2.240536:0id] notnull_constraint ’constraint<notnull, propagate = on> on Person.lastname’ from class ’Pe
Removing class Address

Removing class Person

Removing class set<Person*>

Done

The result can be checked with:

8. USING THE C++ BINDING 13

% eyedbodl -d foo --gencode=0DL

//
// EyeDB Version 2.7.5 Copyright (c) 1995-2005 SYSRA

//

// UNTITLED Schema

/7

// Automatically Generated by eyedbodl at Fri Jan 27 22:52:07 2006
//

#if defined (EYEDBNUMVERSION) && EYEDBNUMVERSION != 207005

#error "This file is being compiled with a version of eyedb different from that used to create it (2.7.5)"
#endif

8 Using the C++ Binding
We are going to introduce now the C++ binding through the same schema and examples as previously.
There are two ways to use the C++ binding:
1. using the generic C++ binding
2. using both the generic C++ binding and the specific Person C++ code generated from the ODL schema

We will explain here only the second way, as it is far more simple and pratical than the first one. For more information
on the generic C++ binding, please refer to the C4++ binding manual.

Writing a C++ program that can create, retrieve, modify and delete person instances that are stored in an EYEDB
database involves the following steps:

1. generates the specific Person binding using the eyedbodl tool
2. write the C++ client program
3. compile the generated binding and the client program

This example is located in the examples/GettingStarted subdirectory.

8.1 Generating the specific C++ binding

To generate the specific C++ binding, run the eyedbodl tool as follow:
% eyedbodl --gencode=C++ --package=person schema.odl

The --package option is mandatory: you may give any name you want, this name will be used as the prefix for generated
files names. Without the --package option, the prefix used will be the name of the ODL file without its extension.

eyedbodl generates a few files, all prefixed by person, the most important being person.h and person.cc.
If you have a look to the file person.h, you will notice that the following classes have been generated:

1. the class person

2. the class personDatabase

3. the class Root

4. the class Address

5. the class Person

6. the class Employee

The first class, person, is the package class:

14 CONTENTS

class person {
public:
static void init();
static void release();
static eyedb::Status updateSchema(eyedb::Database *db);
static eyedb::Status updateSchema(eyedb::Schema *m) ;
};

it is used to perform package initialization and schema update. Before any use of the person package, you need to call
person::init.

The second class, personDatabase is used to open, close and manipulate objects within a database containing the person
schema.

The open method has two purposes: the first one is to open the database, as the standard eyedb: :Database will do;
the second one is to check that the database schema is consistant with the generated runtime schema. Although it is
possible to use the standard Database class to open a database containing the person schema, it is strongly recommended
to use the personDatabase class.

The third class, Root, is the root class for all the generated classes. This class is useful to perform safe down-casting
during object loading.

The three last classes, Address, Person and Employee are generated from the person.odl class specifications: for each
attribute in the person.odl, a set of get and set methods is generated.

For instance, for the firstname attribute, the following methods are generated:

eyedb: :Status setFirstname(const std::string &);

std::string getFirstname(eyedb::Bool *isnull = 0, eyedb::Status * = 0) const;

eyedb: :Status setFirstname(unsigned int a0, char);

char getFirstname(unsigned int a0, eyedb::Bool *isnull = 0, eyedb::Status * = 0) const;

The two first methods manipulate the firstname attribute as a string while the two last ones manipulate each character
within this string.

There are two set methods and two get methods.

8.2 A minimal client program
We are now going to write a minimal client program which will perform the following operations:
1. initialize the EYEDB package and the person package
2. open a connection with the EYEDB server
3. open a database
4. perform error management
5. release the EYEDB package and the person package
Here is the code for this minimal client:

#include "person.h"

int

main(int argc, char *argv[])

{
eyedb: :init(argc, argv); // initializes EyeDB package
person: :init(); // initializes person package

eyedb: :Exception: :setMode (eyedb: :Exception: :ExceptionMode); // use exception mode

try {
eyedb: :Connection conn;

conn.open() ; // opens the connection

8. USING THE C++ BINDING 15

personDatabase db(argv[1]); // creates a database handle
db.open(&conn, eyedb::Database::DBRW); // opens the database in read/write mode
}

catch(Exception &e) { // catch any exception and print it
e.print();

}

person: :release(); // releases person package

eyedb: :release(); // releases EyeDB package

return O;

}

Note that statement Exception::setMode(...) is mandatory if you want to use the exception error policy.

To use this client, you must first compile it: eyedbodl has generated a makefile called Makefile.package which can be
used as is or can help you to design your own makefile.

A template C++ file (template_package.cc) has also been generated, closed to the previous minimal client program,
which can be compiled with the generated makefile.

Here is the generated Makefile.person ((<<datadir>> is the data directory, usually /usr/share):

Makefile.person
person package
Example of template Makefile that can help you to compile

the generated C++ file and the template program
Generated by eyedbodl at Sat Jan 28 17:53:48 2006

H OH H HF H H O HH

include <<datadir>>/eyedb/Makefile.eyedb

CXXFLAGS += $(EYEDB_CXXFLAGS) $(EYEDB_CPPFLAGS)
LDFLAGS += ${EYEDB_LDFLAGS}
LDLIBS += ${EYEDB_LDLIBS}

if you use gcc
GCC_FLAGS = -W1,-R$(EYEDB_LIBDIR)

Example for compiling a client program:
client_program = template_person

$(client_program): person.o $(client_program).o
$(CXX) $(LDFLAGS) $(GCC_FLAGS) -o $@ $~ $(LDLIBS)

Important note: you need a recent version of GNU make to use this makefile. This makefile does not work with the
standard SUN make.

Once compiled, you can execute the program as follows:

% ./persontest foo

We are going now to add a function to manipulate Person instances:
1. create a person named “john wayne”
2. create a person named “mary poppins”
3. mary them

4. create 3 “john wayne” children named “babyl”, “baby2” and “baby3”

16

These operations are performed in the following function:

static void
create(eyedb: :Database *db)

{

}

db->transactionBegin(); // starts a new transaction

Person *john = new Person(db);
john->setFirstname ("john") ;
john->setLastname ("wayne") ;
john->setAge (32) ;
john->getAddr () ->setStreet ("courcelles");
john->getAddr () ->setTown("Paris") ;

Person *mary = new Person(db);
mary->setFirstname ("mary") ;
mary->setLastname ("poppins") ;
mary->setAge(30);
mary->getAddr () ->setStreet ("courcelles");
mary->getAddr () ->setTown("Paris");

// mary them
john->setSpouse (mary) ;

// creates children
for (int i = 0; i < 5; i++) {
std::string name = std::string("baby") + str_convert(i+l);
Person *child = new Person(db);
child->setFirstname (name.c_str());
child->setLastname(name.c_str());
child->setAge (1+i);
john->addToChildrenColl(child) ;
child->release(); // release the allocated pointer

}

// store john and all its related instances within the database
john->store(eyedb: :FullRecurs) ;

// release the allocated pointers
mary->release();

john->release();

db->transactionCommit(); // commits the current transaction

A few remarks about this code:

CONTENTS

e all operations - setting, getting attributes, storing, querying instances in a database - must be performed within
a transaction. A transaction is initiated using the Database: :transactionBegin method and is committed (resp.

aborted) using the Database: :transactionCommit (resp. Database::transactionAbort) method.

e to store any instance in the database, you need to call the emphstore (or realize) method on this instance. In
our case, we use the argument FullRecurs indicating that we want all related instances (through relationship or

indirect attribute) to be stored in the database.

e all runtime pointers allocated with the new operator must be deleted using the release method. The delete

operator is forbidden: if you try to use it, an exception will be thrown at runtime.

We are now going to query and display all the person instances.

Here is the corresponding code:

static void
read(eyedb: :Database *db, const char *s)

{

db->transactionBegin();

9. USING THE JAVA BINDING 17

eyedb::0QL q(db, "select Person.lastname ~ \"%s\"", s);

eyedb: :0ObjectArray obj_arr;
q.execute(obj_arr);

for (int i = 0; i < obj_arr.getCount(); i++) {
Person *p = Person_c(obj_arr[i]);
if (p)
printf("person = %s %s, age = %d\n", p->getFirstname(),
p->getLastname (), p->getAge());
}

db->transactionCommit () ;

}

An OQL construct can be used within the C++ code using the 0QL(Database *, const char *fmt, ...) constructor.
For instance, in the above example, assuming s is equal to baby, the code:

eyedb::0QL q(db, "select Person.lastname ~ \"%s\"", s);

will send the query select Person.lastname "baby" to the OQL interpreter.

This interpreter will perform the query and returned all the found objects. The returned objects can be found using
the OQL: : execute method as follows:

eyedb::0bjectArray obj_arr;
q.execute(obj_arr);

The returned objects are of type eyedb::0bject, so you cannot use the Person methods such as getFirstname(),
getAge()...To use them, you need to perform a down-cast using the Person_c static function as follows:

for (int i = 0; i < obj_arr.getCount(); i++) {
Person *p = Person_c(obj_arr[i]);

if (p)

If the object obj_arr[i] is not of type Person, the returned pointer will be null. It is why we make a test on the value of
p- If p is not null, we can use all the Person methods as follows:

printf ("person = %s %s, age = %d\n", p->getFirstname(),
p->getLastname (), p->getAge());

To have more information about the C++ binding, please refer to the EYEDB C++ binding manual.

9 Using the Java Binding

Although the C++ binding is more complete than the Java binding - essentially according to the administrative operations
- the Java bindings allow to manipulate data without limitations.

Using the Java binding is very similar to the C++ binding. Writing a Java program that can create, retrieve, mod-
ify and delete person instances that are stored in an EYEDB database involves the following steps:

1. generates the specific Person binding using the eyedbodl tool
2. write the Java client program
3. compile the generated binding and the client program

This example is located in the examples/GettingStarted subdirectory.

9.1 Generating the Java code

The Java code is generated from the ODL schema definition using the following command:

% eyedbodl --gencode=Java --package=person person.odl

18 CONTENTS

The --package option is mandatory: this name will be used as the name of the Java package to which all generated Java
classes will belong.

This command will generate a number of Java file in subdirectory person/, each generated file containing a Java class
having the same name.
If you have a look to the files in sub-directory person, you will notice that the following classes have been generated:

1. the class Address
2. the class Database
3. the class Employee
4. the class Person

5. the class set_class_Person_ref

9.2 A minimal client program

We are now going to write a minimal client program which will perform the following operations:
1. initialize the EYEDB and person packages
2. connect to the EYEDB server
3. open a database
4. creates two person instances and mary them
Here is the code for this minimal client:

//
// Persontest.java

//
import person.x*;

class PersonTest {
public static void main(String args[]) {

// Initialize the eyedb package and parse the default eyedb options
// on the command line
String[] outargs = org.eyedb.Root.init("PersonTest", args);

// Check that a database name is given on the command line
int argc = outargs.length;
if (arge '= 1) {
System.err.println("usage: java PersonTest dbname");
System.exit(1);
}

try {
// Initialize the person package
person.Database.init();

// Open the connection with the backend
org.eyedb.Connection conn = new org.eyedb.Connection();

// Open the database named outargs[0]
person.Database db = new person.Database(outargs[0]);
db.open(conn, org.eyedb.Database.DBRW) ;

db.transactionBegin();

// Create two persons john and mary
Person john = new Person(db);
john.setFirstname("john");
john.setLastname ("travolta");

10. LEARNING MORE ABOUT EYEDB 19

john.setAge(26);

Person mary = new Person(db);
mary.setFirstname ("mary") ;
mary.setLastname ("stuart");

mary.setAge(22) ;

// Mary them ;-)
john.setSpouse (mary) ;

tore john and mary in the database
// 8 john and y in the datab
john.store(org.eyedb.RecMode.FullRecurs) ;

john.trace();

db.transactionCommit () ;

}
catch(org.eyedb.Exception e) { // Catch any eyedb exception
e.print();
System.exit(1);
}
}

}

To use this client, you must first compile it using a standard Makefile, as follows (replace <<datadir>> with the data
directory, usually /usr/share):

include <<datadir>>/eyedb/Makefile.eyedb
all: PersonTest.class

person/Database. java: schema.odl
$(EYEDB_ODL) --gencode=Java --package=person --output-dir=person $<

PersonTest.class: PersonTest.java person/Database.java
CLASSPATH=$ (EYEDB_CLASSPATH) : . javac *.java person/*.java

Once compiled, you can execute the program as follows:
% CLASSPATH=. eyedbjrun PersonTest person_g

The eyedbjrun script is a helper script that wraps the call to the Java virtual machine with an appropriate CLASSPATH
environment variable containing the path to eyedb. jar and passes the necessary options to the PersonTest class.

A few remarks about the Java code:

e all operations - setting, getting attributes, storing, querying instances in a database - must be performed within
a transaction. A transaction is initiated using the Database: :transactionBegin method and is committed (resp.
aborted) using the Database: :transactionCommit (resp. Database: :transactionAbort) method.

e to store any instance in the database, you need to call the emphstore (or realize) method on this instance. In
our case, we use the argument FullRecurs indicating that we want all related instances (through relationship or
indirect attribute) to be stored in the database.

The Java binding support both the standalone applications and the applets.

To have more information about the Java binding, please refer to the EYEDB Java binding manual.

10 Learning more about EyeDB

We have briefly introduce in this manual some of the main features of EYEDB.

More detailled information can be found in the other parts of the EYEDB manual:

e Object Definition Language (ODL) manual

20

e Object Query Language (OQL) manual
e C++ Binding manual

e Java Binding manual

CONTENTS

