
KADM5 Library and Server
Implementation Design∗

Barry Jaspan

May 23, 2007

Contents

1 Overview 2

2 API Handles 3

3 API Versioning 4
3.1 Designing for future compatibility . 5
3.2 Header file declarations . 5
3.3 Server library functions . 6
3.4 XDR functions . 7
3.5 Client library functions . 9
3.6 Admin server stubs . 9
3.7 KADM5 self-reference . 10

4 Server Main 12

5 Remote Procedure Calls 12

6 Database Record Types 12
6.1 Admin Principal, osa princ ent t . 12
6.2 Policy, osa policy ent t . 13
6.3 Kerberos, krb5 db entry . 14

7 Database Access Methods 14
7.1 Principal and Policy Databases . 14

∗api-server-design.tex 17363 2005-08-29 19:22:52Z hartmans

1

7.1.1 Error codes . 14
7.1.2 Locking . 15
7.1.3 Function descriptions . 16

7.2 Kerberos Database . 19
7.2.1 Initialization and Key Access . 19

8 Admin Principal and Policy Database Implementation 20

9 ACLs, acl check 20

10 Function Details 21
10.1 kadm5 create principal . 21
10.2 kadm5 delete principal . 21
10.3 kadm5 modify principal . 21
10.4 kadm5 chpass principal, randkey principal 22
10.5 kadm5 get principal . 22

1 Overview

The KADM5 administration system is designed around the KADM5 API. The “server-side”
library libkadm5srv.a implements the KADM5 API by operating directly on the underly-
ing KDC and admin databases. The “client-side” library libkadm5clnt.a implements the
KADM5 API via an RPC mechanism. The administration server kadmind accepts RPC
requests from the client-side library and translates them into calls to the server-side library,
performing authentication, authorization, and logging along the way.

The two libraries, libkadm5clnt.a and libkadm5srv.a, export the identical kadm5 interface;
for example, both contain definitions for kadm5 get principal, and all other kadm5 functions.
In most cases, the client library function just marshalls arguments and results into and out
of an RPC call, whereas the server library function performs the actual operation on the
database file. kadm5 init *, however, are substantially different even though they export
the same interface: on the client, they establish the RPC connection and GSS-API context,
whereas on the server side the open the database files, read in the password dictionary, and
the like. Also, the kadm5 free functions operate on local process memory in both libraries.

The admin server is implemented as a nearly-stateless transaction server, where each admin
API function represents a single transaction. No per-client or per-connection information is
stored; only local database handles are maintained between requests. The RPC mechanism
provides access to remote callers’ authentication credentials for authorization purposes.

The admin API is exported via an RPC interface that hides all details about network encod-
ing, authentication, and encryption of data on the wire. The RPC mechanism does, however,

2

allow the server to access the underlying authentication credentials for authorization pur-
poses.

The admin system maintains two databases:

• The master Kerberos (KDC) database is used to store all the information that the
Kerberos server understands, thus allowing the greatest functionality with no modifi-
cations to a standard KDC.

• The KDC database also stores kadm5-specific per-principal information in each prin-
cipal’s krb5 tl data list. In a prior version, this data was stored in a separate admin
principal database; thus, when this document refers to “the admin principal database,”
it now refers to the appropriate krb5 tl data entries in the KDC database.

• The policy database stores kadm5 policy information.

The per-principal information stored in the admin principal database consists of the prin-
cipal’s policy name and an array of the principal’s previous keys. The old keys are stored
encrypted in the key of the special principal “kadmin/history” that is created by the server
library when it is first needed. Since a change in kadmin/history’s key renders every prin-
cipal’s key history array useless, it can only be changed using the ovsec adm edit utility;
that program will reencrypt every principal’s key history in the new key.1 The server library
refuses all requests to change kadmin/history’s key.

2 API Handles

Each call to kadm5 init * on the client or server creates a new API handle. The handles
encapsulate the API and structure versions specified by kadm5 init *’s caller and all other
internal data needed by the library. A process can have multiple open API handles simulta-
neously by calling kadm5 init * multiple times, and call can specify a different version, client
or service principal, and so forth.

Each kadm5 function verifies the handle it is given with the CHECK HANDLE or
KADM5 CHECK HANDLE macros. The CHECK HANDLE macro differs for the client
and server library because the handle types used by those libraries differ, so it is de-
fined in both <client internal.h> and <server internal.h> in the library source directory.
In each header file, CHECK HANDLE first calls GENERIC CHECK HANDLE, defined

1ovsec adm edit has not yet been implemented, and there are currently no plans to implement it; thus,
the history cannot currently be changed.

3

in <admin internal.h>, which verifies the magic number, API version, and structure ver-
sion that is contained in both client and server handles. CHECK HANDLE then calls ei-
ther CLIENT CHECK HANDLE or SERVER CHECK HANDLE respectively to verify the
client- or server-library specific handle fields.

The CHECK HANDLE macro is useful because it inlines the handle check instead of re-
quiring a separate function call. However, using CHECK HANDLE means that a source
file cannot be compiled once and included into both the client and server library, because
CHECK HANDLE is always either specific to either the client or server library, not both.
There are a number of functions that can be implemented with the same code in both the
client and server libraries, however, including all of the kadm5 free functions and kadm5
chpass principal util. The KADM5 CHECK HANDLE macro solves this problem; instead
of inlining the handle check, it calls the function kadm5 check handle which is defined sep-
arately in both the client and server library, in client init.c and server init.c. Since these two
files are only compiled once and put in a single library, they simply verify the handle they
are passed with CHECK HANDLE and return the result.

3 API Versioning

The KADM5 system is designed to support multiple versions of the KADM5 API. Presently,
two versions exist: KADM5 API VERSION 1 and KADM5 API VERSION 2. The former
is equivalant to the initial OpenVision API, OVSEC KADM API VERSION 1; the latter
was created during the initial integration of the OpenVision system into the MIT release.

Implementing a versioned API in C via with both local and RPC access presents a number
of design issues, some of them quite subtle. The contexts in which versioning considerations
must be made include:

1. Typedefs, function declarations, and defined constants depend on the API version a
client is written to and must be correct at compile time.

2. Each function in the server library must behave according to the API version specified
by the caller at runtime to kadm5 init *.

3. The XDR functions used by the RPC layer to transmit function arguments and results
must encode data structures correctly depending on the API version specified by the
client at runtime.

4. Each function in the client library must behave according to the API version specified
by the caller at runtime to kadm5 init *.

4

5. The RPC server (kadmind) must accept calls from a client using any supported API
version, and must then invoke the function in the server library corresponding to the
RPC with the API version indicated by the client caller.

6. When a first API function is invoked that needs to call a second function in the API on
its own behalf, and that second API function’s behavior depends on the API version
specified, the first API function must either be prepared to call the second API function
at whatever version its caller specifies or have a means of always calling the second
API function at a pre-determined version.

The following functions describe how each context is handled.

3.1 Designing for future compatibility

Any code whose behavior depends on the API version should be written so as to be compat-
ible with future, currently unknown API versions on the grounds that any particuarly piece
of API behavior will most likely not change between versions. For example, in the current
system, the code is not written as “if this is VERSION 1, do X, else if this is VERSION 2,
do Y”; instead, it is written as “if this is VERSION 1, do X; else, do Y.” The former will re-
quire additional work when VERSION 3 is defined, even if “do Y” is still the correct action,
whereas the latter will work without modification in that case.

3.2 Header file declarations

Typedefs, defined constants and macros, and function declarations may change between
versions. A client is always written to a single, specific API version, and thus expects the
header files to define everything according to that API. Failure of a header file to define
values correctly will result in either compiler warnings (e.g. if the pointer type of a function
argument changes) or fatal errors (e.g. if the number of arguments to a function changes,
or the fields of a structure change). For example, in VERSION 1, kadm5 get policy took a
pointer to a pointer to a structure, and in VERSION 2 it takes a pointer to a structure; that
would generate a warning if not correct. In VERSION 1, kadm5 randkey principal accepted
three arguments but in VERSION 2 accepts four; that would generate a fatal error.

The header file defines everything correctly based on the value of the USE KADM5 API
VERSION constant. The constant can be assigned to an integer corresponding to any
supported API version, and defaults to the newest version. The header files then simply use
an #ifdef to include the right definitions:

#if USE_KADM5_API_VERSION == 1

5

kadm5_ret_t kadm5_get_principal(void *server_handle,

krb5_principal principal,

kadm5_principal_ent_t *ent);

#else

kadm5_ret_t kadm5_get_principal(void *server_handle,

krb5_principal principal,

kadm5_principal_ent_t ent,

long mask);

#endif

3.3 Server library functions

Server library functions must know how many and what type of arguments to expect, and
must operate on those arguments correctly, based on the API version with which they are
invoked. The API version is contained in the handle that is alwasy passed as their first
argument, generated by kadm5 init * (to which the client specified the API version to use
at run-time).

In general, it is probably unsafe for a compiled function in a library to re-interpret the number
and type of defined arguments at run-time since the calling conventions may not allow it;
for example, a function whose first argument was a short in one version and a pointer in the
next might fail if it simply typed-casted the argument. In that case, the function would have
to written to take variable arguments (i.e. use <stdarg.h>) and extract them from the stack
based on the API version. Alternatively, a separate function for each API version could be
defined, and <kadm5/admin.h> could be written to #define the exported function name
based on the value of USE KADM5 API VERSION.

In the current system, it turns out, that isn’t necessary, and future implementors should
take try to ensure that no version has semantics that will cause such problems in the future.
All the functions in KADM5 that have different arguments or results between VERSION 1
and VERSION 2 do so simply by type-casting their arguments to the appropriate version
and then have separate code paths to handle each one correctly. kadm5 get principal, in
svr principal.c, is a good example. In VERSION 1, it took the address of a pointer to a
kadm5 principal ent t to fill in with a pointer to allocated memory; in VERSION 2, it takes
a pointer to a structure to fill in, and a mask of which fields in that structure should be
filled in. Also, the contents of the kadm5 principal ent t changed slightly between the two
versions. kadm5 get principal handles versioning as follows (following along in the source
code will be helpful):

1. If VERSION 1, it saves away its entry argument (address of a pointer to a structure)
and resets its value to contain the address of a locally stack-allocated entry structure;

6

this allows most of the function to written once, in terms of VERSION 2 semantics. If
VERSION 1, it also resets its mask argument to be KADM5 PRINCIPAL NORMAL
MASK, because that is the equivalent to VERSION 1 behavior, which was to return
all the fields of the structure.

2. The bulk of the function is implemented as expected for VERSION 2.

3. The new fields in the VERSION 2 entry structure are assigned inside a block that is
only execute if the caller specified VERSION 2. This saves a little time for a VER-
SION 1 caller.

4. After the entry structure is filled, the function checks again if it was called as VER-
SION 1. If so, it allocates a new kadm5 principal ent t v1 structure (which is con-
veniently defined in the header file) with malloc, copies the appropriate values from
the entry structure into the VERSION 1 entry structure, and then writes the address
of the newly allocated memory into address specified by the original entry argument
which it had previously saved away.

There is another complication involved in a function re-interpreting the number of arguments
it receives at compile time—it cannot assign any value to an argument for which the client
did not pass a value. For example, a VERSION 1 client only passes three arguments to
kadm5 get principal. If the implementation of kadm5 get principal notices that the caller is
VERSION 1 and therefore assigns its fourth argument, mask, to a value that mimics the
VERSION 1 behavior, it may inadvertently overwrite data on its caller’s stack. This problem
can be avoided simply by using a true local variable in such cases, instead of treating an
unpassed argument as a local variable.

3.4 XDR functions

The XDR functions used to encode function arguments and results must know how to encode
the data for any API version. This is important both so that all the data gets correctly
transmitted and so that protocol compatibility between clients or servers using the new
library but an old API version is maintained; specific, new kadmind servers should support
old kadm5 clients.

The signature of all XDR functions is strictly defined: they take the address of an XDR
function and the address of the data object to be encoded or decoded. It is thus impossible
to provide the API version of the data object as an additional argument to an XDR function.
There are two other means to convey the information, storing the API version to use as a
field in the data object itself and creating separate XDR functions to handle each different
version of the data object, and both of them are used in KADM5.

7

In the client library, each kadm5 function collects its arguments into a single structure to be
passed by the RPC; similarly, it expects all of the results to come back as a single structure
from the RPC that it will then decode back into its constituent pieces (these are the standard
ONC RPC semantics). In order to pass versioning information to the XDR functions, each
function argument and result datatype has a filed to store the API version. For example,
consider kadm5 get principal’s structures:

struct gprinc_arg {

krb5_ui_4 api_version;

krb5_principal princ;

long mask;

};

typedef struct gprinc_arg gprinc_arg;

bool_t xdr_gprinc_arg();

struct gprinc_ret {

krb5_ui_4 api_version;

kadm5_ret_t code;

kadm5_principal_ent_rec rec;

};

typedef struct gprinc_ret gprinc_ret;

bool_t xdr_gprinc_ret();

kadm5 get principal (in client principal.c) assigns the api version field of the gprinc arg to
the version specified by its caller, assigns the princ field based on its arguments, and assigns
the mask field from its argument if the caller specified VERSION 2. It then calls the RPC
function clnt call, specifying the XDR functions xdr gprinc arg and xdr gprinc ret to handle
the arguments and results.

xdr gprinc arg is invoked with a pointer to the gprinc arg structure just described. It first
encodes the api version field; this allows the server to know what to expect. It then encodes
the krb5 principal structure and, if api version is VERSION 2, the mask. If api version is not
VERSION 2, it does not encode anything in place of the mask, because an old VERSION 1
server will not expect any other data to arrive on the wire there.

The server performs the kadm5 get principal call and returns its results in an XDR encoded
gprinc ret structure. clnt call, which has been blocking until the results arrived, invokes
xdr gprinc ret with a pointer to the encoded data for it to decode. xdr gprinc ret first
decodes the api version field, and then the code field since that is present in all versions
to date. The kadm5 principal ent rec presents a problem, however. The structure does not
itself contain an api version field, but the structure is different between the two versions.
Thus, a single XDR function cannot decode both versions of the structure because it will

8

have no way to decide which version to expect. The solution is to have two functions,
kadm5 principal ent rec v1 and kadm5 principal ent rec, which always decode according to
VERSION 1 or VERSION 2, respectively. gprinc ret knows which one to invoke because it
has the api version field returned by the server (which is always the same as that specified
by the client in the gpring arg).

In hindsight, it probably would have been better to encode the API version of all structures
directly in a version field in the structure itself; then multiple XDR functions for a single
data type wouldn’t be necessary, and the data objects would stand complete on their own.
This can be added in a future API version if desired.

3.5 Client library functions

Just as with server library functions, client library functions must be able to interpret their
arguments and provide result according to the API version specified by the caller. Again,
kadm5 get principal (in client principal.c) is a good example. The gprinc ret structure that
it gets back from clnt call contains a kadm5 principal ent rec or a kadm5 principal ent rec
v1 (the logic is simplified somewhat because the VERSION 2 structure only has new fields
added on the end). If kadm5 get principal was invoked with VERSION 2, that structure
should be copied into the pointer provided as the entry argument; if it was invoked with
VERSION 1, however, the structure should be copied into allocated memory whose address
is then written into the pointer provided by the entry argument. Client library functions
make this determination based on the API version specified in the provided handle, just like
server library functions do.

3.6 Admin server stubs

When an RPC call arrives at the server, the RPC layer authenticates the call using the GSS-
API, decodes the arguments into their single-structure form (ie: a gprinc arg) and dispatches
the call to a stub function in the server (in server stubs.c). The stub function first checks
the caller’s authorization to invoke the function and, if authorized, calls the kadm5 function
corresponding to the RPC function with the arguments specified in the single-structure
argument.

Once again, kadm5 get principal is a good example for the issues involved. The contents
of the gprinc arg given to the stub (get principal 1) depends on the API version the caller
on the client side specified; that version is available to the server in the api version field
of the gprinc arg. When the server calls kadm5 get principal in the server library, it must
give that function an API handle that contains the API version requested by the client;
otherwise the function semantics might not be correct. One possibility would be for the

9

server to call kadm5 init for each client request, specifing the client’s API version number
and thus generating an API handle with the correct version, but that would be prohibitively
inefficient. Instead, the server dips down in the server library’s internal abstraction barrier,
using the function new server handle to cons up a server handle based on the server’s own
global server handle but using the API version specified by the client. The server then passes
the newly generated handle to kadm5 get principal, ensuring the right behavior, and creates
the gprinc ret structure in a manner similar to that described above.

Although new server handle solves the problem of providing the server with an API handle
containing the right API version number, it does not solve another problem: that a single
source file, server stubs.c, needs to be able to invoke functions with arguments appropriate
for multiple API versions. If the client specifies VERSION 1, for example, the server must
invoke kadm5 get principal with three arguments, but if the client specifies VERSION 2 the
server must invoke kadm5 get principal with four arguments. The compiler will not allow
this inconsistency. The server defines wrapper functions in a separate source file that match
the old version, and the separate source file is compiled with USE KADM5 API VERSION
set to the old version; see kadm5 get principal v1 in server glue v1.c. The server then calls
the correct variant of kadm5 get principal * based on the API version and puts the return
values into the gprinc ret in a manner similar to that described above.

Neither of these solutions are necessarily correct. new server handle violates the server
library’s abstraction barrier and is at best a kludge; the server library should probably
export a function to provide this behavior without violating the abstraction; alternatively,
the librar should be modified so that having the server call kadm5 init for each client RPC
request would not be too inefficient. The glue functions in server glue v1.c really are not
necessary, because the server stubs could always just pass dummy arguments for the extra
arguments; after all, the glue functions pass nothing for the extra arguments, so they just
end up as stack garbage anyway.

Another alternative to the new server handle problem is to have the server always invoke
server library functions at a single API version, and then have the stubs take care of con-
verting the function arguments and results back into the form expected by the caller. In
general, however, this might require the stubs to duplicate substantial logic already present
in the server library and further violate the server library’s abstraction barrier.

3.7 KADM5 self-reference

Some kadm5 functions call other kadm5 functions “on their own behalf” to perform func-
tionality that is necessary but that does not directly affect what the client sees. For example,
kadm5 chpass principal has to enforce password policies; thus, it needs to call kadm5 get
principal and, if the principal has a policy, kadm5 get policy and kadm5 modify principal
in the process of changing a principal’s password. This leads to a complication: what API

10

handle should kadm5 chpass principal pass to the other kadm5 functions it calls?

The “obvious,” but wrong, answer is that it should pass the handle it was given by its caller.
The caller may provide an API handle specifying any valid API version. Although the
semantics of kadm5 chpass principal did not change between VERSION 1 and VERSION 2,
the declarations of both kadm5 get principal and kadm5 get policy did. Thus, to use the
caller’s API handle, kadm5 chpass principal will have to have a separate code path for each
API version, even though it itself did not change bewteen versions, and duplicate a lot of
logic found elsewhere in the library.

Instead, each API handle contains a “local-use handle,” or lhandle, that kadm5 functions
should use to call other kadm5 functions. For example, the client-side library’s handle
structure is:

typedef struct _kadm5_server_handle_t {

krb5_ui_4 magic_number;

krb5_ui_4 struct_version;

krb5_ui_4 api_version;

char * cache_name;

int destroy_cache;

CLIENT * clnt;

krb5_context context;

kadm5_config_params params;

struct _kadm5_server_handle_t *lhandle;

} kadm5_server_handle_rec, *kadm5_server_handle_t;

The lhandle field is allocated automatically when the handle is created. All of the fields
of the API handle that are accessed outside kadm5 init are also duplicated in the lhandle;
however, the api version field of the lhandle is always set to a constant value, regardless of
the API version specified by the caller to kadm5 init. In the current implementation, the
lhandle’s api version is always VERSION 2.

By passing the caller’s handle’s lhandle to recursively called kadm5 functions, a kadm5
function is assured of invoking the second kadm5 function with a known API version. Addi-
tionally, the lhandle’s lhandle field points back to the lhandle, in case kadm5 functions call
themselves more than one level deep; handle− >lhandle always points to the same lhandle,
no matter how many times the indirection is performed.

This scheme might break down if a kadm5 function has to call another kadm5 function to
perform operations that they client will see and for its own benefit, since the semantics of the
recursively-called kadm5 function may depend on the API version specified and the client
may be depending on a particular version’s behavior. Future implementators should avoid
creating a situation in which this is possible.

11

4 Server Main

The admin server starts by trapping all fatal signals and directing them to a cleanup-and-exit
function. It then creates and exports the RPC interface and enters its main loop.

The main loop dispatches all incoming requests to the RPC mechanism. In a previous
version, after 15 seconds of inactivity, the server closed all open databases; each database
was be automatically reopened by the API function implementations as necessary. That
behavior existed to protect against loss of written data before the process exited. The current
database libraries write all changes out to disk immediately, however, so this behavior is no
longer required or performed.

5 Remote Procedure Calls

The RPC for the Admin system will be based on ONC RPC. ONC RPC is used because
it is a well-known, portable RPC mechanism. The underlying external data representation
(xdr) mechanisms for wire encapsulation are well-known and extensible. Authentication to
the admin server and encryption of all RPC functional arguments and results are be handled
via the AUTH GSSAPI authentication flavor of ONC RPC.

6 Database Record Types

6.1 Admin Principal, osa princ ent t

The admin principal database stores records of the type osa princ ent t (declared in
<kadm5/adb.h>), which is the subset of the kadm5 principal ent t structure that is not
stored in the Kerberos database plus the necessary bookkeeping information. The records
are keyed by the ASCII representation of the principal’s name, including the trailing NULL.

typedef struct _osa_pw_hist_t {

int n_key_data;

krb5_key_data *key_data;

} osa_pw_hist_ent, *osa_pw_hist_t;

typedef struct _osa_princ_ent_t {

char * policy;

u_int32 aux_attributes;

12

unsigned int old_key_len;

unsigned int old_key_next;

krb5_kvno admin_history_kvno;

osa_pw_hist_ent *old_keys;

u_int32 num_old_keys;

u_int32 next_old_key;

krb5_kvno admin_history_kvno;

osa_pw_hist_ent *old_keys;

} osa_princ_ent_rec, *osa_princ_ent_t;

The fields that are different from kadm5 principal ent t are:

num old keys The number of previous keys in the old keys array. This value must be 0 ≤
num old keys < pw history num.

old key next The index into old keys where the next key should be inserted. This value
must be 0 ≤ old key next ≤ num old keys.

admin history kvno The key version number of the kadmin/history principal’s key used
to encrypt the values in old keys. If the server library finds that kadmin/history’s kvno
is different from the value in this field, it returns KADM5 BAD HIST KEY.

old keys The array of the principal’s previous passwords, each encrypted in the kad-
min/history key. There are num old keys elements. Each “password” in the array
is itself an array of n key data krb5 key data structures, one for each keysalt type the
password was encoded in.

6.2 Policy, osa policy ent t

The policy database stores records of the type osa policy ent t (declared in <kadm5/adb.h>)
, which is all of kadm5 policy ent t plus necessary bookkeeping information. The records are
keyed by the policy name.

typedef struct _osa_policy_ent_t {

char *policy;

u_int32 pw_min_life;

13

u_int32 pw_max_life;

u_int32 pw_min_length;

u_int32 pw_min_classes;

u_int32 pw_history_num;

u_int32 refcnt;

} osa_policy_ent_rec, *osa_policy_ent_t;

6.3 Kerberos, krb5 db entry

The Kerberos database stores records of type krb5 db entry, which is defined in the <k5-
int.h> header file. The semantics of each field are defined in the libkdb functional specifica-
tion.

7 Database Access Methods

7.1 Principal and Policy Databases

This section describes the database abstraction used for the admin policy database; the
admin principal database used to be treated in the same manner but is now handled more
directly as krb5 tl data; thus, nothing in this section applies to it any more. Since both
databases export equivalent functionality, the API is only described once. The character
T is used to represent both “princ” and “policy”. The location of the principal database
is defined by the configuration parameters given to any of the kadm5 init functions in the
server library.

Note that this is only a database abstraction. All functional intelligence, such as maintaining
policy reference counts or sanity checking, must be implemented above this layer.

Prototypes for the osa functions are supplied in <kadm5/adb.h>. The routines are defined
in libkadm5srv.a. They require linking with the Berkely DB library.

7.1.1 Error codes

The database routines use com err for error codes. The error code table name is “adb”
and the offsets are the same as the order presented here. The error table header file is
<kadm5/adb err.h>. Callers of the OSA routines should first call init adb err tbl() to ini-
tialize the database table.

14

OSA ADB OK Operation successful.

OSA ADB FAILURE General failure.

OSA ADB DUP Operation would create a duplicate database entry.

OSA ADB NOENT Named entry not in database.

OSA ADB BAD PRINC The krb5 principal structure is invalid.

OSA ADB BAD POLICY The specified policy name is invalid.

OSA ADB XDR FAILURE The principal or policy structure cannot be encoded for
storage.

OSA ADB BADLOCKMODE Bad lock mode specified.

OSA ADB CANTLOCK DB Cannot lock database, presumably because it is already
locked.

OSA ADB NOTLOCKED Internal error, database not locked when unlock is called.

OSA ADB NOLOCKFILE KADM5 administration database lock file missing.

Database functions can also return system errors. Unless otherwise specified, database func-
tions return OSA ADB OK.

7.1.2 Locking

All of the osa adb functions except open and close lock and unlock the database to prevent
concurrency collisions. The overall locking algorithm is as follows:

1. osa adb open T calls osa adb init db to allocate the osa adb T t structure and open
the locking file for further use.

2. Each osa adb functions locks the locking file and opens the appropriate database with
osa adb open and lock, performs its action, and then closes the database and unlocks
the locking file with osa adb close and unlock.

3. osa adb close T calls osa adb fini db to close the locking file and deallocate the db
structure.

Functions which modify the database acquire an exclusive lock, others acqure a shared lock.
osa adb iter T acquires an exclusive lock for safety but as stated below consequences of
modifying the database in the iteration function are undefined.

15

7.1.3 Function descriptions

osa_adb_ret_t osa_adb_create_T_db(kadm5_config_params *params)

Create the database and lockfile specified in params. The database must not already exist,
or EEXIST is returned. The lock file is only created after the database file has been created
successfully.

osa_adb_ret_t osa_adb_rename_T_db(kadm5_config_params *fromparams,

kadm5_config_params *toparams)

Rename the database named by fromparams to that named by toparams. The fromparams
database must already exist; the toparams database may exist or not. When the function
returns, the database named by fromparams no longer exists, and toparams has been over-
written with fromparams. This function acquires a permanent lock on both databases for
the duration of its operation, so a failure is likely to leave the databases unusable.

osa_adb_ret_t osa_adb_destroy_policy_db(kadm5_config_params *params)

Destroy the database named by params. The database file and lock file are deleted.

osa_adb_ret_t

osa_adb_open_T(osa_adb_T_t *db, char *filename);

Open the database named filename. Returns OSA ADB NOLOCKFILE if the database
does not exist or if the lock file is missing. The database is not actually opened in the
operating-system file sense until a lock is acquire.

osa_adb_ret_t

osa_adb_close_T(osa_adb_T_t db);

Release all shared or exclusive locks (on BOTH databases, since they use the same lock file)
and close the database.

It is an error to exit while a permanent lock is held; OSA ADB NOLOCKFILE is returned
in this case.

osa_adb_ret_t osa_adb_get_lock(osa_adb_T_t db, int mode)

16

Acquire a lock on the administration databases; note that both databases are locked simul-
taneously by a single call. The mode argument can be OSA ADB SHARED, OSA ADB
EXCLUSIVE, or OSA ADB PERMANENT. The first two and the third are really disjoint
locking semantics and should not be interleaved.

Shared and exclusive locks have the usual semantics, and a program can upgrade a shared
lock to an exclusive lock by calling the function again. A reference count of open locks is
maintained by this function and osa adb release lock so the functions can be called multiple
times; the actual lock is not released until the final osa adb release lock. Note, however,
that once a lock is upgraded from shared to exclusive, or from exclusive to permanent, it is
not downgraded again until released completely. In other words, get lock(SHARED), get
lock(EXCLUSIVE), release lock() leaves the process with an exclusive lock with a reference
count of one. An attempt to get a shared or exclusive lock that conflicts with another process
results in the OSA ADB CANLOCK DB error code.

This function and osa adb release lock are called automatically as needed by all other osa
adb functions to acquire shared and exclusive locks and so are not normally needed. They
can be used explicitly by a program that wants to perform multiple osa adb functions within
the context of a single lock.

Acquiring an OSA ADB PERMANENT lock is different. A permanent lock consists of first
acquiring an exclusive lock and then deleting the lock file. Any subsequent attempt to acquire
a lock by a different process will fail with OSA ADB NOLOCKFILE instead of OSA ADB
CANTLOCK DB (attempts in the same process will “succeed” because only the reference
count gets incremented). The lock file is recreated by osa adb release lock when the last
pending lock is released.

The purpose of a permanent lock is to absolutely ensure that the database remain locked
during non-atomic operations. If the locking process dies while holding a permanent lock,
all subsequent osa adb operations will fail, even through a system reboot. This is useful,
for example, for ovsec adm import which creates both new database files in a temporary
location and renames them into place. If both renames do not fully complete the database
will probably be inconsistent and everything should stop working until an administrator can
clean it up.

osa_adb_ret_t osa_adb_release_lock(osa_adb_T_t db)

Releases a shared, exclusive, or permanent lock acquired with osa adb get lock, or just decre-
ments the reference count if multiple locks are held. When a permanent lock is released, the
lock file is re-created.

All of a process’ shared or exclusive database locks are released when the process terminates.
A permanent lock is not released when the process exits (although the exclusive lock it begins

17

with obviously is).

osa_adb_ret_t

osa_adb_create_T(osa_adb_T_t db, osa_T_ent_t entry);

Adds the entry to the database. All fields are defined. Returns OSA ADB DUP if it already
exists.

osa_adb_ret_t

osa_adb_destroy_T(osa_adb_T_t db, osa_T_t name);

Removes the named entry from the database. Returns OSA ADB NOENT if it does not
exist.

osa_adb_ret_t

osa_adb_get_T(osa_adb_T_t db, osa_T_t name,

osa_princ_ent_t *entry);

Looks up the named entry in the db, and returns it in *entry in allocated storage that must
be freed with osa adb free T. Returns OSA ADB NOENT if name does not exist, OSA
ADB MEM if memory cannot be allocated.

osa_adb_ret_t

osadb_adb_put_T(osa_adb_T_t db, osa_T_ent_t entry);

Modifies the existing entry named in entry. All fields must be filled in. Returns OSA DB
NOENT if the named entry does not exist. Note that this cannot be used to rename an
entry; rename is implemented by deleting the old name and creating the new one (NOT
ATOMIC!).

void osa_adb_free_T(osa_T_ent_t);

Frees the memory associated with an osa T ent t allocated by osa adb get T.

typedef osa_adb_ret_t (*osa_adb_iter_T_func)(void *data,

osa_T_ent_t entry);

osa_adb_ret_t osa_adb_iter_T(osa_adb_T_t db, osa_adb_iter_T_func func,

void *data);

18

Iterates over every entry in the database. For each entry ent in the database db, the function
(*func)(data, ent) is called. If func returns an error code, osa adb iter T returns an error
code. If all invokations of func return OSA ADB OK, osa adb iter T returns OSA ADB OK.
The function func is permitted to access the database, but the consequences of modifying
the database during the iteration are undefined.

7.2 Kerberos Database

Kerberos uses the libkdb interface to store krb5 db entry records. It can be accessed and
modified in parallel with the Kerberos server, using functions that are defined inside the KDC
and the libkdb.a. The libkdb interface is defined in the libkdb functional specifications.

7.2.1 Initialization and Key Access

Keys stored in the Kerberos database are encrypted in the Kerberos master key. The admin
server will therefore have to acquire the key before it can perform any key-changing oper-
ations, and will have to decrypt and encrypt the keys retrieved from and placed into the
database via krb5 db get principal and put principal. This section describes the internal
admin server API that will be used to perform these functions.

krb5_principal master_princ;

krb5_encrypt_block master_encblock;

krb5_keyblock master_keyblock;

void kdc_init_master()

kdc init master opens the database and acquires the master key. It also sets the global
variables master princ, master encblock, and master keyblock:

• master princ is set to the name of the Kerberos master principal (K/M@REALM).

• master encblock is something I have no idea about.

• master keyblock is the Kerberos master key

krb5_error_code kdb_get_entry_and_key(krb5_principal principal,

krb5_db_entry *entry,

krb5_keyblock *key)

19

kdb get entry and key retrieves the named principal’s entry from the database in entry, and
decrypts its key into key. The caller must free entry with krb5 dbm db free principal and
free key->contents with free.2

krb5_error_code kdb_put_entry_pw(krb5_db_entry *entry, char *pw)

kdb put entry pw stores entry in the database. All the entry values must already be set; this
function does not change any of them except the key. pw, the NULL-terminated password
string, is converted to a key using string-to-key with the salt type specified in entry->salt
type.3

8 Admin Principal and Policy Database Implementa-

tion

The admin principal and policy databases will each be stored in a single hash table, imple-
mented by the Berkeley 4.4BSD db library. Each record will consist of an entire osa T ent t.
The key into the hash table is the entry name (for principals, the ASCII representation of the
name). The value is the T entry structure. Since the key and data must be self-contained,
with no pointers, the Sun xdr mechanisms will be used to marshal and unmarshal data in
the database.

The server in the first release will be single-threaded in that a request will run to completion
(or error) before the next will run, but multiple connections will be allowed simultaneously.

9 ACLs, acl check

The ACL mechanism described in the “Authorization ACLs” section of the functional spec-
ifications will be implemented by the acl check function.

enum access_t {

ACCESS_DENIED = 0,

ACCESS_OK = 1,

2The caller should also memset(key->contents, 0, key->length). There should be a function krb5
free keyblock contents for this, but there is not.

3The salt type should be set based on the command line arguments to the kadmin server (see the “Com-
mand Line” section of the functional specification).

20

};

enum access_t acl_check(krb5_principal princ, char *priv);

The priv argument must be one of “get”, “add”, “delete”, or “modify”. acl check returns 1
if the principal princ has the named privilege, 0 if it does not.

10 Function Details

This section discusses specific design issues for Admin API functions that are not addresed
by the functional specifications.

10.1 kadm5 create principal

If the named principal exists in either the Kerberos or admin principal database, but not
both, return KADM5 BAD DB.

The principal’s initial key is not stored in the key history array at creation time.

10.2 kadm5 delete principal

If the named principal exists in either the Kerberos or admin principal database, but not
both, return KADM5 BAD DB.

10.3 kadm5 modify principal

If the named principal exists in either the Kerberos or admin principal database, but not
both, return KADM5 BAD DB.

If pw history num changes and the new value n is smaller than the current value of num
old keys, old keys should end up with the n most recent keys; these are found by counting
backwards n elements in old keys from old key next. old key nexts should then be reset to
0, the oldest of the saved keys, and num old keys set to n, the new actual number of old
keys in the array.

21

10.4 kadm5 chpass principal, randkey principal

The algorithm for determining whether a password is in the principal’s key history is com-
plicated by the use of the kadmin/history K h encrypting key.

1. For kadm5 chpass principal, convert the password to a key using string-to-key and the
salt method specified by the command line arguments.

2. If the POLICY bit is set and pw history num is not zero, check if the new key is in
the history.

(a) Retrieve the principal’s current key and decrypt it with K M . If it is the same as
the new key, return KADM5 PASS REUSE.

(b) Retrieve the kadmin/history key K h and decrypt it with K M .

(c) Encrypt the principal’s new key in K h.

(d) If the principal’s new key encrypted in K h is in old keys, return KADM5 PASS
REUSE.

(e) Encrypt the principal’s current key in K h and store it in old keys.

(f) Erase the memory containing K h.

3. Encrypt the principal’s new key in K M and store it in the database.

4. Erase the memory containing K M .

To store the an encrypted key in old keys, insert it as the old key next element of old keys,
and increment old key next by one modulo pw history num.

10.5 kadm5 get principal

If the named principal exists in either the Kerberos or admin principal database, but not
both, return KADM5 BAD DB.

22

