
EncTEX

The Extension of TEX
For Input Re-encoding

6. 9. 1997, 3. 1. 2003, 12. 1. 2003 Petr Oľsák

This package is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This package is available on

ftp://math.feld.cvut.cz/pub/olsak/enctex/.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

c© 1997, 2002, 2003 RNDr. Petr Oľsák

TEX is trademark of the American Mathematical Society.

The author of the TEX is professor Donald Knuth. The TEX is a free software with the specific license.
See the documentation of TEX.

The original version of the encTEX documentation (in Czech language) is in encdoc.tex file.
Původńı česká dokumentace je v souboru encdoc.tex.

1. The basic information

The encTEX package is a little extension of TEX. You can install it from source files of TEX by changing
the tex.ch file in your distribution. The patch to tex.ch file for web2c distribution is supported.

The encTEX is backward compatible with the original TEX. It adds eight new primitives by which you
can set or read the conversion tables used by input processor of TEX or used during output to the terminal,
log and \write files. These tables are stored to the format files thus, they are reinitialized to the same state
as in time of \dump command when the format file is read.

This extension is fully tested and it passes the TRIP test with only two differences:

• The banner is different
• The number of “multiletter control sequences” is greater by eight.

1.1. The installation

For install instructions of encTEX – read the INSTALL.eng file.

1.2. Versions

I released the first version of encTEX in 1997. This version was able to do the byte to byte conversion
only by xord and xchr vector and to assign the characters as “printable” (the \xordcode, \xchrcode and
\xprncode primitives).

I incorporated the possibility to multi-byte to one byte or control sequence conversion in December 2002
and January 2003. This version is called “Jan. 2003” and it adds five new primitives: \mubyte, \endmubyte,
\mubytein, \mubyteout and \specialout. They give a possibility to set the conversion from UTF-8 encoded
files.

1.3. The conflict with TCX tables

The both encTEX and TCX tables manipulates with the same data (xord and xchr vectors). It means that
the conflict may be occur. This was a reason why I took back the encTEX after the TCX tables renovation
was released in 1998. But TCX are not able to convert from UTF-8 so I upgraded my encTEX in 2002 and
I am propagate it again.

Attention: If you are using encTEX then the TCX tables are ignored even if the *.tcx file is given in
-translate-file option. The encTEX is implemented only in tex.ch file but TCX are in additional C
sources. We are working on possibility of cooperating of the encTEX and TCX tables.

1.4. The TEX license

The encTEX adds the new primitives into TEX so, we cannot call the resulting program by name TEX.
On the other hand D. Knuth assumed that TEX internals are filtered always from system dependences. This
was a reason why he implemented xord/xchr vectors in TEX. D. Knuth assumed that the parameters of filter
from system dependences is set at source code level. EncTEX only moves this setting from source code level
to the runtime level. This is nothing new: the TEX memory parameters are possible to set at runtime in
modern TEX distributions too. You can set the conversion tables depend on your system. Then you can say
\let\xordcode=\undefined etc. (the same for other encTEX primitives) and you can do \dump. The format
has the conversion tables stored by the system specifications and the user cannot do any more changes. The
using of this format acts the same as the using the original TEX.

I think that the second line on the terminal and log file is sufficient information about the fact that the
program is a modified version of TEX. I think that if the UTF-8 encoding will be used more common then
there is no another way than to modify the input processor of TEX otherwise the 8bit TEX will dead in short
time.

It is important to say that encTEX has the same default behavior as the original TEX if the new primitives
are never used.

IMHO, the new web2c TEX is not exactly the TEX too because you can change its behavior by writing %&
at the first line of the document. This feature is not documented in Computers & Typesetting series.

3

2. The byte per byte conversion

2.1. The xord and xchr vectors

All text inputs into TEX are mapped by xord vector in input preprocessor (the eyes in TEXbook termi-
nology). If the character has the code x in your system, the same character has the code y = xord[x] in
TEX.

All text outputs from TEX to terminal, log file and files managed by \write primitive are filtered by xchr
vector and by “printability” feature of the character. If the character with code y is not “printable”, then it
outputs by ^^code notation (documented in TEXbook, page 45). If the character with code y is “printable”
then the output code of this character on terminal and text files is z = xchr[y].

2.2. The new primitives with the access to the xord and xchr vectors

The encTEX extension introduces three new primitives with the same syntax as \lccode:

• \xordcode i ... is xord[i]
• \xchrcode i ... is xchr[i]
• the character with the code i is “printable” (not ^notation on terminal and the log is used) iff

(\xprncode i > 0) or (i ∈ {32, ..., 126}).

All setting to \xordcode, \xchrcode and \xprncode are possible in 0...255 range and are global every
time. It means that the setting inside group are global and it is irrelevant if you write \global prefix or you
do not.

The initial values at iniTEX state of the mentioned vectors are:

• \xordcode i = i for i ∈ {128...255},
• \xchrcode i = i for i ∈ {128...255},
• \xprncode i = 0 for i ∈ {0...31, 127...255},
• \xprncode i = 1 for i ∈ {32...126}.

The \xordcode i and \xchrcode i for i ∈ {0...127} are system dependent, but on systems with ASCII
encoding holds: \xordcode i = i, \xchrcode i = i.

3. The multi-byte conversion
Since version Dec 2002, the encTEX is able to convert more bytes to one byte or control sequence on input

processor level. This “one byte” is converted back to the original “more bytes” when \write is processed
or TEX outputs to the terminal or log file. The main reason of this extension of TEX is to serve to work
with the UTF-8 encoded input files: we need to assign the \catcodes, \uccodes etc. to the letters in our
alphabet but some letters are encoded in two bytes in UTF-8. The encTEX is able to map other codes from
UTF-8 to control sequences thus, the number of UTF-8 codes from input file examined by TEX is unlimited.

There are four new primitives to manage the conversion: \mubytein, \mubyteout, \mubyte, \endmubyte.
The \mubytein and \mubytout are integer registers with zero value by default: it means that no conversion
is processed even if the conversion table (created by \mubyte, \endmubyte) is non empty. If \mubytein is
positive then the conversion on input processor level is performed by the conversion table. If \mubyteout
is positive then the conversion for output to the \write files, the log file and the terminal is activated by
the same conversion table. The conversion table is empty by default and you can add the new line into this
table by the couple of \mubyte, \endmubyte primitives:

\mubyte 〈first token〉〈one optional space〉〈optional prefix 〉〈byte sequence〉\endmubyte

Each 〈byte sequence〉 will be converted to the 〈first token〉 at input processor level. There are two possi-
bilities for 〈first token〉: it may be a character or a control sequence. If the 〈first token〉 is a character then
the catcode of it is ignored and the 〈first token〉 is interpreted as a 〈byte〉. This 〈byte〉 is converted back to
the 〈byte sequence〉 in \write files, log file and terminal.

If the 〈first token〉 is a control sequence then the 〈byte sequence〉 is converted to this control sequence
at input processor level to the “one token” form. It means that the token processor never changes this

4

control sequence. The token processor stays in middle line state after this control sequence is scanned. If
\mubyteout<2 then the output is not converted back to the 〈byte sequence〉 and the control sequence is
expanded as usual. If \mubyteout>=2 then the control sequence declared by \mubyte is converted back
to the 〈byte sequence〉 in \write parameters. This works only if the control sequence is not expanded. It
means that the control sequence have to be non expandable or it have to be marked by \noexpand. If
\mubyteout>=3 then encTEX suppresses the expansion of control sequences declared by \mubyte automati-
cally. See section 3.7 for more details.

The syntax and meaning of 〈optional prefix 〉 will be explained in section 3.4.

3.1. The conversion table manipulation

The data are stored into conversion table as a global assignment. On the other hand the assignment to
\mubytein and \mubyteout registers are local as usually.

The \mubyte, \endmubyte primitives work very similar as a well known \csname, \endcsname pair. The
difference is that the 〈first token〉 is not expanded and that this token can be followed by 〈one optional space〉
(after expansion). The 〈byte sequence〉 is scanned with the full expansion. If the other non expandable control
sequence than \endmubyte occurs during this process then the error message is printed:

! Missing \endmubyte inserted.
\begtt

The "\mubyte" is not performed on the expand processor level: it is a
assign primitive. If you write

\begtt
\edef\a{\mubyte X ABC\endmubyte}

then the macro \a includes the \mubyte X ABC\endmubyte tokens.
Examples:

\mubyte ^^c1 ^^c3^^81\endmubyte % \’A
\mubyte ^^e1 ^^c3^^a1\endmubyte % \’a
% etc. -- the UTF8 implementation

\mubyte \endash ^^c4^^f6\endmubyte % the mapping to the control sequence
\mubyte \integral INT\endmubyte % the illustrative example, see below

\mubytein=1 \mubyteout=1 % conversions are activated here

\def\endash {--} % this is good definition for \write files too
\def\integral {\ifmmode \int\else \int\fi}

We have written more spaces (or tabs) in 〈one optional space〉 in this example because these characters
have the catcode of the space and the token processor converts them to right 〈one optional space〉.

The word “INTEGRAL” is converted to the token \integral followed by the letters “EGRAL” if the example
code is used. The text “INT something” is converted to the token \integral followed by space and the
word “something”. You can write the following constructions: \defINT{something}, \let INT=\foo, etc.
If the \integral is undefined control sequence then the error message is printed if you write the “INT”. The
error message has a peculiar form:

! Undefined control sequence.
l.13 this is a INT

EGRAL.

You can type \show INT with the following answer:

> \integral=undefined.
l.13 \show INT

5

and \string INT expands to the text: \integral.
Assume the INT declaration from the previous example and assume that you write \INT. What happens?

Strictly speaking, the empty control sequence (\csname\endcsname) followed by \integral control sequence
would be the output from the token processor. But there is an exception in encTEX because to avoid the
confusion with the empty control sequences. The \INT produces only the control sequence \integral, the
backslash is ignored in this situation. The token processor stays in middle state after \INT is scanned, the
letter can follow immediately.

3.2. The features of the conversion process

The input is converted immediately after \mubytein is set to the positive value; it means the conversion
may start at the same line where the \mubytein setting occurs.

The 〈byte sequence〉 is converted only if the whole 〈byte sequence〉 is included in the one line. The
\endlinechar character can be the last part of the 〈byte sequence〉.

The sequence ^^c3^^81 is not converted to the letter Á even if the code from the example was used. The
reason is that the ^^ conversion is done in token processor after the \mubyte conversion.

The \xordcode conversion is performed before \mubyte conversion in input side and the \xchrcode
conversion is done after \mubyte conversion during output to the files or to the terminal. The following
diagram shows the sequence of the conversions:

input text -> \xordcode -> \endlinechar appended ->
\mubyte -> token processor -> expand processor ...

\write argument -> expand processor -> \mubyte -> \xchrcode -> output

The converted 〈byte sequence〉 is not converted to the ^^ form during output to the file even if the
\xprncode of the bytes from 〈byte sequence〉 is zero. The 〈byte sequence〉 is not converted again even if
there exist a character in it which is normally converted by another rule in conversion table.

There exists an exception from output conversion process to the log file and to the terminal. If the
complete line from input is reprinted to the log or to the terminal and if \mubytein is positive then there
is no conversion of such line on input side nor back on output side. This line is reprinted byte per byte in
the same form. Only \xchrcode followed by \xordcode conversion is active. The conversion to ^^aa form
is deactivated in this situation even if \xprncode is zero. This exception concerns to the error messages
where the place of the problem is shown on the terminal and log file by printing the actual line and splitting
it to two parts. This exception does not concern to any \write or \message output. Arguments of these
commands are always expanded, translated by \mubyte conversion table and translated by \xchrcode.

3.3. Controversial records in conversion table

Let exist two or more 〈byte sequences〉 in the conversion table which are equal or which have the same
begin part and one sequence is a subsequence of the second. Then the precedence has the last occurrence of
such 〈byte sequences〉 in the conversion table and all others are ignored. Example:

\mubyte X ABC\endmubyte
{\mubytein=1 the ABC is converted to X}
\mubyte Y ABCDE\endmubyte
\mubyte W ABFG\endmubyte
{\mubytein=1 now, the ABC stay unchanged and ABCDE is converted to Y

and ABFG is converted to W}
\mubyte Z AB\endmubyte
{\mubytein=1 now, the ABCDE is converted to ZCDE}

This convention servers the possibility of removing all lines from conversion table with the same first byte
in 〈byte sequence〉. It is sufficient to do it if you write the next line to conversion table with the one byte
length of 〈byte sequence〉 and with the same 〈first token〉 as this 〈byte sequence〉. For example:

\mubyte A A\endmubyte

6

removes all lines from conversion table with the 〈byte sequence〉 beginning by the letter A. If 〈first token〉
is equal to 〈byte sequence〉 then \mubyte primitive really clears the lines with 〈byte sequence〉 beginning by
〈first token〉 from the conversion table and frees the main memory of TEX where these data are stored. In
all other cases, \mubyte primitive only adds the new line into conversion table.

The following code clears the whole conversion table:

{\catcode‘\^^@=12
\gdef\clearmubytes{\bgroup \count255=1

\loop \uccode‘X=\count255
\uppercase{\mubyte XX\endmubyte}%
\advance\count255 by1
\ifnum\count255<256 \repeat

\mubyte ^^@^^@\endmubyte
\egroup}

}
\clearmubytes

3.4. Input and output sides of the conversion table

The conversion table consists from two independent parts: input side used by input processor and output
side used during \write or printing to the log and terminal. You can save the record only to one of this parts
by using the nonempty 〈optional prefix 〉. If the 〈optional prefix 〉 is empty then the same record is stored
twice: into input and output sides. If 〈optional prefix 〉 is a token of catcode 8 (usually the _ character) then
the record is stored only into input side . If 〈optional prefix 〉 is a pair of tokens catcode 8 (usually __) then
the record is stored only into output side.

If the optional prefix has a form of __ then the following 〈byte sequence〉 can be empty. EncTEX removes
the record corresponding to the 〈first token〉 from output side in such situation.

The macro code for clearing the conversion table from previous section clears all records from input side
but only the records concerned to the 〈first token〉 in “one byte form” from output side. You can remove
the record concerned to control sequence from output side only by \mubyte \foo __\endmubyte.

3.5. Inserted control sequences

If the 〈first token〉 is the control sequence and the 〈optional prefix 〉 is one token of catcode 6 (usually the
character) then the 〈byte sequence〉 is kept by input processor and only the declared control sequence is
inserted before 〈byte sequence〉. The example of usage:

\mubyte \warntwobytes #^^c3^^80\endmubyte
\mubyte \warntwobytes #^^c3^^82\endmubyte
\mubyte \warntwobytes #^^c3^^83\endmubyte
% etc...
\def\warntwobytes #1#2{\bgroup\mubyteout=0

\message{WARNING: the UTF-8 code: #1#2 is not defined i my macros.}
\egroup}

If \mubytein=1 and if the control sequence is inserted before 〈byte sequence〉 then the 〈byte sequence〉 is
kept absolutely. It means no part of 〈byte sequence〉 is converted again. On the other hand, if \mubytein>1
then the parts of 〈byte sequence〉 can be converted by other rules given in conversion table:

\mubyte \foo #ABC\endmubyte \mubyte X BC\endmubyte
\mubytein=1 ABC is converted to \foo ABC
\mubytein=2 ABC is converted to \foo AX

3.6. The virtual start line mark

If \mubytein>0 and if the first byte in 〈byte sequence〉 is equal to \endlinechar (it means 〈byte sequence〉
has a format 〈endlinechar〉〈rest〉) then input processor checks the matching of the 〈rest〉 with the begin of
every line. If it matches then the given conversion is done. The example:

7

\bgroup \uccode‘X=\endlinechar \uppercase{\gdef\echar{X}}\egroup
\mubyte \fooB \echar ABC\endmubyte % ABC matches at begin of line
\mubyte \fooE ABC\echar \endmubyte % ABC matches at end of line
\mubyte \fooW \spce\space ABC\space \endmubyte

% ABC matches as a word with spaces before and after
\mubyte \foo #\echar XYZ\endmubyte %

% if XYZ is at begin of line the \foo is inserted before them

3.7. The suppression of the expansion in write parameters

If you need to convert the control sequences back to its 〈byte sequences〉 then the expansion of such control
sequences is not welcome. You can suppress the expansion by \let\macro=\relax before \write starts the
expansion of its parameter. But \write works asynchronously in most situations and you can manipulate
with hundreds or thousands control sequences declared as UTF-8 codes. The encTEX serves a simple tool
to solve this problem: If \mubyteout>=3 then encTEX gives the \relax meaning to each control sequence
declared in output side of the conversion table before the \write starts its expansion and it returns back
these control sequences to their original meaning immediately after \write finish its work. Example:

\mubyte \foo ABC\endmubyte \def\foo{macro body}
\mubyteout=2
\immediate\write16{testwrite: \foo} % prints "testwrite: macro body"
\immediate\write16{testwrite: \noexpand\foo} % prints "testwrite: ABC"
\mubyteout=3
\immediate\write16{testwrite: \foo} % prints "testwrite: ABC"
\message{testmessage: \foo} % prints "testmessage: macro body"
\message{testmessage: \noexpand\foo} % prints "testmessage: \foo"
\edef\a{testedef: \foo} % expands to macro body
\foo % expands to macro body
\immediate\write16{\meaning\foo} % prints "\relax"
\message{\meaning\foo} % prints "macro:->macro body"

Note the difference between \message and \immediate\write16. The control sequences in \message
parameter are always expanded and never converted to the 〈byte sequence〉.

You can set the “noexpand” flag (for \write parameters only) to any 〈control sequence〉 and you need not
declare the 〈byte sequence〉 for it. Write \mubyte 〈control˙sequence〉 \relax \endmubyte for this purposes.
This has the same effect as \mubyte 〈control sequence〉 __\string 〈control sequence〉\space\endmubyte,
but this second solution is more memory consuming because TEX have to store the 〈byte sequence〉 as a
string to the pool.

3.8. The asynchronous write command and the mubyteout value

If you don’t use \immediate then the \write command first gets its parameter but it expands and prints
this parameter at another time. The \write command stores the actual value of the \mubyteout register
when it gets its parameter. This value is used late when parameter is expanded and written to the file.

This feature gives the possibility to write to more files, first (for table of contents, for example) is written
with conversion to UTF-8 and another files are written without this conversion, because (for example) this
file is an input for a program which cannot read the UTF-8 encoding. You can try:

\newwrite\tocfile \newwrite\indexfile
\immediate\openout\tocfile=\jobname.toc
\immediate\openout\indexfile=\jobname.idx
\mubyteout=3
\write\tocfile{this parameter will be converted to UTF-8}
{\mubyteout=0 \write\indexfile{this parameter stay unchanged}}
\write\tocfile{this parameter will be converted to UTF-8}
\end % now, all three writes are actually done

8

3.9. Summary of the mubyteout values

Apart from the values 0, 1, 2 and 3, you can set the \mubyteout register to the value −1 or −2. The
summary table of meanings of these values follows:

\mubyteout 〈byte〉->〈byte sequence〉 〈cs name〉->〈byte sequence〉 noexpanding
--

0 off off off
1 on off off
2 on on off
3 on on on
-1 on off on
-2 off off on

If the 〈byte〉->〈byte sequence〉 conversion is on then all texts written to the \rite files, log file and to the
terminal are converted. On the other hand, the 〈cs name〉->〈byte sequence〉 conversion and the noexpanding
are related only to the \write arguments (and the \special arguments, see the following chapter).

4. The arguments of the special primitive

The plain texts of non-english languages can occur in the \special arguments. The PDF-outlines are the
good example of this situation. May be, you need to save these arguments in UTF-8 encoding. The encTEX
gives the possibility to do it.

The argument of \special is processed by the value of the integer primitive register \specialout. This
register is introduced by encTEX and its default value is zero.

• \speialout=0 – no conversion.
• \speialout=1 – only the xchr conversion.
• \speialout=2 – only the \mubyteout conversion.
• \speialout=3 – the \mubyteout conversion followed by the xchr conversion.

The \special primitive expands its argument immediately. If \specialout is 2 or 3 then the expansion
is done by \mubyteout value in the same manner as during the \write expansion. Moreower, \special
saves the current values of \specialout and \mubyteout registers to its memory and use them at the time
of the output to the dvi file.

5. The macro files

The encTEX package includes some encoding tables inputted by \input during format generation. These
tables support encodings widely used in Czech texts. The more information about these macro files are in
comments of these files and in the Czech version of the documentation.

9

