
1
DBD::SearchServer

Version
Version 0.20.

This driver was previously known asDBD::Fulcrum .

Author and Contact Details
The driver author is Davide Migliavacca. He can be contacted via thedbi-usersmailing
list. Davide Migliavacca has no relationship with PCDOCS/Fulcrum, the maker of
SearchServer, and particularly no contact with product support for PCDOCS/Fulcrum
customers.

Supported Database Versions and Options
The DBD::SearchServer module supports PCDOCS/Fulcrum SearchServer, versions 2.x
thru 3.5.

Fulcrum SearchServer is a very powerful text-retrieval system with a SQL interface. You
should not expect to find a full-fledged SQL RDBMS here. Refer to the product docu-
mentation for details about the query language.

Connect Syntax
Under UNIX, you may specify where SearchServer will find the database tables by using
a set of environment variables: FULSEARCH, FULCREATE, and FULTEMP. So the
connect string is always just:

dbi:SearchServer:

1

19 May 1999

2 DBD::SearchServer

Under WIN32, you may use the fully qualified DSN syntax using the ODBC data source
name as the third component of the connect string:

dbi:SearchServer:DSN

There are no driver specific attributes for theDBI->connect() method.

Numeric Data Handling
SearchServer has two numeric data types: INTEGER and SMALLINT. INTEGER (or
INT) is an unsigned 32-bit binary integer with 10 digits of precision. SMALLINT is a
signed 16-bit binary integer with 5 digits of precision.

String Data Handling
SearchServer supports the following string data types:

CHAR(size)
VARCHAR(size)
APVARCHAR(size)

A CHAR column is of fixed size, whereas a VARCHAR column can be of varying length
up to the specified maximum size. If the size is not specified, it defaults to 1. The maxi-
mum size for a CHAR or VARCHAR column is 32,767.

APVARCHAR is a special data type. You can have at most one APVARCHAR column
per table; it is designed to contain the full text of the document to be indexed and it is
used in queries to retrieve the text. It is eventually modified to identify spots where the
query matched. The maximum length of the APVARCHAR column is 2,147,483,647.

The CHAR type is fixed length and blank padded to the right.

SearchServer has its own conversion functionality for national language character sets.
Basically it treats all text as being specified in one of three internal character sets
(FTICS). It is up to the application to use character sets consistently. The document read-
ers (software that is used by SearchServer to actually access documents when indexing)
are responsible for translating from other characters sets to FTICS. A number of ‘‘transla-
tion’’ filters are distributed with the product.

ISO Latin 1 (8859-1) is supported. See the Character Sets section of the SearchSQL Ref-
erence manual for more details on character set issues.

Date Data Handling

19 May 1999

SearchServer supports only a DATE data type. A DATE can have any value from January
1, 100 AD to December 31, 2047 AD with one day resolution. Rows in tables have an
automatic read-only FT_TIMESTAMP column with a better resolution, but it is not of a
DATE type (it is an INTEGER). Also, only date literals can be used with DATE columns.

The date format isYYYY-MM-DD(ISO standard). There are provisions for other formats but
their use is discouraged.

Only the ISO date format is recognized for input.

If a two digit year value is entered, then 1900 is added to the value. However, this isn’t
supported functionality, for good reason.

No date time arithmetic or functions are provided and there is no support for time zones.

LONG/BLOB Data Handling
The APVARCHAR type can hold up to 2 gigabytes.

LongReadLenand LongTruncOkare ignored due to very different semantics of the
APVARCHAR type.

You need to use the undocumentedblob_read() method to fetch data from an APVAR-
CHAR column. Inserting an APVARCHAR column happens indirectly by specifying an
external document in the FT_SFNAME reserved column. Document data is not really
inserted into the tables, it is indexed. Later, howev er, you can fetch the document select-
ing the APVARCHAR column.

Other Data Handling issues
TheDBD::SearchServer driver does not support thetype_info() method.

Transactions, Isolation and Locking
DBD::SearchServer does not support transactions.

Locking is performed based on the characteristics of the table, set at creation time or
modified later with an external utility,ftlock .

By default, ROWLOCKING is applied, which applies ‘‘transient’’ locks during normal
operations including select, searched update, and delete. These locks should not prevent
reading the affected rows, but will block additional concurrent modifications, and prevent
reindexing of the locked rows.

If set to NOLOCKING, no locking will be performed on that table by the engine, mean-
ing data integrity is left for the application to manage. Please read the docs carefully
before playing with these parameters; there is additional feedback with the PERIODIC or
IMMEDIATE indexing mode.

DBD::SearchServer 3

19 May 1999

4 DBD::SearchServer

Rows returned by a SELECT statement can be locked to prevent them from being
changed by another transaction, by appending ‘‘FOR UPDATE’’ to the select statement.

There is no explicit table lock facility. You can prevent a tableschemabeing modified,
dropped or even reindexed using ‘‘PROTECT TABLE’’, but this does not include row-
level modifications which are still allowed. ‘‘UNPROTECT TABLE’’ restores normal
behavior.

No-Table Expression Select Syntax
It is not possible to select constant expressions. Only table fields can be selected.

Table Join Syntax
SearchServer does not really supports joins, but two different mechanisms are there to
emulate at least some of the functionality. They all require planning ahead, though, since
participating tables will have at least part of their schemas in common (column defini-
tions).

First, you have a UNION clause for SELECT statements. Using UNION you can group
different tables even on different servers. Tables must have all the columns in a query
defined in a similar manner when created.

Second, you have ‘‘views.’’ With views, tables must be located on the same node and
have the same schema. Only read-only access is granted with views, and they hav e to be
described using a special syntax file. Please refer to the ‘‘Data Administration and Prepa-
ration’’ manual for more information on views, and ‘‘SearchSQL Reference’’ for a com-
parison between views and UNION.

Table and Column Names
Letters, numbers, and underscores (_) are valid characters in identifiers. The maximum
size of table and column names is not known at this time.

SearchServer converts all identifiers to upper-case. Table and column names are not case
sensitive. National characters can be used in identifier names.

Case Sensitivity of LIKE Operator
The LIKE operator is not case sensitive.

Row ID

19 May 1999

The SearchServer ‘‘row id’’ pseudocolumn is called FT_CID and is of the INTEGER data
type. FT_CID can be used in a WHERE clause, but only with the= operator.

Automatic Key or Sequence Generation
SearchServer does not support automatic key generation such as ‘‘auto increment’’ or
‘‘system generated’’ keys. The FT_CID, however, is not reissued when rows are deleted.

There is no support for sequence generators.

Automatic Row Numbering and Row Count Limiting
There is no pseudocolumn that sequentially numbers the rows fetched by a select state-
ment.

Parameter Binding
Parameter binding is emulated by the driver. Both the? and:1 style of placeholders are
supported by the driver emulation.

The TYPE attribute tobind_param() is ignored, so no warning is generated for unsup-
ported values.

Stored Procedures
There are no stored procedures or functions in SearchServer.

Table Metadata
DBD::SearchServer supports thetable_info() method.

The COLUMNS ‘‘system table’’ contains detailed information about all columns of all
the tables in the database, one row per column. You can tell if a row can contain NULLs
via the NULLABLE column on the COLUMNS system table.

The COLUMNS system table uses the INDEX_MODE column to identify indexed
columns and which indexing mode is used for them.

There are no keys in a SearchServer table.

Driver-specific Attributes and Methods

DBD::SearchServer 5

19 May 1999

6 DBD::SearchServer

DBD::SearchServer has no driver-specific database handle attributes. It does have one
driver-specific statement handle attribute:

ss_last_row_id

This attribute is read-only and is valid after an INSERT, DELETE or UPDATE state-
ment. It will report the FT_CID (row ID) of the last affected row in the statement.
You’ll have to prepare/execute the statement (as opposed to simplydoing it) in order
to fetch the attribute.

There are no private methods.

Positioned updates and deletes
Positioned updates and deletes are supported using the ‘‘WHERE CURRENT OF’’ syn-
tax. For example:

$dbh->do("UPDATE ... WHERE CURRENT OF $sth->{CursorName}");

Differences from the DBI Specification
None known.

URLs to More Database/Driver Specific Information
http://www.pcdocs.com

Concurrent use of Multiple Handles
DBD::SearchServer supports an unlimited number of concurrent database connections to
the same server. It also supports the preparation and execution of a new statement handle
while still fetching data from another statment handle associated with the same database
handle.

19 May 1999

