Internet-Draft | Green Challenges in Cats | June 2023 |
Wang & Fu | Expires 23 December 2023 | [Page] |
As mobile edge computing networks sink computing tasks from cloud data centers to the edge of the network, tasks need to be processed by computing resources close to the user side. Therefore, CATS was raised. Reducing carbon footprint is a major challenge of our time. Networks are the main enablers of carbon reductions. The introduction of computing dimension in CATS makes it insufficient to consider the energy saving of network dimension in the past, so the green for CATS based on network and computing combination is worth exploring. This document outlines a series of challenges and associated research to explore ways to reduce carbon footprint and reduce network energy based on CATS.¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 23 December 2023.¶
Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
With the continuous development and progress of the Internet, a large amount of computing resources is required to complete data processing. In order to disperse the pressure of cloud data centers, computing power gradually moves from the center to the edge, forming scattered computing resources in mobile networks. In order to make full use of scattered computing resources and provide better services, Computing-Aware Traffic Steering (CATS) is proposed to support steering the traffic among different edge sites according to both the real-time network and computing resource status as mentioned in [I-D.yao-cats-ps-usecases] and [I-D.yao-cats-gap-reqs]. It requires the network to be aware of computing resource information and select a service instance based on the joint metric of computing and networking.¶
Green has become a global topic. The United Nations and the vast majority of governments agree that climate change and the need to curb greenhouse gas emissions are the major challenges of our time. Therefore, improving energy efficiency and reducing electricity consumption are becoming increasingly important for society and many industries. The networking industry is no exception. The IETF conducted a study on the energy costs of the IETF meeting three times a year. The results showed that it was found that 99% of energy consumption came from air travel.¶
In addition, there are several papers that discuss green networks, and some work [I-D.cx-green-ps] summarizes the energy-saving possibilities that exist in the network. However, there is no discussion of joint optimization of green and energy savings with computing and networking. Therefore, this document outlines a series of challenges and related research to explore ways to reduce carbon emissions and reduce network energy based on CATS.¶
Considering energy savings in CATS creates challenges in the following aspects¶
Computing resource status is considered in Cats, so it is necessary to research the modeling of computing resource energy consumption in order to save energy. The energy consumption of the equipment is different when the load is different. For example, the energy efficiency of equipment is different when it is not loaded or at full load. Therefore, it is also a challenge to consider which factors to consider when modeling the energy consumption of computing resources.¶
On the one hand, the magnitude of computing energy consumption may be different from the magnitude of network energy consumption, and how to weigh the ratio of the two becomes a challenge when performing joint optimization.¶
On the other hand, the introduction of energy consumption may be accompanied by a compromise between user service experience, and how to save energy while ensuring user service experience is also a challenge when carrying out joint optimization.¶
The computing resources may be in the data center, edge computing nodes or others. In order to ensure the normal operation of network and computing equipment, the source of energy consumption is not only the equipment itself, but also some other equipment, such as :¶
Cool equipment : computing resources will emit heat into the air during operation. When the temperature is too high, the operation of the equipment will be affected. So refrigeration is required to reduce the temperature of the equipment to ensure that the equipment operates at a higher performance.¶
The normal running of computing resources are inseparable from the support of refrigeration equipment and other equipment. Therefore, when performing joint optimization of network and computing, the energy consumption generated by equipment other than network equipment and computing equipment should also be considered.¶
Recently, the document [I-D.cx-opsawg-green-metrics] gives some green networking metrics for network instrumentation to optimize the energy efficiency of the network. It divides the green metrics into four categories according to the subject of the metrics, as follows:¶
At the device/equipment level: The author considers three factors. The first are energy consumption metrics. Some of these metrics could be provided by the data sheet that comes with the device or could be measured simply in a lab, such as power consumption when idle, power consumption when fully loaded, power consumption at various loads and so on. The others are not fixed and need to be accounted according to the actual operation of the network equipment, such as current power consumption/kB (or gB), current power consumption/packet, power drawn since system started for the past minute and so on. The second is green metrics beyond energy consumption, Wich is related to the power source of the device and the environment in which the device is located. The third is related to network instrumentation virtualization. Nowadays, network instrumentation could be virtualized and hosted (for example) in data centers.¶
At the flow level: These metrics are related to flows, such as amortized energy consumed over the duration of the flow and Incremental energy consumed over the duration of the flow.¶
At the path level: These metrics can evaluate the energy consumption of paths and optimize these paths so that the overall footprint is minimized. The author gives some candidate metrics, such as energy rating of a path, current power consumption across a path and incremental power for a packet over a path.¶
At the network level: These metrics can reflect the energy usage of the entire network.¶
This document highlights the green challenges in Cats and summarizes the latest IETF work which is associated with green networking. As is well known, Cats not only considers network resource status, but also computing resource status. Therefore, energy consumption research of Cats can also consider both network and computing energy consumption from the device/equipment, path and network level.¶
TBD.¶
The authors would like to thank Alexander Clemm and Lijun Dong for their related work.¶