19 May 1999

DBD::lllustra

\ersion
Version 0.03.

Author and Contact Details

The driver author is Peter Haworth. He can be contacted vidhihgsersmailing list,
although direct mail tpmh@edison.ioppublishing.cdmlikely to be read more quickly.

Supported Database Versions and Options

The DBD:lllustra module supports lllustra version 3.3.1. Other versions may be sup-
ported.

Connect Syntax
TheDBI->connect) Data Source Name, @SNmust be in the following format:
dbi:lllustra:dbname

There are no driver-specific attributes for fi@é>connect) method.

Numeric Data Handling

lllustra supports the following numeric data types:

INT1 - 1 byte signed integer

SMALLINT - 2 byte signed integer

INTEGER - 4 byte signed integer

NUMERIC - fixed point number, precision=15, scale=0
NUMERIC(p) - fixed point number, precision=p, scale=0
NUMERIC(p,s) - fixed point number, precision=p, scale=s
DECIMAL - NUMERIC

2 DBD::lllustra

DECIMAL(p) - NUMERIC(p)
DECIMAL(p,s) - NUMERIC(p,s)
REAL - single precision floating point number

DOUBLE PRECISION - double precision floating point number

There appears to be no limit on either the precision or scale of NUMERIC and DECI-
MAL types, except that neither may be negative and the scale may not be less than the
precision.

DBD:lllustra always returns all numbers as strings, so it supports numbers outside the
valid range for Perl numbers.

String Data Handling

lllustra supports the following string data types:
CHAR1 - single character
CHAR(size) - fixed length string
CHARACTER(size) - fixed length string
VARCHAR(size) - variable length string
TEXT - variable length string, up to 8KB
LARGE_TEXT - text, may be greater than 8KB

The 8KB mentioned alve isthe size of a page in lllustra. The combined size of all data
in a single row may not exceed the page size. The LARGE_TEXT type uses a large
object held outside the page to store the data.

CHAR and VARCHAR types don't appear to have a size limit other than the page size.
The CHAR and CHARACTER types are fixed length and blank padded.

lllustra doesn’t seem to notice or care when the 8th bit is set. The 8th bit is preserved as
entered. Unicode UTF-8 strings can be stored but strings with embedded NUL characters
can't.

Strings can be concatenated using|theperator.

Date Data Handling

lllustra supports the SQL2 datetime data types and intervals:

DATE - single day resolution, from 1 AD to 9999 AD
TIME - one second resolution, from 00:00:00 to 23:59:61
TIME(p) - p digits of fractional seconds (max 8 digits)
TIMESTAMP - microsecond resolution, from 1 AD to 9999 AD

TIMESTAMP(p) - p digits of fractional seconds (max 8 digits)

The TIME, TIME(p), TIMESTAMP(p) andTIMESTAMP(p) types all accept a “WITH TIME
ZONE" modifier.

19 May 1999

19 May 1999

DBD::lllustra 3

The default output formats for datetime types are:

DATE YYYY-MM-DD

TIME HH:MM:SS[.NNNNNNNN]

TIME WITH TIME ZONE HH:MM:SS[.NNNNNNNN}+HH:MM
TIMESTAMP YYYY-MM-DD HH:MM:SS[.NNNNNNNN]

TIMESTAMP WITH TIME ZONE YYYY-MM-DD HH:MM:SS[.NNNNNNNNJ+HH:MM

The default output format cannot be changed. Note that the timezone offsets may be neg-
ative (HH:MM) as well as positive.

Individual components of dates and times may be extracted using the EXTRACT func-
tion: EXTRACT(field FROM date_value) , Wherefield may be one of YEAR, MONTH,
DAY, HOUR, MINUTE, SECOND, TIMEZONE_HOUR, or TIMEZONE_MINUTE.

The default input formats for all the @ke types are the same as the output format. Only
those formats are recognized. Literal values must be quoted. All parts of dates and times
must be specified. So two digit years, for example, are not permitted.

To get the correct date and time, the literal sthingg may be type cast to any of the
abovetypes using a “::type” notation:

‘now’::date

‘now’::time

'now’: timestamp

Functions are also available:

current_date

current_time
current_time(precision)
current_timestamp
current_timestamp(precision)

For DATE, the two methods are equivalent. However, for TIME and TIMESTAIAR,
does not include the timezone, whereasctivent *() functions do. If an integer argu-
ment is passed to thament *() functions, it indicates the number of digits of frac-

tional seconds to display. The default forrent time() is 0, with a maximum of 8.
The default forurrent_timestamp() is 6, with a maximum of 8.

lllustra supports the SQL2 datetime data types and intervals:

INTERVAL start[(p1[,p2])] [TO end[(p3)]

The following interval qualifications are possible:

YEAR, YEAR TO MONTH,

MONTH,

DAY, DAY TO HOUR, DAY TO MINUTE, DAY TO SECOND,
HOUR, HOUR TO MINUTE, HOUR TO SECOND,

MINUTE, MINUTE TO SECOND,

19 May 1999

4 DBD::lllustra

SECOND

Wherepl specifies the number of digits specified in the value, with a maximum of 10 and
a default of 2p2 andp3 specify the number of digits specified in fractional seconds, with
a maximum of 8 and a default of 0.

Literal interval values may be specified using the following syntax:
INTERVAL value start{(p1,[p2])] [TO end[(p3)]]
e.g.:

INTERVAL 2 DAY
INTERVAL ‘02:03 HOUR TO MINUTE
INTERVAL *12345:67.891' MINUTE(S) TO SECOND(3)

A full range of operations can be performed on dates and inteevglsgatetime-date-
time=interval, datetime+interval=datetime, interval/number=interval.

The following SQL expression can be used to convert an integer “seconds since
1-jan-1970 GMT” value to the corresponding database date time:

‘epoch’:ABSTIME: TIMESTAMP + INTERVAL seconds_since_epoch SECOND(10)

The following SQL expression can be used to go the other way, to convert a database date
time value into a “seconds since 1-jan-1970 GMT” value:

(date_time_field - 'epoch’::ABSTIME:TIMESTAMP) INTERVAL SECOND(10)

No time zone adjustments are perfomed on values of TIME WITH TIME ZONE or
TIMESTAMP WITH TIME ZONE data types. Their time zones are output as they were
entered.

Normal TIME and TIMESTAMP values are treated as being in the current time zone of
the current client. They are converted to GMT when stored in the database and converted
back to the current clients time zone when fetched. For example:

CREATE TABLE tz_demo (loctime TIME, tztime TIME WITH TIME ZONE),

SET TIME ZONE INTERVAL "3:00' HOUR TO MINUTE;
INSERT INTO tz_demo VALUES('12:40:00',"12:40:00+03:00);

SELECT * FROM tz_demo;
locime tztime
12:40:00 12:40:00+03:00

SET TIME ZONE INTERVAL '0:00' HOUR TO MINUTE;
SELECT * FROM tz_demo;

locime tztime

09:40.00 12:40:00+03:00

19 May 1999

DBD::lllustra 5

LONG/BLOB Data Handling
lllustra supports the following large object types:

LARGE_OBJECT - Binarylarge object
LARGE_TEXT - Large object masquerading as normal text
EXTERNAL FILE - Locator for external large binary file

The maximum size of large objects is not documented but is probably 4GB. None of the
types are passed to and from the database as pairs of hex digits.

TheLongReadLemandLongTruncOlattributes are untested as yet.

The bind_param() method is currently unsupported BRD:llustra , SO these types
must be input as literal string values. Fortunately, Illustra accepts very long SQL state-
ments (over 100KB).

Direct support for large objects is currently under development. LARGE_TEXT fields
may be treated just like any other fields, but LARGE_OBJECT fields and EXTER-
NAL_FILE fields currently need to be accessed with IllustralsToLO() and
LOToFile() SQL functions.

Other Data Handling issues

The DBD:lllustra driver does not currently support tlyge info() method. This is
under development, but lllustra doesn’t generally provide enough information to make
this particularly useful.

lllustra automatically converts dates to strings, strings to dates, and strings to numbers,
but numbers must be explicitly converted to strings:

INSERT INTO foo (hum_field, str_field) VALUES ('42', 42::text)

Transactions, Isolation and Locking

lllustra andDBD:lllustra support transactions. The default transaction isolation level is
Serializable.

lllustra supports all four standard isolation levels: Serializable, Repeatable Read, Read
Commited, and Read Uncommited. The level be changed per-transaction by executing a
SET TRANSACTION ISOLATION LEVEL x statement whera is the name of the isolation

level required.

The default locking behavior is for readers to block writers.

Rows returned by a SELECT statement can be locked to prevent them from being
changed by another transaction, by including “LOCK=EXCLUSIVE" or
“LOCK=UPDATE" in the optimizer hints for a given table:

19 May 1999

6 DBD::lllustra

SELECT * FROM xyz USING(LOCK=UPDATE) WHERE xid = 'abc’

Exclusive locks provide less concurrency, but update locks must be upgraded to exclusive
when updates are required. This can cause deadlock if another transaction has acquired a
read lock in the meantime.

There doesn’'t seem to be any way to explicitly lock a table other than by issuing a
dummy SELECT statement with a LOCK=EXCLUSIVE hint as above.

No-Table Expression Select Syntax

To select a constant expression (one that doesn'’t involve data from a database table or
view), you must use “RETURN?” rather than “SELECT".

$dbh->prepare('RETURN 'now’::date");

Table Join Syntax

lllustra does not appear to support outer joins, but normal, inner joins are supported with
the standard syntax.

Table and Column Names

The maximum size of table and column names appears to be 212 characters. The first
character must be a letter, but the rest can be any combination of letters, numerals and
underscores ().

However, if an lllustra identifier is enclosed by double quotation majké €an contain
any combination of characters, including spaces. Double quotes in identifier names must
be escaped with another double quote,"doghle™quote”

Identifiers are stored as entered. All identifiers are case sensitive. National character set
characters can be used if enclosed in double quotation marks.

Case Sensitivity of LIKE Operator
The lllustra LIKE operator is case sensitive.

TheUPPERfunction can be used to force a case insensitive maighPPER(name) LIKE
TOM% (although that does prevent lllustra from making use of any index on the name
column to speed up the query).

Row ID

19 May 1999

DBD::lllustra 7

The lllustra “row ID” pseudocolumn is calledid. lllustra oid's look like “2d52.2001".
Oid's can be treated as a string and used to rapidly (re)select rows.

Automatic Key or Sequence Generation

lllustra does not support automatic key generation such as “auto increment” or “system
generated” keys.

It also doesn’t offer sequence generators.

Automatic Row Numbering and Row Count Limiting

lllustra does not support any way of automatically numbering returned rows.

Parameter Binding

Parameter binding is not supported by lllustra. Emulation by the driver is under develop-
ment.

Stored Procedures

The closest match to stored procedures that Illustra supports is user defined functions.
These may be used just like system defined functions in SELECT or RETURN state-
ments:

$sth = $dbh->prepare('RETURN foo(bar)');

$sth->execute;
@result = $sth->fetchrow_array;

Table Metadata

DBD:lllustra supports thetable_info() method. However, since the information
comes from lllustra’s “tables” tableable_info() will only return useful information if
“tables” is readable. By default, only the DBA has access to “tables”.

The “columns” table contains detailed information about all columns of all the table in
the database, one row per table. However, the same access restrictions described above
for the “tables” table will probably apply.

The “tables” and “columns” tables contain information about indexes as well as normal
tables. Useablestable kind=" for index tables (and for normal tables).

The tablestable_unique field holds an array of column numbers. Each unique con-
straint, including the primary key, is held as a -1 terminated list of column numbers. The
primary key is always the first list, even if it is not present.

19 May 1999

8 DBD::lllustra

(no constraints) >

primary key(c1,c2) > [1,2-1]
primary key(cl,c2),unique(cl,c3) -> [12-1,13-1]
unique(cl,c3) > [1,13-]]

These arrays are returned as strings although you can retrieve individual elements instead
using SQL functions.

Driver-specific Attributes and Methods

DBD::llustra has no significant driver-specific handle attributes or private methods.

Positioned updates and deletes

lllustra supports positioned updates or deletes in cursors that have been explicitly created
and opened FOR UPDATE. For example:

$dbh->do("'DECLARE curl CURSOR FOR SELECT * FROM tabl FOR UPDATE");
$dbh->do("OPEN curl");
$sth = $dbh->prepare("FETCH NEXT FROM curl”);
while ($sth->execute && $row = $sth->fetchrow_arrayref) {
$dbh->do("UPDATE tabl SET col2="zyx' WHERE CURRENT OF curl");
}

The statements must all occur in the same transaction:

Differences from the DBI Specification

DBD::llustra does not currently support parameter binding, but does not have any other
significant differences in behavior from the current DBI specification.

URLSs to More Database/Driver Specific Information

The lllustra database is being absorbed into the Informix database after Informix bought
the company. Since lllustra is no longer being developed or supported, it's a bit hard to
find online information.

Concurrent use of Multiple Handles
DBD:lllustra supports 32 concurrent database connections to one or more databases.

It also supports the preparation of a new statement handle while still fetching data from
another statement handle associated with the same database handle. However, only one
statement handle per database handle may be executing concurrently. So you can prepare
a new one but not execute it. This applies to all statements, whether DML or DDL.

