{-# OPTIONS_GHC -w #-}
{-# OPTIONS -XMagicHash -XBangPatterns -XTypeSynonymInstances -XFlexibleInstances -cpp #-}
#if __GLASGOW_HASKELL__ >= 710
{-# OPTIONS_GHC -XPartialTypeSignatures #-}
#endif
module Language.C.Parser.Parser (
parseC,
translUnitP, extDeclP, statementP, expressionP
) where
import Prelude hiding (reverse)
import qualified Data.List as List
import Control.Monad (mplus)
import Language.C.Parser.Builtin (builtinTypeNames)
import Language.C.Parser.Lexer (lexC, parseError)
import Language.C.Parser.Tokens (CToken(..), GnuCTok(..), ClangCTok (..), posLenOfTok)
import Language.C.Parser.ParserMonad (P, failP, execParser, getNewName, addTypedef, shadowTypedef, getCurrentPosition,
enterScope, leaveScope, getLastToken, getSavedToken, ParseError(..))
import Language.C.Data.RList
import Language.C.Data.InputStream
import Language.C.Data.Ident
import Language.C.Data.Name
import Language.C.Data.Node
import Language.C.Data.Position
import Language.C.Syntax
import qualified Data.Array as Happy_Data_Array
import qualified Data.Bits as Bits
import qualified GHC.Exts as Happy_GHC_Exts
import Control.Applicative(Applicative(..))
import Control.Monad (ap)
newtype HappyAbsSyn = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
happyIn7 :: (CTranslUnit) -> (HappyAbsSyn )
happyIn7 :: CTranslUnit -> HappyAbsSyn
happyIn7 x :: CTranslUnit
x = CTranslUnit -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CTranslUnit
x
{-# INLINE happyIn7 #-}
happyOut7 :: (HappyAbsSyn ) -> (CTranslUnit)
happyOut7 :: HappyAbsSyn -> CTranslUnit
happyOut7 x :: HappyAbsSyn
x = HappyAbsSyn -> CTranslUnit
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut7 #-}
happyIn8 :: (Reversed [CExtDecl]) -> (HappyAbsSyn )
happyIn8 :: Reversed [CExtDecl] -> HappyAbsSyn
happyIn8 x :: Reversed [CExtDecl]
x = Reversed [CExtDecl] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [CExtDecl]
x
{-# INLINE happyIn8 #-}
happyOut8 :: (HappyAbsSyn ) -> (Reversed [CExtDecl])
happyOut8 :: HappyAbsSyn -> Reversed [CExtDecl]
happyOut8 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [CExtDecl]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut8 #-}
happyIn9 :: (CExtDecl) -> (HappyAbsSyn )
happyIn9 :: CExtDecl -> HappyAbsSyn
happyIn9 x :: CExtDecl
x = CExtDecl -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CExtDecl
x
{-# INLINE happyIn9 #-}
happyOut9 :: (HappyAbsSyn ) -> (CExtDecl)
happyOut9 :: HappyAbsSyn -> CExtDecl
happyOut9 x :: HappyAbsSyn
x = HappyAbsSyn -> CExtDecl
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut9 #-}
happyIn10 :: (CFunDef) -> (HappyAbsSyn )
happyIn10 :: CFunDef -> HappyAbsSyn
happyIn10 x :: CFunDef
x = CFunDef -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CFunDef
x
{-# INLINE happyIn10 #-}
happyOut10 :: (HappyAbsSyn ) -> (CFunDef)
happyOut10 :: HappyAbsSyn -> CFunDef
happyOut10 x :: HappyAbsSyn
x = HappyAbsSyn -> CFunDef
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut10 #-}
happyIn11 :: (CDeclr) -> (HappyAbsSyn )
happyIn11 :: CDeclr -> HappyAbsSyn
happyIn11 x :: CDeclr
x = CDeclr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclr
x
{-# INLINE happyIn11 #-}
happyOut11 :: (HappyAbsSyn ) -> (CDeclr)
happyOut11 :: HappyAbsSyn -> CDeclr
happyOut11 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut11 #-}
happyIn12 :: (CStat) -> (HappyAbsSyn )
happyIn12 :: CStat -> HappyAbsSyn
happyIn12 x :: CStat
x = CStat -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CStat
x
{-# INLINE happyIn12 #-}
happyOut12 :: (HappyAbsSyn ) -> (CStat)
happyOut12 :: HappyAbsSyn -> CStat
happyOut12 x :: HappyAbsSyn
x = HappyAbsSyn -> CStat
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut12 #-}
happyIn13 :: (CStat) -> (HappyAbsSyn )
happyIn13 :: CStat -> HappyAbsSyn
happyIn13 x :: CStat
x = CStat -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CStat
x
{-# INLINE happyIn13 #-}
happyOut13 :: (HappyAbsSyn ) -> (CStat)
happyOut13 :: HappyAbsSyn -> CStat
happyOut13 x :: HappyAbsSyn
x = HappyAbsSyn -> CStat
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut13 #-}
happyIn14 :: (CStat) -> (HappyAbsSyn )
happyIn14 :: CStat -> HappyAbsSyn
happyIn14 x :: CStat
x = CStat -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CStat
x
{-# INLINE happyIn14 #-}
happyOut14 :: (HappyAbsSyn ) -> (CStat)
happyOut14 :: HappyAbsSyn -> CStat
happyOut14 x :: HappyAbsSyn
x = HappyAbsSyn -> CStat
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut14 #-}
happyIn15 :: (()) -> (HappyAbsSyn )
happyIn15 :: () -> HappyAbsSyn
happyIn15 x :: ()
x = () -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ()
x
{-# INLINE happyIn15 #-}
happyOut15 :: (HappyAbsSyn ) -> (())
happyOut15 :: HappyAbsSyn -> ()
happyOut15 x :: HappyAbsSyn
x = HappyAbsSyn -> ()
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut15 #-}
happyIn16 :: (()) -> (HappyAbsSyn )
happyIn16 :: () -> HappyAbsSyn
happyIn16 x :: ()
x = () -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ()
x
{-# INLINE happyIn16 #-}
happyOut16 :: (HappyAbsSyn ) -> (())
happyOut16 :: HappyAbsSyn -> ()
happyOut16 x :: HappyAbsSyn
x = HappyAbsSyn -> ()
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut16 #-}
happyIn17 :: (Reversed [CBlockItem]) -> (HappyAbsSyn )
happyIn17 :: Reversed [CBlockItem] -> HappyAbsSyn
happyIn17 x :: Reversed [CBlockItem]
x = Reversed [CBlockItem] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [CBlockItem]
x
{-# INLINE happyIn17 #-}
happyOut17 :: (HappyAbsSyn ) -> (Reversed [CBlockItem])
happyOut17 :: HappyAbsSyn -> Reversed [CBlockItem]
happyOut17 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [CBlockItem]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut17 #-}
happyIn18 :: (CBlockItem) -> (HappyAbsSyn )
happyIn18 :: CBlockItem -> HappyAbsSyn
happyIn18 x :: CBlockItem
x = CBlockItem -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CBlockItem
x
{-# INLINE happyIn18 #-}
happyOut18 :: (HappyAbsSyn ) -> (CBlockItem)
happyOut18 :: HappyAbsSyn -> CBlockItem
happyOut18 x :: HappyAbsSyn
x = HappyAbsSyn -> CBlockItem
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut18 #-}
happyIn19 :: (CBlockItem) -> (HappyAbsSyn )
happyIn19 :: CBlockItem -> HappyAbsSyn
happyIn19 x :: CBlockItem
x = CBlockItem -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CBlockItem
x
{-# INLINE happyIn19 #-}
happyOut19 :: (HappyAbsSyn ) -> (CBlockItem)
happyOut19 :: HappyAbsSyn -> CBlockItem
happyOut19 x :: HappyAbsSyn
x = HappyAbsSyn -> CBlockItem
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut19 #-}
happyIn20 :: (CFunDef) -> (HappyAbsSyn )
happyIn20 :: CFunDef -> HappyAbsSyn
happyIn20 x :: CFunDef
x = CFunDef -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CFunDef
x
{-# INLINE happyIn20 #-}
happyOut20 :: (HappyAbsSyn ) -> (CFunDef)
happyOut20 :: HappyAbsSyn -> CFunDef
happyOut20 x :: HappyAbsSyn
x = HappyAbsSyn -> CFunDef
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut20 #-}
happyIn21 :: (Reversed [Ident]) -> (HappyAbsSyn )
happyIn21 :: Reversed [Ident] -> HappyAbsSyn
happyIn21 x :: Reversed [Ident]
x = Reversed [Ident] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [Ident]
x
{-# INLINE happyIn21 #-}
happyOut21 :: (HappyAbsSyn ) -> (Reversed [Ident])
happyOut21 :: HappyAbsSyn -> Reversed [Ident]
happyOut21 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [Ident]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut21 #-}
happyIn22 :: (CStat) -> (HappyAbsSyn )
happyIn22 :: CStat -> HappyAbsSyn
happyIn22 x :: CStat
x = CStat -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CStat
x
{-# INLINE happyIn22 #-}
happyOut22 :: (HappyAbsSyn ) -> (CStat)
happyOut22 :: HappyAbsSyn -> CStat
happyOut22 x :: HappyAbsSyn
x = HappyAbsSyn -> CStat
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut22 #-}
happyIn23 :: (CStat) -> (HappyAbsSyn )
happyIn23 :: CStat -> HappyAbsSyn
happyIn23 x :: CStat
x = CStat -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CStat
x
{-# INLINE happyIn23 #-}
happyOut23 :: (HappyAbsSyn ) -> (CStat)
happyOut23 :: HappyAbsSyn -> CStat
happyOut23 x :: HappyAbsSyn
x = HappyAbsSyn -> CStat
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut23 #-}
happyIn24 :: (CStat) -> (HappyAbsSyn )
happyIn24 :: CStat -> HappyAbsSyn
happyIn24 x :: CStat
x = CStat -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CStat
x
{-# INLINE happyIn24 #-}
happyOut24 :: (HappyAbsSyn ) -> (CStat)
happyOut24 :: HappyAbsSyn -> CStat
happyOut24 x :: HappyAbsSyn
x = HappyAbsSyn -> CStat
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut24 #-}
happyIn25 :: (CStat) -> (HappyAbsSyn )
happyIn25 :: CStat -> HappyAbsSyn
happyIn25 x :: CStat
x = CStat -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CStat
x
{-# INLINE happyIn25 #-}
happyOut25 :: (HappyAbsSyn ) -> (CStat)
happyOut25 :: HappyAbsSyn -> CStat
happyOut25 x :: HappyAbsSyn
x = HappyAbsSyn -> CStat
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut25 #-}
happyIn26 :: (CAsmStmt) -> (HappyAbsSyn )
happyIn26 :: CAsmStmt -> HappyAbsSyn
happyIn26 x :: CAsmStmt
x = CAsmStmt -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CAsmStmt
x
{-# INLINE happyIn26 #-}
happyOut26 :: (HappyAbsSyn ) -> (CAsmStmt)
happyOut26 :: HappyAbsSyn -> CAsmStmt
happyOut26 x :: HappyAbsSyn
x = HappyAbsSyn -> CAsmStmt
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut26 #-}
happyIn27 :: (Maybe CTypeQual) -> (HappyAbsSyn )
happyIn27 :: Maybe CTypeQual -> HappyAbsSyn
happyIn27 x :: Maybe CTypeQual
x = Maybe CTypeQual -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Maybe CTypeQual
x
{-# INLINE happyIn27 #-}
happyOut27 :: (HappyAbsSyn ) -> (Maybe CTypeQual)
happyOut27 :: HappyAbsSyn -> Maybe CTypeQual
happyOut27 x :: HappyAbsSyn
x = HappyAbsSyn -> Maybe CTypeQual
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut27 #-}
happyIn28 :: ([CAsmOperand]) -> (HappyAbsSyn )
happyIn28 :: [CAsmOperand] -> HappyAbsSyn
happyIn28 x :: [CAsmOperand]
x = [CAsmOperand] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# [CAsmOperand]
x
{-# INLINE happyIn28 #-}
happyOut28 :: (HappyAbsSyn ) -> ([CAsmOperand])
happyOut28 :: HappyAbsSyn -> [CAsmOperand]
happyOut28 x :: HappyAbsSyn
x = HappyAbsSyn -> [CAsmOperand]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut28 #-}
happyIn29 :: (Reversed [CAsmOperand]) -> (HappyAbsSyn )
happyIn29 :: Reversed [CAsmOperand] -> HappyAbsSyn
happyIn29 x :: Reversed [CAsmOperand]
x = Reversed [CAsmOperand] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [CAsmOperand]
x
{-# INLINE happyIn29 #-}
happyOut29 :: (HappyAbsSyn ) -> (Reversed [CAsmOperand])
happyOut29 :: HappyAbsSyn -> Reversed [CAsmOperand]
happyOut29 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [CAsmOperand]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut29 #-}
happyIn30 :: (CAsmOperand) -> (HappyAbsSyn )
happyIn30 :: CAsmOperand -> HappyAbsSyn
happyIn30 x :: CAsmOperand
x = CAsmOperand -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CAsmOperand
x
{-# INLINE happyIn30 #-}
happyOut30 :: (HappyAbsSyn ) -> (CAsmOperand)
happyOut30 :: HappyAbsSyn -> CAsmOperand
happyOut30 x :: HappyAbsSyn
x = HappyAbsSyn -> CAsmOperand
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut30 #-}
happyIn31 :: (Reversed [CStrLit]) -> (HappyAbsSyn )
happyIn31 :: Reversed [CStrLit] -> HappyAbsSyn
happyIn31 x :: Reversed [CStrLit]
x = Reversed [CStrLit] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [CStrLit]
x
{-# INLINE happyIn31 #-}
happyOut31 :: (HappyAbsSyn ) -> (Reversed [CStrLit])
happyOut31 :: HappyAbsSyn -> Reversed [CStrLit]
happyOut31 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [CStrLit]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut31 #-}
happyIn32 :: (CDecl) -> (HappyAbsSyn )
happyIn32 :: CDecl -> HappyAbsSyn
happyIn32 x :: CDecl
x = CDecl -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDecl
x
{-# INLINE happyIn32 #-}
happyOut32 :: (HappyAbsSyn ) -> (CDecl)
happyOut32 :: HappyAbsSyn -> CDecl
happyOut32 x :: HappyAbsSyn
x = HappyAbsSyn -> CDecl
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut32 #-}
happyIn33 :: (Reversed [CDecl]) -> (HappyAbsSyn )
happyIn33 :: Reversed [CDecl] -> HappyAbsSyn
happyIn33 x :: Reversed [CDecl]
x = Reversed [CDecl] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [CDecl]
x
{-# INLINE happyIn33 #-}
happyOut33 :: (HappyAbsSyn ) -> (Reversed [CDecl])
happyOut33 :: HappyAbsSyn -> Reversed [CDecl]
happyOut33 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [CDecl]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut33 #-}
happyIn34 :: (CDecl) -> (HappyAbsSyn )
happyIn34 :: CDecl -> HappyAbsSyn
happyIn34 x :: CDecl
x = CDecl -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDecl
x
{-# INLINE happyIn34 #-}
happyOut34 :: (HappyAbsSyn ) -> (CDecl)
happyOut34 :: HappyAbsSyn -> CDecl
happyOut34 x :: HappyAbsSyn
x = HappyAbsSyn -> CDecl
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut34 #-}
happyIn35 :: ((Maybe CStrLit, [CAttr])) -> (HappyAbsSyn )
happyIn35 :: (Maybe CStrLit, [CAttr]) -> HappyAbsSyn
happyIn35 x :: (Maybe CStrLit, [CAttr])
x = (Maybe CStrLit, [CAttr]) -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Maybe CStrLit, [CAttr])
x
{-# INLINE happyIn35 #-}
happyOut35 :: (HappyAbsSyn ) -> ((Maybe CStrLit, [CAttr]))
happyOut35 :: HappyAbsSyn -> (Maybe CStrLit, [CAttr])
happyOut35 x :: HappyAbsSyn
x = HappyAbsSyn -> (Maybe CStrLit, [CAttr])
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut35 #-}
happyIn36 :: (CDecl) -> (HappyAbsSyn )
happyIn36 :: CDecl -> HappyAbsSyn
happyIn36 x :: CDecl
x = CDecl -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDecl
x
{-# INLINE happyIn36 #-}
happyOut36 :: (HappyAbsSyn ) -> (CDecl)
happyOut36 :: HappyAbsSyn -> CDecl
happyOut36 x :: HappyAbsSyn
x = HappyAbsSyn -> CDecl
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut36 #-}
happyIn37 :: ([CDeclSpec]) -> (HappyAbsSyn )
happyIn37 :: [CDeclSpec] -> HappyAbsSyn
happyIn37 x :: [CDeclSpec]
x = [CDeclSpec] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# [CDeclSpec]
x
{-# INLINE happyIn37 #-}
happyOut37 :: (HappyAbsSyn ) -> ([CDeclSpec])
happyOut37 :: HappyAbsSyn -> [CDeclSpec]
happyOut37 x :: HappyAbsSyn
x = HappyAbsSyn -> [CDeclSpec]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut37 #-}
happyIn38 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn38 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn38 x :: Reversed [CDeclSpec]
x = Reversed [CDeclSpec] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [CDeclSpec]
x
{-# INLINE happyIn38 #-}
happyOut38 :: (HappyAbsSyn ) -> (Reversed [CDeclSpec])
happyOut38 :: HappyAbsSyn -> Reversed [CDeclSpec]
happyOut38 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [CDeclSpec]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut38 #-}
happyIn39 :: (CDeclSpec) -> (HappyAbsSyn )
happyIn39 :: CDeclSpec -> HappyAbsSyn
happyIn39 x :: CDeclSpec
x = CDeclSpec -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclSpec
x
{-# INLINE happyIn39 #-}
happyOut39 :: (HappyAbsSyn ) -> (CDeclSpec)
happyOut39 :: HappyAbsSyn -> CDeclSpec
happyOut39 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclSpec
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut39 #-}
happyIn40 :: (CDeclSpec) -> (HappyAbsSyn )
happyIn40 :: CDeclSpec -> HappyAbsSyn
happyIn40 x :: CDeclSpec
x = CDeclSpec -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclSpec
x
{-# INLINE happyIn40 #-}
happyOut40 :: (HappyAbsSyn ) -> (CDeclSpec)
happyOut40 :: HappyAbsSyn -> CDeclSpec
happyOut40 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclSpec
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut40 #-}
happyIn41 :: (CStorageSpec) -> (HappyAbsSyn )
happyIn41 :: CStorageSpec -> HappyAbsSyn
happyIn41 x :: CStorageSpec
x = CStorageSpec -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CStorageSpec
x
{-# INLINE happyIn41 #-}
happyOut41 :: (HappyAbsSyn ) -> (CStorageSpec)
happyOut41 :: HappyAbsSyn -> CStorageSpec
happyOut41 x :: HappyAbsSyn
x = HappyAbsSyn -> CStorageSpec
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut41 #-}
happyIn42 :: (CFunSpec) -> (HappyAbsSyn )
happyIn42 :: CFunSpec -> HappyAbsSyn
happyIn42 x :: CFunSpec
x = CFunSpec -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CFunSpec
x
{-# INLINE happyIn42 #-}
happyOut42 :: (HappyAbsSyn ) -> (CFunSpec)
happyOut42 :: HappyAbsSyn -> CFunSpec
happyOut42 x :: HappyAbsSyn
x = HappyAbsSyn -> CFunSpec
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut42 #-}
happyIn43 :: (CAlignSpec) -> (HappyAbsSyn )
happyIn43 :: CAlignSpec -> HappyAbsSyn
happyIn43 x :: CAlignSpec
x = CAlignSpec -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CAlignSpec
x
{-# INLINE happyIn43 #-}
happyOut43 :: (HappyAbsSyn ) -> (CAlignSpec)
happyOut43 :: HappyAbsSyn -> CAlignSpec
happyOut43 x :: HappyAbsSyn
x = HappyAbsSyn -> CAlignSpec
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut43 #-}
happyIn44 :: ([CDeclSpec]) -> (HappyAbsSyn )
happyIn44 :: [CDeclSpec] -> HappyAbsSyn
happyIn44 x :: [CDeclSpec]
x = [CDeclSpec] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# [CDeclSpec]
x
{-# INLINE happyIn44 #-}
happyOut44 :: (HappyAbsSyn ) -> ([CDeclSpec])
happyOut44 :: HappyAbsSyn -> [CDeclSpec]
happyOut44 x :: HappyAbsSyn
x = HappyAbsSyn -> [CDeclSpec]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut44 #-}
happyIn45 :: (CTypeSpec) -> (HappyAbsSyn )
happyIn45 :: CTypeSpec -> HappyAbsSyn
happyIn45 x :: CTypeSpec
x = CTypeSpec -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CTypeSpec
x
{-# INLINE happyIn45 #-}
happyOut45 :: (HappyAbsSyn ) -> (CTypeSpec)
happyOut45 :: HappyAbsSyn -> CTypeSpec
happyOut45 x :: HappyAbsSyn
x = HappyAbsSyn -> CTypeSpec
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut45 #-}
happyIn46 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn46 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn46 x :: Reversed [CDeclSpec]
x = Reversed [CDeclSpec] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [CDeclSpec]
x
{-# INLINE happyIn46 #-}
happyOut46 :: (HappyAbsSyn ) -> (Reversed [CDeclSpec])
happyOut46 :: HappyAbsSyn -> Reversed [CDeclSpec]
happyOut46 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [CDeclSpec]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut46 #-}
happyIn47 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn47 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn47 x :: Reversed [CDeclSpec]
x = Reversed [CDeclSpec] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [CDeclSpec]
x
{-# INLINE happyIn47 #-}
happyOut47 :: (HappyAbsSyn ) -> (Reversed [CDeclSpec])
happyOut47 :: HappyAbsSyn -> Reversed [CDeclSpec]
happyOut47 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [CDeclSpec]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut47 #-}
happyIn48 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn48 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn48 x :: Reversed [CDeclSpec]
x = Reversed [CDeclSpec] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [CDeclSpec]
x
{-# INLINE happyIn48 #-}
happyOut48 :: (HappyAbsSyn ) -> (Reversed [CDeclSpec])
happyOut48 :: HappyAbsSyn -> Reversed [CDeclSpec]
happyOut48 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [CDeclSpec]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut48 #-}
happyIn49 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn49 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn49 x :: Reversed [CDeclSpec]
x = Reversed [CDeclSpec] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [CDeclSpec]
x
{-# INLINE happyIn49 #-}
happyOut49 :: (HappyAbsSyn ) -> (Reversed [CDeclSpec])
happyOut49 :: HappyAbsSyn -> Reversed [CDeclSpec]
happyOut49 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [CDeclSpec]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut49 #-}
happyIn50 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn50 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn50 x :: Reversed [CDeclSpec]
x = Reversed [CDeclSpec] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [CDeclSpec]
x
{-# INLINE happyIn50 #-}
happyOut50 :: (HappyAbsSyn ) -> (Reversed [CDeclSpec])
happyOut50 :: HappyAbsSyn -> Reversed [CDeclSpec]
happyOut50 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [CDeclSpec]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut50 #-}
happyIn51 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn51 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 x :: Reversed [CDeclSpec]
x = Reversed [CDeclSpec] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [CDeclSpec]
x
{-# INLINE happyIn51 #-}
happyOut51 :: (HappyAbsSyn ) -> (Reversed [CDeclSpec])
happyOut51 :: HappyAbsSyn -> Reversed [CDeclSpec]
happyOut51 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [CDeclSpec]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut51 #-}
happyIn52 :: (CTypeSpec) -> (HappyAbsSyn )
happyIn52 :: CTypeSpec -> HappyAbsSyn
happyIn52 x :: CTypeSpec
x = CTypeSpec -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CTypeSpec
x
{-# INLINE happyIn52 #-}
happyOut52 :: (HappyAbsSyn ) -> (CTypeSpec)
happyOut52 :: HappyAbsSyn -> CTypeSpec
happyOut52 x :: HappyAbsSyn
x = HappyAbsSyn -> CTypeSpec
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut52 #-}
happyIn53 :: (CStructUnion) -> (HappyAbsSyn )
happyIn53 :: CStructUnion -> HappyAbsSyn
happyIn53 x :: CStructUnion
x = CStructUnion -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CStructUnion
x
{-# INLINE happyIn53 #-}
happyOut53 :: (HappyAbsSyn ) -> (CStructUnion)
happyOut53 :: HappyAbsSyn -> CStructUnion
happyOut53 x :: HappyAbsSyn
x = HappyAbsSyn -> CStructUnion
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut53 #-}
happyIn54 :: (Located CStructTag) -> (HappyAbsSyn )
happyIn54 :: Located CStructTag -> HappyAbsSyn
happyIn54 x :: Located CStructTag
x = Located CStructTag -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Located CStructTag
x
{-# INLINE happyIn54 #-}
happyOut54 :: (HappyAbsSyn ) -> (Located CStructTag)
happyOut54 :: HappyAbsSyn -> Located CStructTag
happyOut54 x :: HappyAbsSyn
x = HappyAbsSyn -> Located CStructTag
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut54 #-}
happyIn55 :: (Reversed [CDecl]) -> (HappyAbsSyn )
happyIn55 :: Reversed [CDecl] -> HappyAbsSyn
happyIn55 x :: Reversed [CDecl]
x = Reversed [CDecl] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [CDecl]
x
{-# INLINE happyIn55 #-}
happyOut55 :: (HappyAbsSyn ) -> (Reversed [CDecl])
happyOut55 :: HappyAbsSyn -> Reversed [CDecl]
happyOut55 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [CDecl]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut55 #-}
happyIn56 :: (CDecl) -> (HappyAbsSyn )
happyIn56 :: CDecl -> HappyAbsSyn
happyIn56 x :: CDecl
x = CDecl -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDecl
x
{-# INLINE happyIn56 #-}
happyOut56 :: (HappyAbsSyn ) -> (CDecl)
happyOut56 :: HappyAbsSyn -> CDecl
happyOut56 x :: HappyAbsSyn
x = HappyAbsSyn -> CDecl
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut56 #-}
happyIn57 :: (CDecl) -> (HappyAbsSyn )
happyIn57 :: CDecl -> HappyAbsSyn
happyIn57 x :: CDecl
x = CDecl -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDecl
x
{-# INLINE happyIn57 #-}
happyOut57 :: (HappyAbsSyn ) -> (CDecl)
happyOut57 :: HappyAbsSyn -> CDecl
happyOut57 x :: HappyAbsSyn
x = HappyAbsSyn -> CDecl
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut57 #-}
happyIn58 :: (CDecl) -> (HappyAbsSyn )
happyIn58 :: CDecl -> HappyAbsSyn
happyIn58 x :: CDecl
x = CDecl -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDecl
x
{-# INLINE happyIn58 #-}
happyOut58 :: (HappyAbsSyn ) -> (CDecl)
happyOut58 :: HappyAbsSyn -> CDecl
happyOut58 x :: HappyAbsSyn
x = HappyAbsSyn -> CDecl
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut58 #-}
happyIn59 :: ((Maybe CDeclr, Maybe CExpr)) -> (HappyAbsSyn )
happyIn59 :: (Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn59 x :: (Maybe CDeclr, Maybe CExpr)
x = (Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Maybe CDeclr, Maybe CExpr)
x
{-# INLINE happyIn59 #-}
happyOut59 :: (HappyAbsSyn ) -> ((Maybe CDeclr, Maybe CExpr))
happyOut59 :: HappyAbsSyn -> (Maybe CDeclr, Maybe CExpr)
happyOut59 x :: HappyAbsSyn
x = HappyAbsSyn -> (Maybe CDeclr, Maybe CExpr)
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut59 #-}
happyIn60 :: ((Maybe CDeclr, Maybe CExpr)) -> (HappyAbsSyn )
happyIn60 :: (Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn60 x :: (Maybe CDeclr, Maybe CExpr)
x = (Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Maybe CDeclr, Maybe CExpr)
x
{-# INLINE happyIn60 #-}
happyOut60 :: (HappyAbsSyn ) -> ((Maybe CDeclr, Maybe CExpr))
happyOut60 :: HappyAbsSyn -> (Maybe CDeclr, Maybe CExpr)
happyOut60 x :: HappyAbsSyn
x = HappyAbsSyn -> (Maybe CDeclr, Maybe CExpr)
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut60 #-}
happyIn61 :: (CEnum) -> (HappyAbsSyn )
happyIn61 :: CEnum -> HappyAbsSyn
happyIn61 x :: CEnum
x = CEnum -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CEnum
x
{-# INLINE happyIn61 #-}
happyOut61 :: (HappyAbsSyn ) -> (CEnum)
happyOut61 :: HappyAbsSyn -> CEnum
happyOut61 x :: HappyAbsSyn
x = HappyAbsSyn -> CEnum
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut61 #-}
happyIn62 :: (Reversed [(Ident, Maybe CExpr)]) -> (HappyAbsSyn )
happyIn62 :: Reversed [(Ident, Maybe CExpr)] -> HappyAbsSyn
happyIn62 x :: Reversed [(Ident, Maybe CExpr)]
x = Reversed [(Ident, Maybe CExpr)] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [(Ident, Maybe CExpr)]
x
{-# INLINE happyIn62 #-}
happyOut62 :: (HappyAbsSyn ) -> (Reversed [(Ident, Maybe CExpr)])
happyOut62 :: HappyAbsSyn -> Reversed [(Ident, Maybe CExpr)]
happyOut62 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [(Ident, Maybe CExpr)]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut62 #-}
happyIn63 :: ((Ident, Maybe CExpr)) -> (HappyAbsSyn )
happyIn63 :: (Ident, Maybe CExpr) -> HappyAbsSyn
happyIn63 x :: (Ident, Maybe CExpr)
x = (Ident, Maybe CExpr) -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Ident, Maybe CExpr)
x
{-# INLINE happyIn63 #-}
happyOut63 :: (HappyAbsSyn ) -> ((Ident, Maybe CExpr))
happyOut63 :: HappyAbsSyn -> (Ident, Maybe CExpr)
happyOut63 x :: HappyAbsSyn
x = HappyAbsSyn -> (Ident, Maybe CExpr)
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut63 #-}
happyIn64 :: (CTypeQual) -> (HappyAbsSyn )
happyIn64 :: CTypeQual -> HappyAbsSyn
happyIn64 x :: CTypeQual
x = CTypeQual -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CTypeQual
x
{-# INLINE happyIn64 #-}
happyOut64 :: (HappyAbsSyn ) -> (CTypeQual)
happyOut64 :: HappyAbsSyn -> CTypeQual
happyOut64 x :: HappyAbsSyn
x = HappyAbsSyn -> CTypeQual
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut64 #-}
happyIn65 :: (Reversed [CTypeQual]) -> (HappyAbsSyn )
happyIn65 :: Reversed [CTypeQual] -> HappyAbsSyn
happyIn65 x :: Reversed [CTypeQual]
x = Reversed [CTypeQual] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [CTypeQual]
x
{-# INLINE happyIn65 #-}
happyOut65 :: (HappyAbsSyn ) -> (Reversed [CTypeQual])
happyOut65 :: HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [CTypeQual]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut65 #-}
happyIn66 :: (CDeclrR) -> (HappyAbsSyn )
happyIn66 :: CDeclrR -> HappyAbsSyn
happyIn66 x :: CDeclrR
x = CDeclrR -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclrR
x
{-# INLINE happyIn66 #-}
happyOut66 :: (HappyAbsSyn ) -> (CDeclrR)
happyOut66 :: HappyAbsSyn -> CDeclrR
happyOut66 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclrR
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut66 #-}
happyIn67 :: (Maybe CStrLit) -> (HappyAbsSyn )
happyIn67 :: Maybe CStrLit -> HappyAbsSyn
happyIn67 x :: Maybe CStrLit
x = Maybe CStrLit -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Maybe CStrLit
x
{-# INLINE happyIn67 #-}
happyOut67 :: (HappyAbsSyn ) -> (Maybe CStrLit)
happyOut67 :: HappyAbsSyn -> Maybe CStrLit
happyOut67 x :: HappyAbsSyn
x = HappyAbsSyn -> Maybe CStrLit
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut67 #-}
happyIn68 :: (CDeclrR) -> (HappyAbsSyn )
happyIn68 :: CDeclrR -> HappyAbsSyn
happyIn68 x :: CDeclrR
x = CDeclrR -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclrR
x
{-# INLINE happyIn68 #-}
happyOut68 :: (HappyAbsSyn ) -> (CDeclrR)
happyOut68 :: HappyAbsSyn -> CDeclrR
happyOut68 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclrR
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut68 #-}
happyIn69 :: (CDeclrR) -> (HappyAbsSyn )
happyIn69 :: CDeclrR -> HappyAbsSyn
happyIn69 x :: CDeclrR
x = CDeclrR -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclrR
x
{-# INLINE happyIn69 #-}
happyOut69 :: (HappyAbsSyn ) -> (CDeclrR)
happyOut69 :: HappyAbsSyn -> CDeclrR
happyOut69 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclrR
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut69 #-}
happyIn70 :: (CDeclrR) -> (HappyAbsSyn )
happyIn70 :: CDeclrR -> HappyAbsSyn
happyIn70 x :: CDeclrR
x = CDeclrR -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclrR
x
{-# INLINE happyIn70 #-}
happyOut70 :: (HappyAbsSyn ) -> (CDeclrR)
happyOut70 :: HappyAbsSyn -> CDeclrR
happyOut70 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclrR
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut70 #-}
happyIn71 :: (CDeclrR) -> (HappyAbsSyn )
happyIn71 :: CDeclrR -> HappyAbsSyn
happyIn71 x :: CDeclrR
x = CDeclrR -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclrR
x
{-# INLINE happyIn71 #-}
happyOut71 :: (HappyAbsSyn ) -> (CDeclrR)
happyOut71 :: HappyAbsSyn -> CDeclrR
happyOut71 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclrR
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut71 #-}
happyIn72 :: (CDeclrR) -> (HappyAbsSyn )
happyIn72 :: CDeclrR -> HappyAbsSyn
happyIn72 x :: CDeclrR
x = CDeclrR -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclrR
x
{-# INLINE happyIn72 #-}
happyOut72 :: (HappyAbsSyn ) -> (CDeclrR)
happyOut72 :: HappyAbsSyn -> CDeclrR
happyOut72 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclrR
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut72 #-}
happyIn73 :: (CDeclrR) -> (HappyAbsSyn )
happyIn73 :: CDeclrR -> HappyAbsSyn
happyIn73 x :: CDeclrR
x = CDeclrR -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclrR
x
{-# INLINE happyIn73 #-}
happyOut73 :: (HappyAbsSyn ) -> (CDeclrR)
happyOut73 :: HappyAbsSyn -> CDeclrR
happyOut73 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclrR
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut73 #-}
happyIn74 :: (CDeclrR) -> (HappyAbsSyn )
happyIn74 :: CDeclrR -> HappyAbsSyn
happyIn74 x :: CDeclrR
x = CDeclrR -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclrR
x
{-# INLINE happyIn74 #-}
happyOut74 :: (HappyAbsSyn ) -> (CDeclrR)
happyOut74 :: HappyAbsSyn -> CDeclrR
happyOut74 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclrR
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut74 #-}
happyIn75 :: (CDeclrR) -> (HappyAbsSyn )
happyIn75 :: CDeclrR -> HappyAbsSyn
happyIn75 x :: CDeclrR
x = CDeclrR -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclrR
x
{-# INLINE happyIn75 #-}
happyOut75 :: (HappyAbsSyn ) -> (CDeclrR)
happyOut75 :: HappyAbsSyn -> CDeclrR
happyOut75 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclrR
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut75 #-}
happyIn76 :: (CDeclrR) -> (HappyAbsSyn )
happyIn76 :: CDeclrR -> HappyAbsSyn
happyIn76 x :: CDeclrR
x = CDeclrR -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclrR
x
{-# INLINE happyIn76 #-}
happyOut76 :: (HappyAbsSyn ) -> (CDeclrR)
happyOut76 :: HappyAbsSyn -> CDeclrR
happyOut76 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclrR
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut76 #-}
happyIn77 :: (CDeclrR) -> (HappyAbsSyn )
happyIn77 :: CDeclrR -> HappyAbsSyn
happyIn77 x :: CDeclrR
x = CDeclrR -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclrR
x
{-# INLINE happyIn77 #-}
happyOut77 :: (HappyAbsSyn ) -> (CDeclrR)
happyOut77 :: HappyAbsSyn -> CDeclrR
happyOut77 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclrR
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut77 #-}
happyIn78 :: (CDeclrR) -> (HappyAbsSyn )
happyIn78 :: CDeclrR -> HappyAbsSyn
happyIn78 x :: CDeclrR
x = CDeclrR -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclrR
x
{-# INLINE happyIn78 #-}
happyOut78 :: (HappyAbsSyn ) -> (CDeclrR)
happyOut78 :: HappyAbsSyn -> CDeclrR
happyOut78 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclrR
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut78 #-}
happyIn79 :: (CDeclr) -> (HappyAbsSyn )
happyIn79 :: CDeclr -> HappyAbsSyn
happyIn79 x :: CDeclr
x = CDeclr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclr
x
{-# INLINE happyIn79 #-}
happyOut79 :: (HappyAbsSyn ) -> (CDeclr)
happyOut79 :: HappyAbsSyn -> CDeclr
happyOut79 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut79 #-}
happyIn80 :: (CDeclrR) -> (HappyAbsSyn )
happyIn80 :: CDeclrR -> HappyAbsSyn
happyIn80 x :: CDeclrR
x = CDeclrR -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclrR
x
{-# INLINE happyIn80 #-}
happyOut80 :: (HappyAbsSyn ) -> (CDeclrR)
happyOut80 :: HappyAbsSyn -> CDeclrR
happyOut80 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclrR
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut80 #-}
happyIn81 :: (CDeclrR) -> (HappyAbsSyn )
happyIn81 :: CDeclrR -> HappyAbsSyn
happyIn81 x :: CDeclrR
x = CDeclrR -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclrR
x
{-# INLINE happyIn81 #-}
happyOut81 :: (HappyAbsSyn ) -> (CDeclrR)
happyOut81 :: HappyAbsSyn -> CDeclrR
happyOut81 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclrR
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut81 #-}
happyIn82 :: (([CDecl], Bool)) -> (HappyAbsSyn )
happyIn82 :: ([CDecl], Bool) -> HappyAbsSyn
happyIn82 x :: ([CDecl], Bool)
x = ([CDecl], Bool) -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ([CDecl], Bool)
x
{-# INLINE happyIn82 #-}
happyOut82 :: (HappyAbsSyn ) -> (([CDecl], Bool))
happyOut82 :: HappyAbsSyn -> ([CDecl], Bool)
happyOut82 x :: HappyAbsSyn
x = HappyAbsSyn -> ([CDecl], Bool)
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut82 #-}
happyIn83 :: (Reversed [CDecl]) -> (HappyAbsSyn )
happyIn83 :: Reversed [CDecl] -> HappyAbsSyn
happyIn83 x :: Reversed [CDecl]
x = Reversed [CDecl] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [CDecl]
x
{-# INLINE happyIn83 #-}
happyOut83 :: (HappyAbsSyn ) -> (Reversed [CDecl])
happyOut83 :: HappyAbsSyn -> Reversed [CDecl]
happyOut83 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [CDecl]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut83 #-}
happyIn84 :: (CDecl) -> (HappyAbsSyn )
happyIn84 :: CDecl -> HappyAbsSyn
happyIn84 x :: CDecl
x = CDecl -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDecl
x
{-# INLINE happyIn84 #-}
happyOut84 :: (HappyAbsSyn ) -> (CDecl)
happyOut84 :: HappyAbsSyn -> CDecl
happyOut84 x :: HappyAbsSyn
x = HappyAbsSyn -> CDecl
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut84 #-}
happyIn85 :: (Reversed [Ident]) -> (HappyAbsSyn )
happyIn85 :: Reversed [Ident] -> HappyAbsSyn
happyIn85 x :: Reversed [Ident]
x = Reversed [Ident] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [Ident]
x
{-# INLINE happyIn85 #-}
happyOut85 :: (HappyAbsSyn ) -> (Reversed [Ident])
happyOut85 :: HappyAbsSyn -> Reversed [Ident]
happyOut85 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [Ident]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut85 #-}
happyIn86 :: (CDecl) -> (HappyAbsSyn )
happyIn86 :: CDecl -> HappyAbsSyn
happyIn86 x :: CDecl
x = CDecl -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDecl
x
{-# INLINE happyIn86 #-}
happyOut86 :: (HappyAbsSyn ) -> (CDecl)
happyOut86 :: HappyAbsSyn -> CDecl
happyOut86 x :: HappyAbsSyn
x = HappyAbsSyn -> CDecl
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut86 #-}
happyIn87 :: (CDeclrR) -> (HappyAbsSyn )
happyIn87 :: CDeclrR -> HappyAbsSyn
happyIn87 x :: CDeclrR
x = CDeclrR -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclrR
x
{-# INLINE happyIn87 #-}
happyOut87 :: (HappyAbsSyn ) -> (CDeclrR)
happyOut87 :: HappyAbsSyn -> CDeclrR
happyOut87 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclrR
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut87 #-}
happyIn88 :: (CDeclrR -> CDeclrR) -> (HappyAbsSyn )
happyIn88 :: (CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn88 x :: CDeclrR -> CDeclrR
x = (CDeclrR -> CDeclrR) -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclrR -> CDeclrR
x
{-# INLINE happyIn88 #-}
happyOut88 :: (HappyAbsSyn ) -> (CDeclrR -> CDeclrR)
happyOut88 :: HappyAbsSyn -> CDeclrR -> CDeclrR
happyOut88 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclrR -> CDeclrR
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut88 #-}
happyIn89 :: (CDeclrR -> CDeclrR) -> (HappyAbsSyn )
happyIn89 :: (CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn89 x :: CDeclrR -> CDeclrR
x = (CDeclrR -> CDeclrR) -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclrR -> CDeclrR
x
{-# INLINE happyIn89 #-}
happyOut89 :: (HappyAbsSyn ) -> (CDeclrR -> CDeclrR)
happyOut89 :: HappyAbsSyn -> CDeclrR -> CDeclrR
happyOut89 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclrR -> CDeclrR
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut89 #-}
happyIn90 :: (CDeclrR -> CDeclrR) -> (HappyAbsSyn )
happyIn90 :: (CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 x :: CDeclrR -> CDeclrR
x = (CDeclrR -> CDeclrR) -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclrR -> CDeclrR
x
{-# INLINE happyIn90 #-}
happyOut90 :: (HappyAbsSyn ) -> (CDeclrR -> CDeclrR)
happyOut90 :: HappyAbsSyn -> CDeclrR -> CDeclrR
happyOut90 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclrR -> CDeclrR
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut90 #-}
happyIn91 :: (CDeclrR) -> (HappyAbsSyn )
happyIn91 :: CDeclrR -> HappyAbsSyn
happyIn91 x :: CDeclrR
x = CDeclrR -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclrR
x
{-# INLINE happyIn91 #-}
happyOut91 :: (HappyAbsSyn ) -> (CDeclrR)
happyOut91 :: HappyAbsSyn -> CDeclrR
happyOut91 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclrR
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut91 #-}
happyIn92 :: (CDeclrR) -> (HappyAbsSyn )
happyIn92 :: CDeclrR -> HappyAbsSyn
happyIn92 x :: CDeclrR
x = CDeclrR -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDeclrR
x
{-# INLINE happyIn92 #-}
happyOut92 :: (HappyAbsSyn ) -> (CDeclrR)
happyOut92 :: HappyAbsSyn -> CDeclrR
happyOut92 x :: HappyAbsSyn
x = HappyAbsSyn -> CDeclrR
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut92 #-}
happyIn93 :: (CInit) -> (HappyAbsSyn )
happyIn93 :: CInit -> HappyAbsSyn
happyIn93 x :: CInit
x = CInit -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CInit
x
{-# INLINE happyIn93 #-}
happyOut93 :: (HappyAbsSyn ) -> (CInit)
happyOut93 :: HappyAbsSyn -> CInit
happyOut93 x :: HappyAbsSyn
x = HappyAbsSyn -> CInit
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut93 #-}
happyIn94 :: (Maybe CInit) -> (HappyAbsSyn )
happyIn94 :: Maybe CInit -> HappyAbsSyn
happyIn94 x :: Maybe CInit
x = Maybe CInit -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Maybe CInit
x
{-# INLINE happyIn94 #-}
happyOut94 :: (HappyAbsSyn ) -> (Maybe CInit)
happyOut94 :: HappyAbsSyn -> Maybe CInit
happyOut94 x :: HappyAbsSyn
x = HappyAbsSyn -> Maybe CInit
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut94 #-}
happyIn95 :: (Reversed CInitList) -> (HappyAbsSyn )
happyIn95 :: Reversed CInitList -> HappyAbsSyn
happyIn95 x :: Reversed CInitList
x = Reversed CInitList -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed CInitList
x
{-# INLINE happyIn95 #-}
happyOut95 :: (HappyAbsSyn ) -> (Reversed CInitList)
happyOut95 :: HappyAbsSyn -> Reversed CInitList
happyOut95 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed CInitList
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut95 #-}
happyIn96 :: ([CDesignator]) -> (HappyAbsSyn )
happyIn96 :: [CDesignator] -> HappyAbsSyn
happyIn96 x :: [CDesignator]
x = [CDesignator] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# [CDesignator]
x
{-# INLINE happyIn96 #-}
happyOut96 :: (HappyAbsSyn ) -> ([CDesignator])
happyOut96 :: HappyAbsSyn -> [CDesignator]
happyOut96 x :: HappyAbsSyn
x = HappyAbsSyn -> [CDesignator]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut96 #-}
happyIn97 :: (Reversed [CDesignator]) -> (HappyAbsSyn )
happyIn97 :: Reversed [CDesignator] -> HappyAbsSyn
happyIn97 x :: Reversed [CDesignator]
x = Reversed [CDesignator] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [CDesignator]
x
{-# INLINE happyIn97 #-}
happyOut97 :: (HappyAbsSyn ) -> (Reversed [CDesignator])
happyOut97 :: HappyAbsSyn -> Reversed [CDesignator]
happyOut97 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [CDesignator]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut97 #-}
happyIn98 :: (CDesignator) -> (HappyAbsSyn )
happyIn98 :: CDesignator -> HappyAbsSyn
happyIn98 x :: CDesignator
x = CDesignator -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDesignator
x
{-# INLINE happyIn98 #-}
happyOut98 :: (HappyAbsSyn ) -> (CDesignator)
happyOut98 :: HappyAbsSyn -> CDesignator
happyOut98 x :: HappyAbsSyn
x = HappyAbsSyn -> CDesignator
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut98 #-}
happyIn99 :: (CDesignator) -> (HappyAbsSyn )
happyIn99 :: CDesignator -> HappyAbsSyn
happyIn99 x :: CDesignator
x = CDesignator -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CDesignator
x
{-# INLINE happyIn99 #-}
happyOut99 :: (HappyAbsSyn ) -> (CDesignator)
happyOut99 :: HappyAbsSyn -> CDesignator
happyOut99 x :: HappyAbsSyn
x = HappyAbsSyn -> CDesignator
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut99 #-}
happyIn100 :: (CExpr) -> (HappyAbsSyn )
happyIn100 :: CExpr -> HappyAbsSyn
happyIn100 x :: CExpr
x = CExpr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CExpr
x
{-# INLINE happyIn100 #-}
happyOut100 :: (HappyAbsSyn ) -> (CExpr)
happyOut100 :: HappyAbsSyn -> CExpr
happyOut100 x :: HappyAbsSyn
x = HappyAbsSyn -> CExpr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut100 #-}
happyIn101 :: (Reversed [(Maybe CDecl, CExpr)]) -> (HappyAbsSyn )
happyIn101 :: Reversed [(Maybe CDecl, CExpr)] -> HappyAbsSyn
happyIn101 x :: Reversed [(Maybe CDecl, CExpr)]
x = Reversed [(Maybe CDecl, CExpr)] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [(Maybe CDecl, CExpr)]
x
{-# INLINE happyIn101 #-}
happyOut101 :: (HappyAbsSyn ) -> (Reversed [(Maybe CDecl, CExpr)])
happyOut101 :: HappyAbsSyn -> Reversed [(Maybe CDecl, CExpr)]
happyOut101 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [(Maybe CDecl, CExpr)]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut101 #-}
happyIn102 :: ((Maybe CDecl, CExpr)) -> (HappyAbsSyn )
happyIn102 :: (Maybe CDecl, CExpr) -> HappyAbsSyn
happyIn102 x :: (Maybe CDecl, CExpr)
x = (Maybe CDecl, CExpr) -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Maybe CDecl, CExpr)
x
{-# INLINE happyIn102 #-}
happyOut102 :: (HappyAbsSyn ) -> ((Maybe CDecl, CExpr))
happyOut102 :: HappyAbsSyn -> (Maybe CDecl, CExpr)
happyOut102 x :: HappyAbsSyn
x = HappyAbsSyn -> (Maybe CDecl, CExpr)
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut102 #-}
happyIn103 :: (Reversed [CDesignator]) -> (HappyAbsSyn )
happyIn103 :: Reversed [CDesignator] -> HappyAbsSyn
happyIn103 x :: Reversed [CDesignator]
x = Reversed [CDesignator] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [CDesignator]
x
{-# INLINE happyIn103 #-}
happyOut103 :: (HappyAbsSyn ) -> (Reversed [CDesignator])
happyOut103 :: HappyAbsSyn -> Reversed [CDesignator]
happyOut103 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [CDesignator]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut103 #-}
happyIn104 :: (CExpr) -> (HappyAbsSyn )
happyIn104 :: CExpr -> HappyAbsSyn
happyIn104 x :: CExpr
x = CExpr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CExpr
x
{-# INLINE happyIn104 #-}
happyOut104 :: (HappyAbsSyn ) -> (CExpr)
happyOut104 :: HappyAbsSyn -> CExpr
happyOut104 x :: HappyAbsSyn
x = HappyAbsSyn -> CExpr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut104 #-}
happyIn105 :: (Reversed [CExpr]) -> (HappyAbsSyn )
happyIn105 :: Reversed [CExpr] -> HappyAbsSyn
happyIn105 x :: Reversed [CExpr]
x = Reversed [CExpr] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [CExpr]
x
{-# INLINE happyIn105 #-}
happyOut105 :: (HappyAbsSyn ) -> (Reversed [CExpr])
happyOut105 :: HappyAbsSyn -> Reversed [CExpr]
happyOut105 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [CExpr]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut105 #-}
happyIn106 :: (CExpr) -> (HappyAbsSyn )
happyIn106 :: CExpr -> HappyAbsSyn
happyIn106 x :: CExpr
x = CExpr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CExpr
x
{-# INLINE happyIn106 #-}
happyOut106 :: (HappyAbsSyn ) -> (CExpr)
happyOut106 :: HappyAbsSyn -> CExpr
happyOut106 x :: HappyAbsSyn
x = HappyAbsSyn -> CExpr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut106 #-}
happyIn107 :: (Located CUnaryOp) -> (HappyAbsSyn )
happyIn107 :: Located CUnaryOp -> HappyAbsSyn
happyIn107 x :: Located CUnaryOp
x = Located CUnaryOp -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Located CUnaryOp
x
{-# INLINE happyIn107 #-}
happyOut107 :: (HappyAbsSyn ) -> (Located CUnaryOp)
happyOut107 :: HappyAbsSyn -> Located CUnaryOp
happyOut107 x :: HappyAbsSyn
x = HappyAbsSyn -> Located CUnaryOp
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut107 #-}
happyIn108 :: (CExpr) -> (HappyAbsSyn )
happyIn108 :: CExpr -> HappyAbsSyn
happyIn108 x :: CExpr
x = CExpr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CExpr
x
{-# INLINE happyIn108 #-}
happyOut108 :: (HappyAbsSyn ) -> (CExpr)
happyOut108 :: HappyAbsSyn -> CExpr
happyOut108 x :: HappyAbsSyn
x = HappyAbsSyn -> CExpr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut108 #-}
happyIn109 :: (CExpr) -> (HappyAbsSyn )
happyIn109 :: CExpr -> HappyAbsSyn
happyIn109 x :: CExpr
x = CExpr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CExpr
x
{-# INLINE happyIn109 #-}
happyOut109 :: (HappyAbsSyn ) -> (CExpr)
happyOut109 :: HappyAbsSyn -> CExpr
happyOut109 x :: HappyAbsSyn
x = HappyAbsSyn -> CExpr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut109 #-}
happyIn110 :: (CExpr) -> (HappyAbsSyn )
happyIn110 :: CExpr -> HappyAbsSyn
happyIn110 x :: CExpr
x = CExpr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CExpr
x
{-# INLINE happyIn110 #-}
happyOut110 :: (HappyAbsSyn ) -> (CExpr)
happyOut110 :: HappyAbsSyn -> CExpr
happyOut110 x :: HappyAbsSyn
x = HappyAbsSyn -> CExpr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut110 #-}
happyIn111 :: (CExpr) -> (HappyAbsSyn )
happyIn111 :: CExpr -> HappyAbsSyn
happyIn111 x :: CExpr
x = CExpr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CExpr
x
{-# INLINE happyIn111 #-}
happyOut111 :: (HappyAbsSyn ) -> (CExpr)
happyOut111 :: HappyAbsSyn -> CExpr
happyOut111 x :: HappyAbsSyn
x = HappyAbsSyn -> CExpr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut111 #-}
happyIn112 :: (CExpr) -> (HappyAbsSyn )
happyIn112 :: CExpr -> HappyAbsSyn
happyIn112 x :: CExpr
x = CExpr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CExpr
x
{-# INLINE happyIn112 #-}
happyOut112 :: (HappyAbsSyn ) -> (CExpr)
happyOut112 :: HappyAbsSyn -> CExpr
happyOut112 x :: HappyAbsSyn
x = HappyAbsSyn -> CExpr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut112 #-}
happyIn113 :: (CExpr) -> (HappyAbsSyn )
happyIn113 :: CExpr -> HappyAbsSyn
happyIn113 x :: CExpr
x = CExpr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CExpr
x
{-# INLINE happyIn113 #-}
happyOut113 :: (HappyAbsSyn ) -> (CExpr)
happyOut113 :: HappyAbsSyn -> CExpr
happyOut113 x :: HappyAbsSyn
x = HappyAbsSyn -> CExpr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut113 #-}
happyIn114 :: (CExpr) -> (HappyAbsSyn )
happyIn114 :: CExpr -> HappyAbsSyn
happyIn114 x :: CExpr
x = CExpr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CExpr
x
{-# INLINE happyIn114 #-}
happyOut114 :: (HappyAbsSyn ) -> (CExpr)
happyOut114 :: HappyAbsSyn -> CExpr
happyOut114 x :: HappyAbsSyn
x = HappyAbsSyn -> CExpr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut114 #-}
happyIn115 :: (CExpr) -> (HappyAbsSyn )
happyIn115 :: CExpr -> HappyAbsSyn
happyIn115 x :: CExpr
x = CExpr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CExpr
x
{-# INLINE happyIn115 #-}
happyOut115 :: (HappyAbsSyn ) -> (CExpr)
happyOut115 :: HappyAbsSyn -> CExpr
happyOut115 x :: HappyAbsSyn
x = HappyAbsSyn -> CExpr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut115 #-}
happyIn116 :: (CExpr) -> (HappyAbsSyn )
happyIn116 :: CExpr -> HappyAbsSyn
happyIn116 x :: CExpr
x = CExpr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CExpr
x
{-# INLINE happyIn116 #-}
happyOut116 :: (HappyAbsSyn ) -> (CExpr)
happyOut116 :: HappyAbsSyn -> CExpr
happyOut116 x :: HappyAbsSyn
x = HappyAbsSyn -> CExpr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut116 #-}
happyIn117 :: (CExpr) -> (HappyAbsSyn )
happyIn117 :: CExpr -> HappyAbsSyn
happyIn117 x :: CExpr
x = CExpr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CExpr
x
{-# INLINE happyIn117 #-}
happyOut117 :: (HappyAbsSyn ) -> (CExpr)
happyOut117 :: HappyAbsSyn -> CExpr
happyOut117 x :: HappyAbsSyn
x = HappyAbsSyn -> CExpr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut117 #-}
happyIn118 :: (CExpr) -> (HappyAbsSyn )
happyIn118 :: CExpr -> HappyAbsSyn
happyIn118 x :: CExpr
x = CExpr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CExpr
x
{-# INLINE happyIn118 #-}
happyOut118 :: (HappyAbsSyn ) -> (CExpr)
happyOut118 :: HappyAbsSyn -> CExpr
happyOut118 x :: HappyAbsSyn
x = HappyAbsSyn -> CExpr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut118 #-}
happyIn119 :: (CExpr) -> (HappyAbsSyn )
happyIn119 :: CExpr -> HappyAbsSyn
happyIn119 x :: CExpr
x = CExpr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CExpr
x
{-# INLINE happyIn119 #-}
happyOut119 :: (HappyAbsSyn ) -> (CExpr)
happyOut119 :: HappyAbsSyn -> CExpr
happyOut119 x :: HappyAbsSyn
x = HappyAbsSyn -> CExpr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut119 #-}
happyIn120 :: (CExpr) -> (HappyAbsSyn )
happyIn120 :: CExpr -> HappyAbsSyn
happyIn120 x :: CExpr
x = CExpr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CExpr
x
{-# INLINE happyIn120 #-}
happyOut120 :: (HappyAbsSyn ) -> (CExpr)
happyOut120 :: HappyAbsSyn -> CExpr
happyOut120 x :: HappyAbsSyn
x = HappyAbsSyn -> CExpr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut120 #-}
happyIn121 :: (Located CAssignOp) -> (HappyAbsSyn )
happyIn121 :: Located CAssignOp -> HappyAbsSyn
happyIn121 x :: Located CAssignOp
x = Located CAssignOp -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Located CAssignOp
x
{-# INLINE happyIn121 #-}
happyOut121 :: (HappyAbsSyn ) -> (Located CAssignOp)
happyOut121 :: HappyAbsSyn -> Located CAssignOp
happyOut121 x :: HappyAbsSyn
x = HappyAbsSyn -> Located CAssignOp
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut121 #-}
happyIn122 :: (CExpr) -> (HappyAbsSyn )
happyIn122 :: CExpr -> HappyAbsSyn
happyIn122 x :: CExpr
x = CExpr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CExpr
x
{-# INLINE happyIn122 #-}
happyOut122 :: (HappyAbsSyn ) -> (CExpr)
happyOut122 :: HappyAbsSyn -> CExpr
happyOut122 x :: HappyAbsSyn
x = HappyAbsSyn -> CExpr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut122 #-}
happyIn123 :: (Reversed [CExpr]) -> (HappyAbsSyn )
happyIn123 :: Reversed [CExpr] -> HappyAbsSyn
happyIn123 x :: Reversed [CExpr]
x = Reversed [CExpr] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [CExpr]
x
{-# INLINE happyIn123 #-}
happyOut123 :: (HappyAbsSyn ) -> (Reversed [CExpr])
happyOut123 :: HappyAbsSyn -> Reversed [CExpr]
happyOut123 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [CExpr]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut123 #-}
happyIn124 :: (Maybe CExpr) -> (HappyAbsSyn )
happyIn124 :: Maybe CExpr -> HappyAbsSyn
happyIn124 x :: Maybe CExpr
x = Maybe CExpr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Maybe CExpr
x
{-# INLINE happyIn124 #-}
happyOut124 :: (HappyAbsSyn ) -> (Maybe CExpr)
happyOut124 :: HappyAbsSyn -> Maybe CExpr
happyOut124 x :: HappyAbsSyn
x = HappyAbsSyn -> Maybe CExpr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut124 #-}
happyIn125 :: (Maybe CExpr) -> (HappyAbsSyn )
happyIn125 :: Maybe CExpr -> HappyAbsSyn
happyIn125 x :: Maybe CExpr
x = Maybe CExpr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Maybe CExpr
x
{-# INLINE happyIn125 #-}
happyOut125 :: (HappyAbsSyn ) -> (Maybe CExpr)
happyOut125 :: HappyAbsSyn -> Maybe CExpr
happyOut125 x :: HappyAbsSyn
x = HappyAbsSyn -> Maybe CExpr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut125 #-}
happyIn126 :: (CExpr) -> (HappyAbsSyn )
happyIn126 :: CExpr -> HappyAbsSyn
happyIn126 x :: CExpr
x = CExpr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CExpr
x
{-# INLINE happyIn126 #-}
happyOut126 :: (HappyAbsSyn ) -> (CExpr)
happyOut126 :: HappyAbsSyn -> CExpr
happyOut126 x :: HappyAbsSyn
x = HappyAbsSyn -> CExpr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut126 #-}
happyIn127 :: (CConst) -> (HappyAbsSyn )
happyIn127 :: CConst -> HappyAbsSyn
happyIn127 x :: CConst
x = CConst -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CConst
x
{-# INLINE happyIn127 #-}
happyOut127 :: (HappyAbsSyn ) -> (CConst)
happyOut127 :: HappyAbsSyn -> CConst
happyOut127 x :: HappyAbsSyn
x = HappyAbsSyn -> CConst
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut127 #-}
happyIn128 :: (CStrLit) -> (HappyAbsSyn )
happyIn128 :: CStrLit -> HappyAbsSyn
happyIn128 x :: CStrLit
x = CStrLit -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CStrLit
x
{-# INLINE happyIn128 #-}
happyOut128 :: (HappyAbsSyn ) -> (CStrLit)
happyOut128 :: HappyAbsSyn -> CStrLit
happyOut128 x :: HappyAbsSyn
x = HappyAbsSyn -> CStrLit
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut128 #-}
happyIn129 :: (Reversed [CString]) -> (HappyAbsSyn )
happyIn129 :: Reversed [CString] -> HappyAbsSyn
happyIn129 x :: Reversed [CString]
x = Reversed [CString] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [CString]
x
{-# INLINE happyIn129 #-}
happyOut129 :: (HappyAbsSyn ) -> (Reversed [CString])
happyOut129 :: HappyAbsSyn -> Reversed [CString]
happyOut129 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [CString]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut129 #-}
happyIn130 :: (ClangCVersion) -> (HappyAbsSyn )
happyIn130 :: ClangCVersion -> HappyAbsSyn
happyIn130 x :: ClangCVersion
x = ClangCVersion -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ClangCVersion
x
{-# INLINE happyIn130 #-}
happyOut130 :: (HappyAbsSyn ) -> (ClangCVersion)
happyOut130 :: HappyAbsSyn -> ClangCVersion
happyOut130 x :: HappyAbsSyn
x = HappyAbsSyn -> ClangCVersion
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut130 #-}
happyIn131 :: (Ident) -> (HappyAbsSyn )
happyIn131 :: Ident -> HappyAbsSyn
happyIn131 x :: Ident
x = Ident -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Ident
x
{-# INLINE happyIn131 #-}
happyOut131 :: (HappyAbsSyn ) -> (Ident)
happyOut131 :: HappyAbsSyn -> Ident
happyOut131 x :: HappyAbsSyn
x = HappyAbsSyn -> Ident
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut131 #-}
happyIn132 :: ([CAttr]) -> (HappyAbsSyn )
happyIn132 :: [CAttr] -> HappyAbsSyn
happyIn132 x :: [CAttr]
x = [CAttr] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# [CAttr]
x
{-# INLINE happyIn132 #-}
happyOut132 :: (HappyAbsSyn ) -> ([CAttr])
happyOut132 :: HappyAbsSyn -> [CAttr]
happyOut132 x :: HappyAbsSyn
x = HappyAbsSyn -> [CAttr]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut132 #-}
happyIn133 :: ([CAttr]) -> (HappyAbsSyn )
happyIn133 :: [CAttr] -> HappyAbsSyn
happyIn133 x :: [CAttr]
x = [CAttr] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# [CAttr]
x
{-# INLINE happyIn133 #-}
happyOut133 :: (HappyAbsSyn ) -> ([CAttr])
happyOut133 :: HappyAbsSyn -> [CAttr]
happyOut133 x :: HappyAbsSyn
x = HappyAbsSyn -> [CAttr]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut133 #-}
happyIn134 :: ([CAttr]) -> (HappyAbsSyn )
happyIn134 :: [CAttr] -> HappyAbsSyn
happyIn134 x :: [CAttr]
x = [CAttr] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# [CAttr]
x
{-# INLINE happyIn134 #-}
happyOut134 :: (HappyAbsSyn ) -> ([CAttr])
happyOut134 :: HappyAbsSyn -> [CAttr]
happyOut134 x :: HappyAbsSyn
x = HappyAbsSyn -> [CAttr]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut134 #-}
happyIn135 :: (Reversed [CAttr]) -> (HappyAbsSyn )
happyIn135 :: Reversed [CAttr] -> HappyAbsSyn
happyIn135 x :: Reversed [CAttr]
x = Reversed [CAttr] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [CAttr]
x
{-# INLINE happyIn135 #-}
happyOut135 :: (HappyAbsSyn ) -> (Reversed [CAttr])
happyOut135 :: HappyAbsSyn -> Reversed [CAttr]
happyOut135 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [CAttr]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut135 #-}
happyIn136 :: (Maybe CAttr) -> (HappyAbsSyn )
happyIn136 :: Maybe CAttr -> HappyAbsSyn
happyIn136 x :: Maybe CAttr
x = Maybe CAttr -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Maybe CAttr
x
{-# INLINE happyIn136 #-}
happyOut136 :: (HappyAbsSyn ) -> (Maybe CAttr)
happyOut136 :: HappyAbsSyn -> Maybe CAttr
happyOut136 x :: HappyAbsSyn
x = HappyAbsSyn -> Maybe CAttr
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut136 #-}
happyIn137 :: (Reversed [CExpr]) -> (HappyAbsSyn )
happyIn137 :: Reversed [CExpr] -> HappyAbsSyn
happyIn137 x :: Reversed [CExpr]
x = Reversed [CExpr] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Reversed [CExpr]
x
{-# INLINE happyIn137 #-}
happyOut137 :: (HappyAbsSyn ) -> (Reversed [CExpr])
happyOut137 :: HappyAbsSyn -> Reversed [CExpr]
happyOut137 x :: HappyAbsSyn
x = HappyAbsSyn -> Reversed [CExpr]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut137 #-}
happyInTok :: (CToken) -> (HappyAbsSyn )
happyInTok :: CToken -> HappyAbsSyn
happyInTok x :: CToken
x = CToken -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CToken
x
{-# INLINE happyInTok #-}
happyOutTok :: (HappyAbsSyn ) -> (CToken)
happyOutTok :: HappyAbsSyn -> CToken
happyOutTok x :: HappyAbsSyn
x = HappyAbsSyn -> CToken
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOutTok #-}
happyExpList :: HappyAddr
happyExpList :: HappyAddr
happyExpList = Addr# -> HappyAddr
HappyA# "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\xd0\x4a\xfa\x1f\x5e\xb2\xfb\x81\x07\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x98\x54\x1a\x00\x1e\x80\x44\xc0\xdf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x80\xd0\x4a\xfa\x1f\x5e\xb2\xfb\x81\x07\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x66\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xff\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x90\xa0\xa4\xfe\xc5\x01\x27\x9d\xff\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x10\x00\x00\x80\x05\x00\x02\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x98\x54\x1a\x00\x1e\x80\x44\xc0\xdf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\xab\xa5\xff\xe1\x7d\xab\x3f\x38\xc0\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb0\x5a\xf2\x1f\xde\xb7\xa8\x03\x02\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xaa\x25\xff\xc1\x79\x8b\x3a\x20\xc0\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xb0\x10\x10\x00\xc2\x87\x28\x02\x02\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x0a\x01\x01\x00\x78\x88\x22\x20\xc0\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb0\x10\x10\x00\xc2\x87\x28\x02\x02\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x01\x01\x00\x78\x88\x22\x20\xc0\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\xb0\x5a\xfa\x1f\xde\xb7\xfa\x83\x03\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x10\x00\x00\x80\x05\x00\x02\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\xa9\xa4\xff\xe1\x25\xab\x1f\x38\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\xd0\x4a\xfa\x1f\x5e\xb2\xfb\x81\x07\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\xa0\xa4\xfe\xc5\x01\x27\x9d\xff\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x4a\xea\x5f\x1c\x70\xd2\xf9\xff\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x02\x01\x00\x00\x58\x00\x20\x28\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xa9\xa4\xff\xe1\x25\xbb\x1f\x30\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa9\xa4\xff\xe1\x25\xab\x1f\x38\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\xc0\x00\xf8\xfe\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\xb0\x5a\xfa\x1f\xde\xb7\xfa\x83\x03\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x98\x54\x1a\x00\x1e\x80\x44\xc0\xdf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\xa4\xfe\xc1\x01\x23\x1d\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4a\xea\x1f\x1c\x30\xd2\x01\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x90\xa0\xa4\xfe\xc5\x01\x27\x9d\xff\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x90\xa0\xa4\xfe\xc5\x01\x27\x9d\xff\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x09\x4a\xea\x5f\x1c\x70\xd2\xf9\xff\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x5a\xe2\x1f\x9c\x35\x80\x03\x02\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x01\x00\x00\x58\x00\x20\x20\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x10\x00\x00\x80\x05\x00\x02\x02\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\xa2\xa5\xfe\xc1\x59\x23\x3d\x30\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4a\xea\x1f\x1c\x30\xd2\x01\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x48\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x09\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa2\xa5\xfe\xc1\x59\x23\x3d\x30\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\xa9\xa4\xff\xe1\x25\xab\x1f\x30\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x80\x49\xa5\x01\xe0\x01\x48\x04\xfc\xfd\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x98\xfd\xbe\xff\xff\xa5\xff\xdf\xff\x5f\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x98\x54\x1a\x00\x1e\x80\x44\xc0\xdf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa9\xa4\xff\xe1\x25\xbb\x1f\x30\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xa9\xa4\xff\xe1\x25\xbb\x1f\x30\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x4a\xea\x5f\x1c\x70\xd2\xf9\xff\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xa9\xa4\xff\xe1\x25\xbb\x1f\x30\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa9\xa4\xff\xe1\x25\xab\x1f\x30\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x20\x10\x00\x00\x80\x05\x00\x82\x03\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xa9\xa4\xff\xe1\x25\xbb\x1f\x30\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x4a\xea\x5f\x1c\x70\xd2\xf9\xff\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x91\x4a\xfa\x1f\x5e\xb2\xfb\x01\x03\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x02\x01\x00\x04\x58\x04\xa0\xef\x9f\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfe\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\xb0\x5a\xfa\x1f\xde\xb7\xfa\x83\x03\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb0\x10\x10\x00\xc2\x87\x28\x02\x02\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x01\x01\x00\x78\x88\x22\x20\xc0\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\xb0\x5a\xfa\x1f\xde\xb7\xfa\x83\x03\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa9\xa4\xff\xe1\x25\xab\x1f\x30\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\xab\xa5\xff\xe1\x7d\xab\x3f\x38\xc0\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\xab\xa5\xff\xe1\x7d\xab\x3f\x38\xc0\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x90\x4a\xfa\x1f\x5e\xb2\xfa\x81\x03\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\xa0\xa4\xfe\xc5\x01\x27\x9d\xff\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x91\x4a\xfa\x1f\x5e\xb2\xfb\x01\x03\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x20\x10\x00\x00\x80\x05\x00\x82\x02\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x02\x01\x00\x00\x58\x00\x20\x28\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x09\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\xb0\x5a\xfa\x1f\xde\xb7\xfa\x83\x03\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xa9\xa4\xff\xe1\x25\xab\x1f\x30\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xab\xa5\xff\xe1\x7d\xab\x3f\x30\xc0\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\xa9\xa4\xff\xe1\x25\xab\x1f\x38\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x90\x4a\xfa\x1f\x5e\xb2\xfa\x81\x03\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x01\x00\x00\x58\x00\x20\x20\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x28\x10\x00\x40\x80\x45\x00\xfa\xfc\x19\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x02\x01\x00\x04\x58\x04\xa0\xef\x9f\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\xa0\xa4\xfe\xc5\x01\x27\x9d\xff\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x91\x4a\xfa\x1f\x5e\xb2\xfb\x01\x03\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\xa0\xa4\xfe\xc1\x01\x23\x1d\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x20\x10\x00\x00\x80\x05\x00\x82\x03\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x80\x49\xa5\x01\xe0\x01\x48\x04\xfc\xfd\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x98\x54\x1a\x00\x1e\x80\x44\xc0\xdf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x80\x49\xa5\x01\xe0\x01\x48\x04\xfc\xfd\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x98\xfd\xbe\xff\xff\xa5\xff\xdf\xff\x5f\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\xb0\x5a\xfa\x1f\xde\xb7\xfa\x83\x03\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\xb0\x5a\xfa\x1f\xde\xb7\xfa\x83\x03\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x98\x4a\xfa\x5f\x5e\xf2\xfb\xf9\xff\x65\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4a\xea\x1f\x1c\x30\xd2\x01\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\xa4\xfe\xc1\x01\x23\x1d\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\xa4\xfe\xc1\x01\x23\x1d\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xca\xea\x1f\x1c\x30\xd2\x01\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x20\x10\x00\x00\x80\x05\x00\x02\x02\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x90\x4a\xfa\x1f\x5e\xb2\xfa\x01\x03\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xca\x3f\x01\x08\x00\x90\x00\x00\x00\x04\x00\x04\x80\xdf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x90\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x04\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xca\x3f\x01\x08\x00\x90\x00\x00\x00\x04\x00\x04\x80\xdf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x01\x00\x00\x58\x00\x20\x20\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\xab\xa5\xff\xe1\x7d\xab\x3f\x38\xc0\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x98\x54\x1a\x00\x1e\x80\x44\xc0\xdf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x02\x01\x00\x00\x58\x00\x20\x38\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x4a\xea\x1f\x1c\x30\xd2\x01\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa2\xa5\xfe\xc1\x59\x23\x3d\x30\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x04\x00\x00\x4a\xea\x1f\x1c\x30\xd2\x81\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\xa4\xfe\xc1\x01\x23\x1d\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\x02\x01\x00\x00\x58\x00\x20\x38\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\xa9\xa4\xff\xe1\x25\xab\x1f\x38\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x20\x10\x00\x00\x80\x05\x00\x82\x02\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x90\x4a\xfa\x1f\x5e\xb2\xfa\x81\x03\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x02\x01\x00\x00\x58\x00\x20\x38\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xff\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x02\x01\x00\x00\x58\x00\x20\x28\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x20\x10\x00\x00\x80\x05\x00\x82\x03\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa2\xa5\xfe\xc1\x59\x23\x3d\x30\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x02\x01\x00\x00\x58\x00\x20\x38\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x98\x54\x1a\x00\x1e\x80\x44\xc0\xdf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\xac\xfe\xc1\x01\x23\x1d\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xca\x3f\x01\x08\x00\xb0\x00\x00\x00\x04\x00\x04\x80\xdf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x09\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\xfc\x13\x80\x00\x00\x0b\x00\x00\x40\x00\x40\x00\xf8\xfd\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x3f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xff\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x80\x49\xa5\x01\xe0\x01\x48\x04\xfc\xfd\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x98\x54\x1a\x00\x1e\x80\x44\xc0\xdf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x3f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
{-# NOINLINE happyExpListPerState #-}
happyExpListPerState :: Int -> [[Char]]
happyExpListPerState st :: Int
st =
[[Char]]
token_strs_expected
where token_strs :: [[Char]]
token_strs = ["error","%dummy","%start_translation_unit","%start_external_declaration","%start_statement","%start_expression","translation_unit","ext_decl_list","external_declaration","function_definition","function_declarator","statement","labeled_statement","compound_statement","enter_scope","leave_scope","block_item_list","block_item","nested_declaration","nested_function_definition","label_declarations","expression_statement","selection_statement","iteration_statement","jump_statement","asm_statement","maybe_type_qualifier","asm_operands","nonnull_asm_operands","asm_operand","asm_clobbers","declaration","declaration_list","default_declaring_list","asm_attrs_opt","declaring_list","declaration_specifier","declaration_qualifier_list","declaration_qualifier","declaration_qualifier_without_types","storage_class","function_specifier","alignment_specifier","type_specifier","basic_type_name","basic_declaration_specifier","basic_type_specifier","sue_declaration_specifier","sue_type_specifier","typedef_declaration_specifier","typedef_type_specifier","elaborated_type_name","struct_or_union_specifier","struct_or_union","struct_declaration_list","struct_declaration","struct_default_declaring_list","struct_declaring_list","struct_declarator","struct_identifier_declarator","enum_specifier","enumerator_list","enumerator","type_qualifier","type_qualifier_list","declarator","asm_opt","typedef_declarator","parameter_typedef_declarator","clean_typedef_declarator","clean_postfix_typedef_declarator","paren_typedef_declarator","paren_postfix_typedef_declarator","simple_paren_typedef_declarator","identifier_declarator","unary_identifier_declarator","postfix_identifier_declarator","paren_identifier_declarator","function_declarator_old","old_function_declarator","postfix_old_function_declarator","parameter_type_list","parameter_list","parameter_declaration","identifier_list","type_name","abstract_declarator","postfixing_abstract_declarator","array_abstract_declarator","postfix_array_abstract_declarator","unary_abstract_declarator","postfix_abstract_declarator","initializer","initializer_opt","initializer_list","designation","designator_list","designator","array_designator","primary_expression","generic_assoc_list","generic_assoc","offsetof_member_designator","postfix_expression","argument_expression_list","unary_expression","unary_operator","cast_expression","multiplicative_expression","additive_expression","shift_expression","relational_expression","equality_expression","and_expression","exclusive_or_expression","inclusive_or_expression","logical_and_expression","logical_or_expression","conditional_expression","assignment_expression","assignment_operator","expression","comma_expression","expression_opt","assignment_expression_opt","constant_expression","constant","string_literal","string_literal_list","clang_version_literal","identifier","attrs_opt","attrs","attr","attribute_list","attribute","attribute_params","'('","')'","'['","']'","\"->\"","'.'","'!'","'~'","\"++\"","\"--\"","'+'","'-'","'*'","'/'","'%'","'&'","\"<<\"","\">>\"","'<'","\"<=\"","'>'","\">=\"","\"==\"","\"!=\"","'^'","'|'","\"&&\"","\"||\"","'?'","':'","'='","\"+=\"","\"-=\"","\"*=\"","\"/=\"","\"%=\"","\"&=\"","\"^=\"","\"|=\"","\"<<=\"","\">>=\"","','","';'","'{'","'}'","\"...\"","alignof","alignas","\"_Atomic\"","asm","auto","break","\"_Bool\"","case","char","const","continue","\"_Complex\"","default","do","double","else","enum","extern","float","\"_Float32\"","\"_Float32x\"","\"_Float64\"","\"_Float64x\"","\"_Float128\"","\"_Float128x\"","\"__float128\"","for","\"_Generic\"","goto","if","inline","int","\"__int128\"","long","\"__label__\"","\"_Noreturn\"","\"_Nullable\"","\"_Nonnull\"","register","restrict","return","short","signed","sizeof","static","\"_Static_assert\"","struct","switch","typedef","typeof","\"__thread\"","union","unsigned","void","volatile","while","cchar","cint","cfloat","cstr","ident","tyident","\"__attribute__\"","\"__extension__\"","\"__real__\"","\"__imag__\"","\"__builtin_va_arg\"","\"__builtin_offsetof\"","\"__builtin_types_compatible_p\"","\"__builtin_convertvector\"","clangcversion","\"__kernel\"","\"__read_only\"","\"__write_only\"","\"__global\"","\"__local\"","%eof"]
bit_start :: Int
bit_start = Int
st Int -> Int -> Int
forall a. Num a => a -> a -> a
* 260
bit_end :: Int
bit_end = (Int
st Int -> Int -> Int
forall a. Num a => a -> a -> a
+ 1) Int -> Int -> Int
forall a. Num a => a -> a -> a
* 260
read_bit :: Int -> Bool
read_bit = HappyAddr -> Int -> Bool
readArrayBit HappyAddr
happyExpList
bits :: [Bool]
bits = (Int -> Bool) -> [Int] -> [Bool]
forall a b. (a -> b) -> [a] -> [b]
map Int -> Bool
read_bit [Int
bit_start..Int
bit_end Int -> Int -> Int
forall a. Num a => a -> a -> a
- 1]
bits_indexed :: [(Bool, Int)]
bits_indexed = [Bool] -> [Int] -> [(Bool, Int)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Bool]
bits [0..259]
token_strs_expected :: [[Char]]
token_strs_expected = ((Bool, Int) -> [[Char]]) -> [(Bool, Int)] -> [[Char]]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (Bool, Int) -> [[Char]]
f [(Bool, Int)]
bits_indexed
f :: (Bool, Int) -> [[Char]]
f (False, _) = []
f (True, nr :: Int
nr) = [[[Char]]
token_strs [[Char]] -> Int -> [Char]
forall a. [a] -> Int -> a
!! Int
nr]
happyActOffsets :: HappyAddr
happyActOffsets :: HappyAddr
happyActOffsets = Addr# -> HappyAddr
HappyA# "\x00\x00\x53\x09\x04\x15\xb1\x17\x00\x00\xb1\x02\x00\x00\xcd\x02\x0a\x18\xb1\x17\x00\x00\x80\x01\xc0\x00\xd4\x00\x79\x02\x2f\x03\x32\x00\x71\x00\x01\x00\x8e\x00\x7f\x03\x00\x00\xb7\x00\x35\x00\x00\x00\x00\x00\x1c\x14\x00\x00\x00\x00\xcd\x17\xcd\x17\x00\x00\x00\x00\x00\x00\x00\x00\x4f\x03\xf9\x17\x05\x01\x41\x18\x00\x00\x00\x00\x00\x00\xdd\x00\x00\x00\x6d\x18\x89\x18\x89\x18\x10\x01\x70\x01\x82\x01\x96\x01\xf0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7b\x01\xae\x01\x00\x00\x00\x00\xe4\x09\x87\x01\xb5\x18\xa5\x01\xbe\x01\x04\x15\xea\x01\x23\x00\xee\x01\xb5\x18\x10\x02\x14\x02\xfe\x01\x00\x00\xc6\x01\x00\x00\x17\x02\x00\x00\xae\x03\x08\x04\x55\x01\xd9\x05\x00\x00\x00\x00\x00\x00\x00\x00\x55\x01\x00\x00\x04\x1f\x0e\x20\xc2\x1c\xf1\x1c\xc4\x1f\x3d\x20\x00\x00\x00\x00\xf7\x01\x00\x00\x32\x06\x00\x00\x00\x00\x00\x00\x23\x02\x00\x00\x00\x00\x00\x00\xe4\x09\x69\x0a\x00\x00\xe1\x00\xe1\x00\x65\x02\x69\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x07\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x77\x02\x00\x00\x00\x00\x94\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa8\x02\x53\x09\x00\x00\x00\x00\x00\x00\xfb\x01\x00\x00\xaa\x02\x90\x14\xb5\x18\xb2\x00\x2c\x02\x4c\x02\x90\x14\x01\x13\x00\x00\x00\x00\xfd\x00\xdb\x02\xac\x03\xe7\x02\xfd\x00\xc3\x02\x00\x00\x00\x00\x00\x00\xe8\x01\x00\x00\x00\x00\xfa\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x1d\x00\x00\xff\x02\x00\x00\xd8\x1d\x19\x0e\xdf\x02\x00\x00\x00\x00\x00\x00\x00\x00\xe8\x01\x00\x00\x8b\x06\x06\x03\x00\x00\xb4\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe3\x02\xe4\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xed\x02\x00\x00\x03\x00\x07\x00\x52\x02\xef\x02\x00\x00\x00\x00\x00\x00\xe8\x01\x00\x00\x00\x00\x27\x03\x00\x00\x0f\x03\x11\x03\x00\x00\xea\x02\x00\x00\xea\x02\x00\x00\x00\x00\xb5\x18\xb5\x18\x00\x00\x3f\x03\xb5\x18\x86\x03\xb5\x18\x00\x00\x8d\x03\x59\x03\x04\x15\x00\x00\x00\x00\x00\x00\x4b\x01\x00\x00\xb4\x03\x00\x00\x70\x03\x56\x03\x00\x00\xb5\x18\x27\x23\x27\x23\xb5\x18\x00\x00\x1c\x14\x00\x00\x00\x00\x5c\x03\x00\x00\x00\x00\x1c\x14\xb5\x18\x00\x00\x1c\x14\x00\x00\x00\x00\x00\x00\xc6\x03\xf4\x01\x8c\x21\xe7\x0d\xe7\x0d\xb0\x0d\xc9\x03\xd4\x03\x58\x23\xb5\x18\xb5\x18\x4f\x16\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\x00\x00\xb5\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x96\x16\xb5\x18\xd1\x03\xd1\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xda\x03\x0d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xaa\x03\xaa\x03\x49\x04\x49\x04\x46\x04\x46\x04\x46\x04\x46\x04\x79\x02\x79\x02\x4f\x04\xdb\x03\xf7\x03\xd9\x03\xf9\x03\xb5\x18\x00\x04\x00\x00\xf5\x03\x00\x00\xc3\x16\x00\x00\x00\x00\x00\x00\xc2\x03\x87\x20\xcb\x20\xe4\x06\xd4\x0f\x00\x00\x00\x00\x35\x04\x10\x04\x3d\x04\x00\x00\x48\x04\x23\x04\x56\x04\x5c\x04\x6c\x04\x04\x15\x19\x03\x0e\x04\x2d\x04\x0f\x04\x04\x15\xb5\x18\x00\x00\xa3\x04\x4f\x1f\x7c\x04\x80\x04\x00\x00\xa7\x04\x00\x00\xac\x04\xaf\x04\x4a\x01\x62\x01\x40\x1d\xad\x04\x59\x04\xd2\x04\x00\x00\x90\x14\x40\x1d\xc0\x04\x00\x00\x00\x00\x23\x1e\x25\x12\x00\x00\x00\x00\x3f\x00\x4a\x00\xef\x04\xf3\x04\x52\x02\x03\x01\x4a\x00\x00\x00\x40\x1d\xd8\x04\x00\x00\xd1\x04\x00\x00\x90\x14\xd4\x04\x00\x00\x00\x00\x00\x00\x00\x00\xe8\x01\x00\x00\x01\x05\x00\x00\x40\x1d\xeb\x04\x00\x00\x8d\x0e\x00\x00\x00\x05\x75\x0f\x1b\x00\x9f\x04\xd7\x00\x75\x04\xd7\x00\xc4\x1f\x3d\x20\xce\x04\x05\x05\xf0\x04\x00\x00\x10\x00\x8d\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x62\x01\x3d\x07\x62\x01\x96\x07\xc2\x0a\x90\x14\x40\x1d\x06\x05\x00\x00\x1d\x05\x13\x04\x0a\x01\x0a\x01\x52\x02\x00\x00\x52\x02\x00\x00\x52\x02\x00\x00\x00\x00\x30\x13\x2a\x05\x36\x05\x3a\x05\x15\x05\x7e\x04\x19\x05\x54\x05\x57\x05\xd1\xff\x11\x00\x00\x00\x00\x00\x5a\x05\x00\x00\x00\x00\xf6\x04\xce\x01\x00\x00\xe8\xff\x7e\x04\x32\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30\x13\x9c\x04\x00\x00\x52\x02\x00\x00\x0e\x17\x00\x00\x63\x05\x71\x05\x46\x05\x46\x05\xef\x07\x00\x00\x6a\x00\x86\x00\x46\x05\x00\x00\x13\x05\x8d\x1d\x00\x00\x18\x05\x00\x00\x6e\x1e\xb9\x1e\x27\x05\x70\x12\x18\x05\x18\x05\x00\x00\x80\x05\xf4\x11\x18\x05\x00\x00\x18\x05\x18\x05\x00\x00\xe7\x0d\xe9\x0f\x9e\x05\xae\x05\x1b\x00\x00\x00\xb0\x05\x5b\x05\x01\x0f\x1b\x00\x00\x00\x00\x00\x90\x14\x40\x1d\x72\x05\x00\x00\xb7\x05\xbc\x05\x33\x22\x00\x00\x00\x00\x00\x00\xa0\x04\xca\x05\x29\x01\xa7\x00\xcf\x05\x52\x02\x52\x02\xdb\x04\x00\x00\x00\x00\x00\x00\x75\x12\xc7\x00\x00\x00\x00\x00\xd5\x05\xda\x05\x74\x05\x00\x00\x00\x00\x00\x00\xdb\x05\xdb\x05\x04\x15\x04\x15\x04\x15\x00\x00\xb5\x18\xb5\x18\xb5\x18\xed\x05\x00\x00\x14\x00\x26\x05\x19\x03\xa4\x05\x00\x00\xe5\x05\x00\x00\x00\x00\x00\x00\x00\x00\x62\x01\x48\x08\x62\x01\xa1\x08\xf9\x05\x01\x04\x00\x00\x89\x23\x89\x23\xe8\x04\x89\x23\xfe\x05\xfe\x05\xf6\x22\xfe\x05\x4f\x13\x00\x00\x7b\x13\x23\x06\x2e\x06\x09\x00\x1b\x0b\x00\x00\x00\x00\x22\x16\xb5\x18\x00\x00\xb5\x18\x00\x00\xb5\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb8\x02\x0e\x17\xf7\x00\x00\x00\x16\x01\x00\x00\x17\x06\xb5\x18\xe8\x04\x22\x16\x35\x06\x41\x06\x0b\x00\x00\x00\x52\x02\x00\x00\x00\x00\x00\x00\x00\x00\xe7\x0d\x2c\x06\x17\x00\x00\x00\x36\x06\x62\x06\x02\x03\x00\x00\x64\x06\x66\x06\x00\x00\x3f\x06\xfa\x08\x3f\x06\x3f\x06\x3f\x06\x00\x00\x38\x05\x40\x06\x00\x00\x43\x06\x02\x00\x04\x15\x6e\x06\x53\x06\x58\x06\x4b\x06\x00\x00\x00\x00\x6f\x06\x6f\x06\x8e\x06\x00\x00\x00\x00\xe5\x04\x00\x00\x00\x00\xd2\x00\x00\x00\x00\x00\x00\x00\x00\x00\x79\x12\x52\x02\x00\x00\x6d\x22\x2f\x01\x00\x00\x6b\x05\x91\x05\x0f\x21\xf5\x18\x00\x00\x00\x00\xbc\x22\x00\x00\x00\x00\x00\x00\x00\x00\x9a\x06\xa4\x06\xac\x06\xb9\x06\x1b\x00\x54\x06\x00\x00\xbb\x06\x00\x00\x00\x00\xc0\x06\xb5\x18\x00\x00\x00\x00\x00\x00\xfd\x11\x1c\x12\xb7\x09\x00\x00\x00\x00\x9f\x12\xf3\x12\x10\x0a\x00\x00\x00\x00\x00\x00\x00\x00\xc9\x12\xd2\x00\xd2\x00\x94\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xbd\x02\x19\x00\xb5\x18\xda\x00\x00\x00\xc5\x06\x3a\x17\xc7\x06\xd1\xff\x00\x00\x00\x00\x0a\x18\x00\x00\xb1\x00\x00\x00\xb1\x06\x00\x00\x00\x00\x00\x00\xb5\x18\x78\x01\x00\x00\xd2\x00\x80\x13\xf8\x12\xd3\x06\x00\x00\x00\x00\xb5\x18\xde\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7c\x06\xdb\x06\xb5\x18\x2a\x01\x53\x21\xa5\x06\x00\x00\xa5\x06\x00\x00\xa5\x06\xf5\x06\xb5\x18\x00\x00\x00\x00\xf8\x12\xf9\x04\x00\x00\x00\x00\x00\x00\x00\x00\x04\x15\xb5\x18\xb5\x18\xeb\x06\x00\x00\x15\x00\xee\x06\x00\x00\x19\x07\x87\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf1\x06\x00\x00\x00\x00\x00\x00\x00\x00\xb5\x18\x97\x05\x00\x00\xb5\x18\x00\x00\xf6\x22\xb5\x18\x00\x00\x00\x00\x52\x02\x00\x00\xd0\x02\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa7\x15\x00\x00\x00\x00\x85\x17\x00\x00\x00\x00\xb5\x18\xd7\x15\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1b\x07\x00\x00\x1c\x07\x1e\x07\xb5\x18\x02\x00\x05\x07\x02\x00\x00\x00\x3e\x07\x40\x07\x00\x00\x00\x00\x00\x00\xb5\x18\x00\x00\x2a\x01\x2f\x01\xdf\x06\x00\x00\xb5\x18\x00\x00\x00\x00\x47\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb5\x18\xd1\x13\x00\x00\x00\x00\x00\x00\x0a\x18\x00\x00\x00\x00\x00\x00\xe5\x06\xe5\x06\x00\x00\x04\x15\x04\x15\x2f\x00\x00\x00\x00\x00\x69\x07\x02\x07\x02\x07\x00\x00\x00\x00\x6b\x07\x00\x00\x00\x00\x70\x07\x72\x07\x00\x00\x4b\x07\x0e\x07\x00\x00\x00\x00\x00\x00\xd1\x13\x00\x00\x00\x00\x00\x00\x48\x01\x00\x00\x00\x00\xb5\x18\xb5\x18\x77\x07\x79\x07\x6e\x07\x1f\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
happyGotoOffsets :: HappyAddr
happyGotoOffsets :: HappyAddr
happyGotoOffsets = Addr# -> HappyAddr
HappyA# "\x47\x06\xff\xff\xc4\x01\x11\x25\x93\x07\x3b\x00\x00\x00\x00\x00\x29\x07\xc4\x09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x72\x0b\x00\x00\x00\x00\xe1\x12\x28\x13\x00\x00\x00\x00\x00\x00\x00\x00\x30\x07\x8d\x13\x00\x00\xc3\x15\x00\x00\x00\x00\x00\x00\x38\x07\x00\x00\x61\x0c\x01\x16\x98\x16\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb9\x07\xfd\xff\x00\x00\x6f\x26\x00\x00\x00\x00\x48\x0e\x00\x00\x48\x07\x00\x00\x94\x24\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x07\x00\x00\x00\x00\x00\x00\xf8\x02\xdf\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd9\x0e\x00\x00\x90\x03\x3a\x01\x98\x02\x3f\x01\x77\x04\x52\x01\x00\x00\x00\x00\x9a\x04\x00\x00\xa3\x00\x00\x00\x00\x00\x00\x00\xe4\x04\xb0\x07\x00\x00\x00\x00\x98\x07\x37\x01\x00\x00\xe5\x09\x83\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xcf\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x77\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xca\x1a\x88\x26\x50\x07\x55\x07\x56\x07\xf2\x1b\xd9\x01\x00\x00\x00\x00\x94\x01\x00\x00\x1f\x05\x00\x00\x99\x02\xcb\x07\x00\x00\x00\x00\x00\x00\x50\x01\xc8\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb5\x09\x00\x00\x9f\x07\x00\x00\xf0\x19\xe4\x21\xe0\x07\x00\x00\x00\x00\x00\x00\x00\x00\x77\x01\xd3\x07\x0b\x01\x00\x00\x00\x00\x78\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfe\x07\x7c\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xec\x0d\x03\x0b\x3d\x05\x16\x08\x00\x00\x00\x00\x00\x00\xda\x01\x04\x08\x00\x00\x00\x00\x00\x00\x1a\x08\xdd\x01\x09\x08\x29\x05\x00\x00\x2c\x05\x00\x00\x00\x00\x2a\x25\x43\x25\x00\x00\x00\x00\x5c\x25\x00\x00\x75\x25\x00\x00\x37\x02\x00\x00\x30\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6c\x01\x30\x05\x00\x00\xa1\x26\xde\x18\x4d\x1c\xba\x26\x00\x00\xcd\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x0c\xd3\x26\x00\x00\x83\x0c\x00\x00\x00\x00\x00\x00\x00\x00\xdd\x02\x89\x00\xdc\xff\x5e\x00\x8f\x1c\x00\x00\x00\x00\xca\x00\x8e\x25\xc7\x28\xa7\x25\xe0\x28\x29\x1b\xaa\x1b\xa2\x1c\x0f\x1f\xf9\x28\xa3\x07\xfc\x07\x55\x08\xae\x08\x07\x09\x76\x0a\xab\x0b\xd7\x0e\x60\x0f\xa2\x11\x9a\x12\x00\x00\xec\x26\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x25\xd9\x25\xa9\x07\xac\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x95\x28\x00\x00\x00\x00\x00\x00\x00\x00\x35\x13\x00\x00\x00\x00\x00\x00\xab\x07\x28\x06\x00\x00\xb8\x19\x11\x11\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x10\xe1\x01\x21\x08\xdf\x07\xc2\x07\x1e\x10\x05\x27\x00\x00\x00\x00\x66\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x5b\x03\x29\x29\x8c\x0b\xe9\x07\x4c\x05\x00\x00\x00\x00\xf0\x1a\x42\x0c\xf4\x07\x00\x00\x00\x00\xff\x14\x9d\x10\x00\x00\x00\x00\x73\x06\xa9\x11\x00\x00\x00\x00\x96\x05\xd3\x03\x63\x14\x00\x00\xee\x0c\xf6\x07\x00\x00\x00\x00\x2e\x08\x4b\x1b\x3f\x08\x00\x00\x00\x00\x00\x00\x00\x00\x1a\x02\x53\x08\x00\x00\x00\x00\x17\x0d\x17\x08\x00\x00\xa4\x21\x00\x00\x00\x00\x77\x24\xa5\x05\xd4\xff\x13\x15\x0b\x1a\xee\x1c\xd0\x04\x66\x01\x4f\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x76\x05\x00\x00\x00\x00\x00\x00\x00\x00\x45\x29\xa6\x0e\x52\x29\x98\x0d\x55\x1a\x71\x1b\x55\x0d\x18\x08\x00\x00\x00\x00\xef\x05\xf3\x01\x39\x0c\x2a\x06\x00\x00\x48\x06\x00\x00\x4f\x06\x00\x00\x00\x00\x6a\x01\x00\x00\x00\x00\x00\x00\x00\x00\xc4\x00\x00\x00\x00\x00\x00\x00\x94\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf7\x07\x00\x00\x00\x00\xde\x05\xe3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7a\x04\x4f\x06\x00\x00\x52\x06\x00\x00\x24\x24\x00\x00\x00\x00\x00\x00\x1f\x02\x40\x02\xdb\x13\x00\x00\xbc\x0f\xa3\x16\x54\x02\x00\x00\x00\x00\xff\x03\x00\x00\x30\x06\x00\x00\x1c\x05\x00\x00\x80\x19\x6e\x10\x37\x06\x57\x06\x00\x00\x45\x19\x31\x16\x76\x06\x00\x00\x81\x06\xb0\x06\x00\x00\x50\x00\x7f\x22\x00\x00\x00\x00\xda\x06\x00\x00\x00\x00\x00\x00\xc3\x21\xe8\x06\x00\x00\x00\x00\xcc\x1b\x7e\x0d\x1b\x08\x00\x00\x00\x00\x00\x00\xa2\x0c\x41\x08\x00\x00\x00\x00\x17\x07\x00\x00\x6e\x02\x22\x0e\x00\x00\x35\x07\x53\x07\x5e\x07\x00\x00\x00\x00\x00\x00\x65\x03\x72\x19\x00\x00\x00\x00\x00\x00\x00\x00\xfa\x07\x00\x00\x00\x00\x00\x00\x57\x02\x75\x02\x8d\x10\xa7\x10\xc1\x10\x00\x00\xad\x24\xc6\x24\xf2\x25\x00\x00\x00\x00\x00\x00\x00\x00\x5c\x02\x28\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x78\x12\x7e\x01\x7f\x15\x63\x01\x00\x00\x6d\x15\x00\x00\x5c\x1c\x6b\x1c\x4e\x00\x7a\x1c\x00\x00\x00\x00\x38\x17\x00\x00\x0d\x0f\x00\x00\xbc\x06\x00\x00\x00\x00\xf8\x07\xbf\x1a\x00\x00\x00\x00\xa1\x23\x1e\x27\x00\x00\xae\x28\x00\x00\x37\x27\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x41\x24\x04\x06\x00\x00\x00\x00\x00\x00\x00\x00\x50\x27\x02\x08\xc6\x23\x00\x00\x00\x00\xfb\x07\x00\x00\x67\x07\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x75\x08\x99\x01\x7a\x08\x7c\x08\x7d\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x39\x00\x30\x11\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2f\x08\x3a\x08\x00\x00\x00\x00\x00\x00\x6a\x07\x00\x00\x00\x00\xef\x13\x00\x00\x00\x00\x00\x00\x00\x00\xda\x0b\x6d\x07\x00\x00\xe6\x11\xce\x1f\x00\x00\x00\x00\x00\x00\xce\x05\xd0\x0b\x00\x00\x00\x00\x8a\x14\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x62\x07\x80\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x27\x00\x00\x00\x00\x00\x00\xb7\x15\x0f\x07\x84\x1a\x00\x00\x00\x00\x0f\x0d\xb6\x06\x8a\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x40\x11\x02\x15\x95\x16\x7b\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x13\x08\x82\x27\xce\xff\x00\x00\x00\x00\x04\x24\x00\x00\x12\x08\x00\x00\x00\x00\x22\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9b\x27\xce\xff\x00\x00\x0c\x17\x6a\x01\x4f\x0a\x00\x00\x00\x00\x00\x00\xb4\x27\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x08\x00\x00\xcd\x27\xba\x05\x28\x06\x94\x07\x00\x00\x97\x07\x00\x00\x9a\x07\x00\x00\xe6\x27\x00\x00\x00\x00\x4f\x0a\xe7\x07\x00\x00\x00\x00\x00\x00\x00\x00\x4a\x11\xdf\x24\xf8\x24\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x92\x08\x00\x00\x00\x00\x00\x00\x00\x00\x0b\x26\x2a\x08\x00\x00\xff\x27\x00\x00\x8c\x0f\x18\x28\x00\x00\x00\x00\x05\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xea\x23\x00\x00\x00\x00\x5e\x24\x00\x00\x00\x00\x31\x28\xea\x23\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x26\x18\x00\x00\x00\x76\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4a\x28\x00\x00\x14\x06\x38\x29\x25\x08\x00\x00\x63\x28\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7c\x28\x8d\x05\x00\x00\x00\x00\x00\x00\x3d\x08\x00\x00\x00\x00\x00\x00\xed\x07\x31\x08\x00\x00\x64\x11\xd3\x11\x00\x00\x00\x00\x00\x00\x00\x00\x38\x08\x3e\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf4\xff\xba\x08\x00\x00\x00\x00\x4a\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x3d\x26\x56\x26\x00\x00\x00\x00\x00\x00\x4b\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
happyAdjustOffset :: Happy_GHC_Exts.Int# -> Happy_GHC_Exts.Int#
happyAdjustOffset :: Int# -> Int#
happyAdjustOffset off :: Int#
off = Int#
off
happyDefActions :: HappyAddr
happyDefActions :: HappyAddr
happyDefActions = Addr# -> HappyAddr
HappyA# "\xfa\xff\x1b\xfe\x00\x00\x00\x00\x00\x00\x1b\xfe\x7a\xfe\x6e\xfe\x5c\xfe\x00\x00\x5a\xfe\x56\xfe\x53\xfe\x50\xfe\x4b\xfe\x48\xfe\x46\xfe\x44\xfe\x42\xfe\x40\xfe\x3e\xfe\x3b\xfe\x2e\xfe\x00\x00\x8a\xfe\x89\xfe\x1b\xfe\x5d\xfe\x5e\xfe\x00\x00\x00\x00\x60\xfe\x5f\xfe\x61\xfe\x62\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x24\xfe\x25\xfe\x23\xfe\x22\xfe\x8b\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe4\xff\xe3\xff\xe2\xff\xe1\xff\xe0\xff\xdf\xff\xde\xff\x00\x00\x00\x00\xc7\xff\xd7\xff\xb5\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2a\xfe\x00\x00\x00\x00\x8b\xfe\x1c\xfe\x00\x00\xf7\xff\x00\x00\xf6\xff\x00\x00\x00\x00\x00\x00\x00\x00\x97\xff\x8d\xff\x8c\xff\x8b\xff\x00\x00\x62\xff\x9a\xff\x7d\xff\x99\xff\x7c\xff\x98\xff\x7b\xff\x57\xff\x3d\xff\x1b\xfe\x3c\xff\x00\x00\xe5\xff\xef\xfe\xed\xfe\xee\xfe\xa5\xff\xe0\xfe\xdf\xfe\x00\x00\x1a\xfe\x19\xfe\x00\x00\x1b\xfe\x00\x00\x00\x00\x87\xff\x71\xff\x79\xff\x70\xff\x74\xff\x1b\xfe\x89\xff\x75\xff\x6e\xff\x6d\xff\x6c\xff\x6b\xff\x6a\xff\x69\xff\x68\xff\x81\xff\x77\xff\x6f\xff\x76\xff\x80\xff\x86\xff\x78\xff\x73\xff\x88\xff\x00\x00\x38\xff\x8a\xff\x00\x00\x85\xff\x37\xff\x72\xff\x7a\xff\xe3\xfe\x4b\xff\x00\x00\x1b\xfe\x84\xff\x83\xff\x82\xff\x00\x00\xf5\xff\x00\x00\x1b\xfe\x00\x00\x00\x00\x1a\xfe\x00\x00\x1b\xfe\x00\x00\xec\xfe\xde\xfe\x1a\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x96\xff\x61\xff\x56\xff\x0b\xff\xa5\xff\x18\xfe\x00\x00\x45\xff\x10\xff\x13\xff\x18\xff\x15\xff\x14\xff\x16\xff\x17\xff\x12\xff\x11\xff\x1b\xfe\xe8\xfe\xbc\xfe\xba\xfe\xd9\xfe\x28\xfe\x00\x00\x95\xff\x60\xff\x55\xff\x0f\xff\x0b\xff\xa5\xff\x00\x00\x00\x00\x48\xff\x00\x00\x51\xff\x3f\xff\x3e\xff\x4d\xff\x91\xff\x8f\xff\x8e\xff\x90\xff\x4c\xff\x5a\xff\x53\xff\x52\xff\xa9\xff\x59\xff\x58\xff\xaa\xff\x66\xff\x5d\xff\x5e\xff\x5c\xff\x65\xff\x64\xff\x63\xff\x00\x00\x0b\xff\x0c\xff\x08\xff\x05\xff\x04\xff\x09\xff\xfb\xfe\x0d\xff\xa5\xff\x00\x00\x1b\xfe\x07\xff\x00\x00\x93\xff\x67\xff\x5b\xff\x0b\xff\xa5\xff\x92\xff\x00\x00\x50\xff\x00\x00\x0b\xff\xa5\xff\x1b\xfe\xa8\xff\x1b\xfe\xa7\xff\xf3\xff\x00\x00\x00\x00\x29\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x1d\xfe\x2a\xfe\x00\x00\x00\x00\xbc\xff\x5c\xfe\x26\xfe\x00\x00\xbb\xff\x00\x00\xb4\xff\xd5\xff\x1b\xfe\xc6\xff\x00\x00\x1b\xfe\x1b\xfe\x00\x00\x64\xfe\x1b\xfe\x65\xfe\x6b\xfe\x21\xfe\x20\xfe\x69\xfe\x1b\xfe\x00\x00\x67\xfe\x1b\xfe\x63\xfe\x6c\xfe\x6d\xfe\x00\x00\xc3\xfe\x7d\xff\x7c\xff\x7b\xff\x00\x00\x00\x00\x00\x00\x1a\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6a\xfe\x00\x00\x39\xfe\x35\xfe\x34\xfe\x38\xfe\x37\xfe\x36\xfe\x31\xfe\x30\xfe\x2f\xfe\x33\xfe\x32\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x74\xfe\x73\xfe\xf8\xff\xf9\xff\x76\xfe\x75\xfe\x00\x00\x00\x00\x70\xfe\x78\xfe\x3a\xfe\x57\xfe\x58\xfe\x59\xfe\x54\xfe\x55\xfe\x51\xfe\x52\xfe\x4c\xfe\x4e\xfe\x4d\xfe\x4f\xfe\x49\xfe\x4a\xfe\x47\xfe\x45\xfe\x43\xfe\x41\xfe\x00\x00\x00\x00\x3f\xfe\x2c\xfe\x2d\xfe\x88\xfe\x00\x00\xc0\xfe\xbd\xfe\xbf\xfe\xbe\xfe\x00\x00\xc1\xfe\xd9\xfe\xad\xfe\xc2\xfe\x86\xfe\x00\x00\x00\x00\x00\x00\x1f\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd6\xff\xd5\xff\x00\x00\x00\x00\x00\x00\x00\x00\xdb\xff\x00\x00\x1b\xfe\x00\x00\x00\x00\xbe\xff\x00\x00\xba\xff\x00\x00\x00\x00\x00\x00\x00\x00\x1b\xfe\x9b\xfe\x1b\xfe\x00\x00\xf1\xff\x1b\xfe\x1b\xfe\x9b\xfe\xef\xff\x06\xff\xd9\xfe\x00\x00\x03\xff\xf7\xfe\x1a\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf1\xfe\x1b\xfe\x9b\xfe\xf0\xff\x39\xff\x36\xff\x1b\xfe\x00\x00\x94\xff\x5f\xff\x54\xff\x0e\xff\x0b\xff\xa5\xff\x00\x00\x42\xff\x1b\xfe\x9b\xfe\xee\xff\x28\xfe\x27\xfe\x00\x00\x28\xfe\x61\xfe\x1b\xfe\xd4\xfe\xd0\xfe\xcd\xfe\x99\xff\x7c\xff\xc9\xfe\x00\x00\xd8\xfe\xd6\xfe\x00\x00\x1a\xfe\xc5\xfe\xb9\xfe\xec\xff\xa4\xff\x00\x00\x00\x00\x00\x00\x00\x00\x1a\xfe\x1b\xfe\x1b\xfe\x9b\xfe\xf2\xff\x00\x00\x00\x00\x00\x00\x1b\xfe\xdb\xfe\xe2\xfe\xe7\xfe\xeb\xfe\xee\xfe\xea\xfe\xdd\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x1f\xff\x00\x00\x00\x00\x00\x00\x00\x00\x14\xfe\x00\x00\x16\xfe\x12\xfe\x13\xfe\x4a\xff\x49\xff\x00\x00\x00\x00\x1e\xff\x1c\xff\x00\x00\x00\x00\x7e\xff\x7f\xff\xe9\xfe\xe6\xfe\xda\xfe\x00\x00\x00\x00\xe1\xfe\xe5\xfe\xa0\xff\x00\x00\xeb\xff\x00\x00\x00\x00\x0b\xff\x0b\xff\x00\x00\x0d\xff\x00\x00\x1b\xfe\x0b\xff\xdc\xfe\x00\x00\x1b\xfe\xbb\xfe\x1b\xfe\xc7\xfe\x00\x00\xc8\xfe\xd9\xfe\xad\xfe\x1b\xfe\x1b\xfe\xcc\xfe\xd9\xfe\xad\xfe\x1b\xfe\xcf\xfe\x1b\xfe\x1b\xfe\xd3\xfe\x1b\xfe\x00\x00\x00\x00\x00\x00\x61\xfe\xb8\xfe\x00\x00\x00\x00\x28\xfe\x61\xfe\xa2\xff\xe7\xff\x1b\xfe\x1b\xfe\x9b\xfe\xed\xff\x00\x00\x00\x00\x1b\xfe\x36\xff\x9c\xff\xe9\xff\x00\x00\x00\x00\x00\x00\x1b\xfe\x00\x00\xf4\xfe\xff\xfe\x00\x00\x02\xff\x01\xff\xf6\xfe\x00\x00\x00\x00\xa3\xff\xe8\xff\x00\x00\x00\x00\x00\x00\x9e\xff\x9d\xff\xea\xff\x0b\xff\x0b\xff\x00\x00\x00\x00\x00\x00\xbd\xff\x2a\xfe\x2a\xfe\x00\x00\x00\x00\xdc\xff\x00\x00\x00\x00\xd6\xff\x00\x00\xd3\xff\x00\x00\xd4\xff\xd2\xff\xd0\xff\xd1\xff\x00\x00\x00\x00\x00\x00\x00\x00\x4b\xff\x1b\xfe\xdd\xff\x1b\xfe\x1b\xfe\x00\x00\x1b\xfe\x00\x00\x68\xfe\x1b\xfe\x66\xfe\x1b\xfe\xab\xfe\xa9\xfe\x00\x00\x00\x00\x00\x00\x1a\xfe\x9f\xfe\x5b\xfe\x99\xfe\x00\x00\x3c\xfe\x00\x00\x77\xfe\x00\x00\x79\xfe\x6f\xfe\x3d\xfe\x2b\xfe\x98\xfe\x00\x00\x00\x00\x00\x00\x91\xfe\x92\xfe\x9e\xfe\x00\x00\x00\x00\x00\x00\x99\xfe\x00\x00\x00\x00\x00\x00\xa6\xfe\xa7\xfe\xa5\xfe\xa8\xfe\xaa\xfe\xac\xfe\x1a\xfe\x00\x00\x00\x00\x80\xfe\x00\x00\x00\x00\x00\x00\x7d\xfe\x00\x00\x00\x00\xcf\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd9\xff\x00\x00\x00\x00\xc9\xff\x00\x00\xb3\xff\x00\x00\x00\x00\x00\x00\x00\x00\xc5\xff\xc3\xff\xc2\xff\x9b\xfe\x9b\xfe\x00\x00\x4f\xff\x4e\xff\x00\x00\x00\xff\xf5\xfe\x00\x00\xfa\xfe\xfe\xfe\xf2\xfe\xf3\xfe\x00\x00\xfd\xfe\xf0\xfe\x1b\xfe\x2b\xff\x34\xff\x00\x00\x00\x00\x1b\xfe\x1a\xfe\x35\xff\x3a\xff\x1b\xfe\x47\xff\x46\xff\xa1\xff\xe6\xff\x00\x00\x00\x00\x00\x00\x00\x00\x61\xfe\x1b\xfe\xb6\xfe\x00\x00\xb7\xfe\xb1\xfe\x00\x00\x00\x00\xd2\xfe\xd1\xfe\xce\xfe\x1b\xfe\xa9\xfe\x1a\xfe\xcb\xfe\xca\xfe\x1b\xfe\xa9\xfe\x1a\xfe\xc6\xfe\xd5\xfe\xd7\xfe\xc4\xfe\x00\x00\x00\x00\x00\x00\x0b\xff\x44\xff\x43\xff\x9a\xfe\xe4\xfe\xf4\xff\x00\x00\x1b\xff\x00\x00\x00\x00\x23\xff\x00\x00\x00\x00\x00\x00\x14\xfe\x15\xfe\x17\xfe\x5c\xfe\x0f\xfe\x00\x00\x10\xfe\x00\x00\x1d\xff\x22\xff\x19\xff\x00\x00\x00\x00\x21\xff\x00\x00\x1a\xfe\x1a\xfe\x00\x00\xb4\xfe\xb0\xfe\x00\x00\x00\x00\xb5\xfe\xaf\xfe\x41\xff\x40\xff\x31\xff\x2f\xff\x27\xff\x00\x00\x00\x00\x1a\xfe\x1b\xfe\x33\xff\x1b\xfe\x32\xff\x1b\xfe\x2a\xff\x00\x00\x3b\xff\xfc\xfe\x00\x00\x00\x00\xf9\xfe\x0a\xff\x9b\xff\x9f\xff\x00\x00\x2a\xfe\x2a\xfe\x00\x00\xda\xff\x00\x00\xb2\xff\xb1\xff\x00\x00\x00\x00\xb9\xff\xd8\xff\xc8\xff\xce\xff\xcc\xff\xcd\xff\x00\x00\xcb\xff\x82\xfe\x83\xfe\x84\xfe\x00\x00\x00\x00\x85\xfe\x00\x00\x87\xfe\x1b\xfe\x00\x00\xa4\xfe\xa2\xfe\xa3\xfe\xa1\xfe\x00\x00\x8e\xfe\x00\x00\x93\xfe\x90\xfe\x8d\xfe\x94\xfe\x97\xfe\x00\x00\x72\xfe\x96\xfe\x00\x00\x71\xfe\x8f\xfe\x00\x00\x00\x00\x9d\xfe\xa0\xfe\x7f\xfe\x81\xfe\x7e\xfe\x7c\xfe\x00\x00\xca\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb3\xff\xc1\xff\x00\x00\x00\x00\xc4\xff\xf8\xfe\x29\xff\x00\x00\x2d\xff\x00\x00\x00\x00\x30\xff\x26\xff\x00\x00\x24\xff\xae\xfe\x00\x00\xb3\xfe\x20\xff\x1a\xff\xa6\xff\x11\xfe\x00\x00\x00\x00\x0d\xfe\x0e\xfe\x1e\xfe\x5c\xfe\x0c\xfe\xb2\xfe\x25\xff\x1b\xfe\x2e\xff\x28\xff\x00\x00\x00\x00\x00\x00\xb8\xff\xb0\xff\x00\x00\x00\x00\x00\x00\x7b\xfe\x9c\xfe\x00\x00\x95\xfe\x8c\xfe\x00\x00\x00\x00\xaf\xff\x00\x00\x00\x00\xd6\xff\xc0\xff\x2c\xff\x00\x00\x0b\xfe\x0a\xfe\xbf\xff\x00\x00\xac\xff\xb7\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xab\xff\xb6\xff\xad\xff\xae\xff"#
happyCheck :: HappyAddr
happyCheck :: HappyAddr
happyCheck = Addr# -> HappyAddr
HappyA# "\xff\xff\x02\x00\x03\x00\x04\x00\x01\x00\x03\x00\x38\x00\x1f\x00\x01\x00\x38\x00\x04\x00\x02\x00\x18\x00\x02\x00\x3a\x00\x02\x00\x0d\x00\x14\x00\x02\x00\x02\x00\x0d\x00\x39\x00\x02\x00\x02\x00\x19\x00\x02\x00\x1b\x00\x1a\x00\x1d\x00\x1e\x00\x1f\x00\x04\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x17\x00\x0d\x00\x02\x00\x1e\x00\x1e\x00\x2e\x00\x36\x00\x39\x00\x2a\x00\x1f\x00\x3a\x00\x2a\x00\x2a\x00\x6b\x00\x02\x00\x03\x00\x04\x00\x01\x00\x2a\x00\x10\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x7c\x00\x01\x00\x0d\x00\x1e\x00\x15\x00\x16\x00\x17\x00\x7d\x00\x7e\x00\x7f\x00\x19\x00\x6d\x00\x1b\x00\x0d\x00\x1d\x00\x1e\x00\x1f\x00\x7f\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x01\x00\x6a\x00\x79\x00\x6b\x00\x6c\x00\x6d\x00\x36\x00\x6b\x00\x6c\x00\x6d\x00\x3a\x00\x6d\x00\x0d\x00\x6d\x00\x02\x00\x03\x00\x04\x00\x7d\x00\x7e\x00\x7f\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x6d\x00\x01\x00\x6d\x00\x39\x00\x19\x00\x15\x00\x16\x00\x17\x00\x6b\x00\x6c\x00\x19\x00\x79\x00\x1b\x00\x0d\x00\x1d\x00\x1e\x00\x1f\x00\x39\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x04\x00\x01\x00\x1b\x00\x6b\x00\x6c\x00\x6d\x00\x36\x00\x60\x00\x26\x00\x7b\x00\x3a\x00\x79\x00\x02\x00\x0d\x00\x6b\x00\x6c\x00\x6d\x00\x7d\x00\x7e\x00\x7f\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x39\x00\x39\x00\x21\x00\x22\x00\x23\x00\x24\x00\x01\x00\x26\x00\x7c\x00\x0b\x00\x0c\x00\x7d\x00\x7e\x00\x7f\x00\x2d\x00\x2e\x00\x2f\x00\x01\x00\x0d\x00\x6b\x00\x6c\x00\x6d\x00\x01\x00\x36\x00\x03\x00\x2a\x00\x39\x00\x7f\x00\x2c\x00\x0d\x00\x2c\x00\x2a\x00\x01\x00\x04\x00\x0d\x00\x11\x00\x12\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x0d\x00\x79\x00\x26\x00\x6b\x00\x6c\x00\x6d\x00\x7d\x00\x7e\x00\x7f\x00\x2d\x00\x2e\x00\x2f\x00\x03\x00\x37\x00\x38\x00\x06\x00\x01\x00\x20\x00\x36\x00\x22\x00\x23\x00\x24\x00\x01\x00\x26\x00\x01\x00\x2d\x00\x7f\x00\x7f\x00\x0d\x00\x01\x00\x2d\x00\x2e\x00\x2f\x00\x04\x00\x0d\x00\x01\x00\x6b\x00\x6c\x00\x6d\x00\x36\x00\x1f\x00\x0d\x00\x39\x00\x03\x00\x37\x00\x38\x00\x06\x00\x6b\x00\x6c\x00\x6b\x00\x6c\x00\x7e\x00\x7f\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x01\x00\x01\x00\x21\x00\x22\x00\x23\x00\x24\x00\x01\x00\x26\x00\x6b\x00\x6c\x00\x6d\x00\x1f\x00\x0d\x00\x0d\x00\x2d\x00\x2e\x00\x2f\x00\x04\x00\x0d\x00\x6b\x00\x6c\x00\x6d\x00\x7c\x00\x36\x00\x6b\x00\x6c\x00\x39\x00\x6b\x00\x6c\x00\x6a\x00\x1e\x00\x7f\x00\x02\x00\x01\x00\x6b\x00\x1e\x00\x6d\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x01\x00\x0d\x00\x21\x00\x22\x00\x23\x00\x24\x00\x22\x00\x26\x00\x7f\x00\x7c\x00\x26\x00\x22\x00\x0d\x00\x01\x00\x2d\x00\x2e\x00\x2f\x00\x04\x00\x6b\x00\x1e\x00\x6d\x00\x7b\x00\x1c\x00\x36\x00\x6b\x00\x0d\x00\x6d\x00\x01\x00\x2a\x00\x39\x00\x22\x00\x6b\x00\x0a\x00\x6d\x00\x39\x00\x2e\x00\x0e\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x04\x00\x01\x00\x21\x00\x22\x00\x23\x00\x24\x00\x22\x00\x26\x00\x7f\x00\x39\x00\x3c\x00\x0d\x00\x0e\x00\x0f\x00\x2d\x00\x2e\x00\x2f\x00\x1c\x00\x6b\x00\x6b\x00\x6d\x00\x01\x00\x1c\x00\x36\x00\x6b\x00\x6c\x00\x39\x00\x04\x00\x20\x00\x39\x00\x22\x00\x23\x00\x24\x00\x39\x00\x26\x00\x2d\x00\x2b\x00\x44\x00\x45\x00\x46\x00\x47\x00\x2d\x00\x2e\x00\x2f\x00\x44\x00\x45\x00\x46\x00\x47\x00\x2b\x00\x3c\x00\x36\x00\x6b\x00\x7f\x00\x39\x00\x3c\x00\x7f\x00\x21\x00\x22\x00\x23\x00\x24\x00\x7f\x00\x26\x00\x6b\x00\x6c\x00\x44\x00\x45\x00\x46\x00\x47\x00\x2d\x00\x2e\x00\x2f\x00\x05\x00\x06\x00\x07\x00\x1e\x00\x6b\x00\x6c\x00\x36\x00\x2b\x00\x7f\x00\x39\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x44\x00\x45\x00\x46\x00\x47\x00\x1e\x00\x44\x00\x45\x00\x46\x00\x47\x00\x7e\x00\x7f\x00\x6b\x00\x6c\x00\x7f\x00\x05\x00\x06\x00\x07\x00\x7f\x00\x09\x00\x01\x00\x0b\x00\x0c\x00\x0d\x00\x01\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x01\x00\x1c\x00\x03\x00\x2a\x00\x1c\x00\x19\x00\x2d\x00\x1b\x00\x7f\x00\x1d\x00\x1e\x00\x1f\x00\x0d\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x01\x00\x39\x00\x7f\x00\x2c\x00\x01\x00\x3c\x00\x36\x00\x7f\x00\x3c\x00\x32\x00\x3a\x00\x1e\x00\x44\x00\x45\x00\x46\x00\x47\x00\x5d\x00\x49\x00\x4a\x00\x01\x00\x61\x00\x03\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x1c\x00\x73\x00\x45\x00\x46\x00\x47\x00\x1c\x00\x78\x00\x79\x00\x5d\x00\x08\x00\x7c\x00\x7b\x00\x61\x00\x2c\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x01\x00\x73\x00\x03\x00\x3c\x00\x7e\x00\x7f\x00\x78\x00\x79\x00\x3c\x00\x1c\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x05\x00\x06\x00\x07\x00\x6d\x00\x09\x00\x01\x00\x0b\x00\x0c\x00\x0d\x00\x01\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x1c\x00\x7e\x00\x7f\x00\x1c\x00\x6d\x00\x19\x00\x7b\x00\x1b\x00\x01\x00\x1d\x00\x1e\x00\x1f\x00\x3c\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x13\x00\x14\x00\x15\x00\x16\x00\x3c\x00\x1c\x00\x36\x00\x3c\x00\x5d\x00\x01\x00\x3a\x00\x1c\x00\x61\x00\x6d\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x01\x00\x73\x00\x01\x00\x75\x00\x3f\x00\x40\x00\x78\x00\x79\x00\x3c\x00\x01\x00\x45\x00\x46\x00\x47\x00\x6a\x00\x3c\x00\x20\x00\x5d\x00\x22\x00\x23\x00\x24\x00\x61\x00\x0d\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x01\x00\x73\x00\x03\x00\x39\x00\x05\x00\x06\x00\x78\x00\x79\x00\x09\x00\x0a\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x2b\x00\x02\x00\x45\x00\x46\x00\x47\x00\x30\x00\x2a\x00\x32\x00\x33\x00\x2d\x00\x35\x00\x2a\x00\x37\x00\x02\x00\x2d\x00\x3a\x00\x7e\x00\x7f\x00\x3d\x00\x2c\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x2a\x00\x01\x00\x04\x00\x2d\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x03\x00\x52\x00\x02\x00\x03\x00\x55\x00\x01\x00\x06\x00\x58\x00\x59\x00\x2c\x00\x5b\x00\x5c\x00\x5d\x00\x2c\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x32\x00\x7f\x00\x7f\x00\x2c\x00\x01\x00\x2c\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x76\x00\x01\x00\x10\x00\x79\x00\x7a\x00\x7b\x00\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x3b\x00\x1b\x00\x3d\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x2c\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x32\x00\x2b\x00\x2c\x00\x17\x00\x18\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x34\x00\x35\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\x6d\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x2b\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x1c\x00\x1d\x00\x10\x00\x39\x00\x44\x00\x45\x00\x46\x00\x47\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x1b\x00\x44\x00\x45\x00\x46\x00\x47\x00\x01\x00\x02\x00\x03\x00\x20\x00\x2b\x00\x22\x00\x23\x00\x24\x00\x01\x00\x26\x00\x0d\x00\x0e\x00\x0f\x00\x6b\x00\x6c\x00\x2f\x00\x30\x00\x31\x00\x66\x00\x33\x00\x51\x00\x35\x00\x6d\x00\x37\x00\x38\x00\x6a\x00\x3a\x00\x02\x00\x39\x00\x3d\x00\x02\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x02\x00\x4a\x00\x2a\x00\x2b\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x04\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x7f\x00\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x10\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x1a\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x7f\x00\x19\x00\x10\x00\x3f\x00\x40\x00\x01\x00\x02\x00\x03\x00\x1e\x00\x45\x00\x46\x00\x47\x00\x1b\x00\x1b\x00\x1e\x00\x1f\x00\x2a\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x6d\x00\x2f\x00\x30\x00\x2a\x00\x2b\x00\x33\x00\x36\x00\x35\x00\x02\x00\x37\x00\x3a\x00\x2a\x00\x3a\x00\x6b\x00\x6c\x00\x3d\x00\x02\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x02\x00\x4a\x00\x4d\x00\x2a\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x7f\x00\x52\x00\x0b\x00\x0c\x00\x55\x00\x11\x00\x12\x00\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x51\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x17\x00\x18\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\x76\x00\x03\x00\x6a\x00\x79\x00\x7a\x00\x7d\x00\x7e\x00\x7f\x00\x19\x00\x2a\x00\x1b\x00\x0d\x00\x1d\x00\x1e\x00\x1f\x00\x2a\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x2a\x00\x20\x00\x6b\x00\x22\x00\x23\x00\x24\x00\x36\x00\x01\x00\x02\x00\x03\x00\x3a\x00\x01\x00\x02\x00\x03\x00\x01\x00\x30\x00\x31\x00\x2b\x00\x33\x00\x02\x00\x35\x00\x2b\x00\x37\x00\x38\x00\x02\x00\x3a\x00\x39\x00\x02\x00\x3d\x00\x39\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x44\x00\x45\x00\x46\x00\x47\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x6d\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x1f\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x03\x00\x5d\x00\x01\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x01\x00\x02\x00\x03\x00\x1f\x00\x6b\x00\x6c\x00\x6d\x00\x7d\x00\x7e\x00\x7f\x00\x01\x00\x02\x00\x03\x00\x6b\x00\x6c\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x20\x00\x02\x00\x22\x00\x23\x00\x24\x00\x02\x00\x7f\x00\x1f\x00\x7e\x00\x7f\x00\x01\x00\x02\x00\x03\x00\x2c\x00\x30\x00\x31\x00\x2c\x00\x33\x00\x01\x00\x35\x00\x04\x00\x37\x00\x38\x00\x02\x00\x3a\x00\x39\x00\x1f\x00\x3d\x00\x6d\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7d\x00\x7e\x00\x7f\x00\x2a\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x02\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x1f\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x03\x00\x5d\x00\x02\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x51\x00\x52\x00\x53\x00\x02\x00\x6b\x00\x6c\x00\x6d\x00\x02\x00\x21\x00\x22\x00\x23\x00\x24\x00\x2c\x00\x26\x00\x2a\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x2d\x00\x2e\x00\x2f\x00\x7d\x00\x7e\x00\x7f\x00\x7f\x00\x2a\x00\x2b\x00\x36\x00\x6b\x00\x6c\x00\x39\x00\x02\x00\x30\x00\x31\x00\x02\x00\x33\x00\x01\x00\x35\x00\x2b\x00\x37\x00\x38\x00\x6a\x00\x3a\x00\x2a\x00\x2b\x00\x3d\x00\x02\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x51\x00\x52\x00\x53\x00\x02\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x32\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x6b\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x03\x00\x5d\x00\x6d\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x51\x00\x52\x00\x53\x00\x1f\x00\x6b\x00\x6c\x00\x6d\x00\x2a\x00\x2b\x00\x21\x00\x22\x00\x23\x00\x24\x00\x7f\x00\x26\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x04\x00\x2d\x00\x2e\x00\x2f\x00\x7d\x00\x7e\x00\x7f\x00\x7d\x00\x7e\x00\x7f\x00\x36\x00\x7d\x00\x7e\x00\x7f\x00\x30\x00\x31\x00\x04\x00\x33\x00\x04\x00\x35\x00\x5b\x00\x37\x00\x38\x00\x02\x00\x3a\x00\x2a\x00\x2b\x00\x3d\x00\x02\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7d\x00\x7e\x00\x7f\x00\x02\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x02\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x02\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x02\x00\x5d\x00\x6a\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x51\x00\x52\x00\x53\x00\x5d\x00\x6b\x00\x6c\x00\x6d\x00\x61\x00\x35\x00\x63\x00\x64\x00\x6b\x00\x6c\x00\x26\x00\x7f\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x2d\x00\x2e\x00\x2f\x00\x44\x00\x45\x00\x46\x00\x47\x00\x6b\x00\x6c\x00\x36\x00\x78\x00\x79\x00\x39\x00\x7b\x00\x30\x00\x31\x00\x1e\x00\x33\x00\x32\x00\x35\x00\x6b\x00\x37\x00\x38\x00\x2d\x00\x3a\x00\x80\x00\x81\x00\x3d\x00\x1e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7d\x00\x7e\x00\x7f\x00\x02\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x2c\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x02\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x1e\x00\x5d\x00\x02\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x51\x00\x52\x00\x53\x00\x02\x00\x6b\x00\x6c\x00\x6d\x00\x00\x00\x01\x00\x35\x00\x1e\x00\x7d\x00\x7e\x00\x7f\x00\x26\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x1e\x00\x2d\x00\x2e\x00\x2f\x00\x44\x00\x45\x00\x46\x00\x47\x00\x7e\x00\x7f\x00\x36\x00\x5b\x00\x5c\x00\x39\x00\x30\x00\x31\x00\x02\x00\x33\x00\x02\x00\x35\x00\x02\x00\x37\x00\x38\x00\x2c\x00\x3a\x00\x2d\x00\x2b\x00\x3d\x00\x02\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x51\x00\x52\x00\x53\x00\x2b\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x2b\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x3e\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x1f\x00\x5d\x00\x02\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x51\x00\x52\x00\x53\x00\x02\x00\x6b\x00\x6c\x00\x6d\x00\x51\x00\x52\x00\x53\x00\x51\x00\x52\x00\x53\x00\x02\x00\x7f\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x7d\x00\x7e\x00\x7f\x00\x04\x00\x3e\x00\x3f\x00\x40\x00\x7d\x00\x7e\x00\x7f\x00\x44\x00\x45\x00\x46\x00\x47\x00\x30\x00\x31\x00\x04\x00\x33\x00\x04\x00\x35\x00\x6d\x00\x37\x00\x38\x00\x04\x00\x3a\x00\x32\x00\x02\x00\x3d\x00\x02\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7d\x00\x7e\x00\x7f\x00\x04\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x2b\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x04\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x03\x00\x5d\x00\x6d\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x7f\x00\x7d\x00\x7e\x00\x7f\x00\x6b\x00\x6c\x00\x6d\x00\x1e\x00\x44\x00\x45\x00\x46\x00\x47\x00\x7d\x00\x7e\x00\x7f\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x6d\x00\x1e\x00\x30\x00\x31\x00\x2b\x00\x33\x00\x2a\x00\x35\x00\x01\x00\x37\x00\x38\x00\x2c\x00\x3a\x00\x04\x00\x04\x00\x3d\x00\x04\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7d\x00\x7e\x00\x7f\x00\x2b\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x7f\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x7f\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x02\x00\x5d\x00\x02\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x04\x00\x6d\x00\x3e\x00\x3f\x00\x40\x00\x6c\x00\x6d\x00\x6d\x00\x44\x00\x45\x00\x46\x00\x47\x00\x7d\x00\x7e\x00\x7f\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x7d\x00\x7e\x00\x7f\x00\x51\x00\x52\x00\x53\x00\x02\x00\x6a\x00\x30\x00\x31\x00\x04\x00\x33\x00\x01\x00\x35\x00\x01\x00\x37\x00\x38\x00\x2b\x00\x3a\x00\x6a\x00\x02\x00\x3d\x00\x02\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x51\x00\x52\x00\x53\x00\x6a\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x7f\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x01\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x2b\x00\x5d\x00\x72\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x51\x00\x52\x00\x53\x00\x5d\x00\x6b\x00\x6c\x00\x6d\x00\x61\x00\x7c\x00\x63\x00\x64\x00\x51\x00\x52\x00\x53\x00\x7a\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x51\x00\x52\x00\x53\x00\x51\x00\x52\x00\x53\x00\x51\x00\x52\x00\x53\x00\x08\x00\x78\x00\x79\x00\x7c\x00\x7b\x00\x30\x00\x31\x00\x07\x00\x33\x00\x1a\x00\x35\x00\x7c\x00\x37\x00\x38\x00\x79\x00\x3a\x00\x39\x00\x07\x00\x3d\x00\x7f\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7d\x00\x7e\x00\x7f\x00\x1a\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x07\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x1a\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x53\x00\x5d\x00\x7c\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x7d\x00\x7e\x00\x7f\x00\x5d\x00\x6b\x00\x6c\x00\x6d\x00\x61\x00\x07\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x7d\x00\x7e\x00\x7f\x00\x7d\x00\x7e\x00\x7f\x00\x7d\x00\x7e\x00\x7f\x00\x1a\x00\x78\x00\x79\x00\x07\x00\x1a\x00\x30\x00\x31\x00\x07\x00\x33\x00\x1a\x00\x35\x00\x7c\x00\x37\x00\x38\x00\x7c\x00\x3a\x00\x7f\x00\x0a\x00\x3d\x00\x4e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x51\x00\x52\x00\x53\x00\x79\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x57\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x07\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x57\x00\x5d\x00\x57\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x51\x00\x52\x00\x53\x00\x5d\x00\x6b\x00\x6c\x00\x6d\x00\x61\x00\x30\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x7d\x00\x7e\x00\x7f\x00\x1a\x00\x57\x00\x57\x00\x79\x00\x30\x00\x57\x00\x79\x00\x78\x00\x79\x00\x4e\x00\x7f\x00\x30\x00\x31\x00\x7f\x00\x33\x00\x07\x00\x35\x00\x7c\x00\x37\x00\x38\x00\x07\x00\x3a\x00\x07\x00\x07\x00\x3d\x00\x57\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x57\x00\x7f\x00\x81\x00\x72\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x07\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x7f\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x7f\x00\x5d\x00\x7c\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x72\x00\x7f\x00\x79\x00\x5d\x00\x6b\x00\x6c\x00\x6d\x00\x61\x00\x79\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x09\x00\x79\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\x58\x00\x59\x00\x01\x00\x5b\x00\xff\xff\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\xff\xff\xff\xff\xff\xff\x5d\x00\x6b\x00\x6c\x00\x6d\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\x58\x00\x59\x00\x01\x00\x5b\x00\xff\xff\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\xff\xff\xff\xff\xff\xff\x5d\x00\x6b\x00\x6c\x00\x6d\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\xff\xff\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x30\x00\xff\xff\x32\x00\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\xff\xff\xff\xff\x55\x00\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\x5c\x00\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x01\x00\xff\xff\x03\x00\xff\xff\x07\x00\xff\xff\x6b\x00\x6c\x00\x6d\x00\x6e\x00\xff\xff\xff\xff\x0d\x00\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\xff\xff\xff\xff\x79\x00\x7a\x00\x19\x00\xff\xff\x1b\x00\xff\xff\x1d\x00\x1e\x00\x1f\x00\xff\xff\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\x30\x00\xff\xff\xff\xff\x33\x00\x36\x00\x35\x00\xff\xff\x37\x00\x3a\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\xff\xff\xff\xff\x55\x00\xff\xff\xff\xff\x58\x00\x59\x00\x01\x00\x5b\x00\x03\x00\x5d\x00\x31\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x38\x00\x0d\x00\xff\xff\xff\xff\xff\xff\x5d\x00\x6b\x00\x6c\x00\x6d\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x45\x00\x46\x00\x47\x00\x76\x00\x49\x00\x4a\x00\x79\x00\x7a\x00\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x30\x00\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\x65\x00\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\x77\x00\x78\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\x7e\x00\x7f\x00\x55\x00\xff\xff\xff\xff\x58\x00\x59\x00\x01\x00\x5b\x00\xff\xff\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\x0d\x00\xff\xff\xff\xff\xff\xff\xff\xff\x6b\x00\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\xff\xff\x39\x00\x79\x00\x7a\x00\xff\xff\xff\xff\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\x30\x00\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\xff\xff\xff\xff\x55\x00\xff\xff\xff\xff\x58\x00\x59\x00\x01\x00\x5b\x00\xff\xff\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x7f\x00\x0d\x00\xff\xff\xff\xff\xff\xff\x5d\x00\x6b\x00\x6c\x00\x6d\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\xff\xff\x76\x00\xff\xff\xff\xff\x79\x00\x7a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x30\x00\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\xff\xff\xff\xff\x55\x00\xff\xff\xff\xff\x58\x00\x59\x00\x01\x00\x5b\x00\x03\x00\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\x0d\x00\xff\xff\xff\xff\xff\xff\xff\xff\x6b\x00\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\xff\xff\xff\xff\x79\x00\x7a\x00\x3a\x00\xff\xff\xff\xff\xff\xff\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\x30\x00\x49\x00\x4a\x00\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\xff\xff\xff\xff\x55\x00\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\xff\xff\x5d\x00\x07\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\xff\xff\x07\x00\x79\x00\x7a\x00\xff\xff\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\x19\x00\xff\xff\x1b\x00\x36\x00\x1d\x00\x1e\x00\x1f\x00\x3a\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\x3a\x00\xff\xff\xff\xff\xff\xff\x4f\x00\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\x49\x00\x4a\x00\xff\xff\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\x07\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x25\x00\x26\x00\xff\xff\x28\x00\x26\x00\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x2d\x00\x2e\x00\x2f\x00\x7d\x00\x7e\x00\x7f\x00\x36\x00\xff\xff\x35\x00\x36\x00\x3a\x00\x5d\x00\x7d\x00\x7e\x00\x7f\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\xff\xff\x39\x00\x44\x00\x45\x00\x46\x00\x47\x00\x3e\x00\x3f\x00\x40\x00\xff\xff\x4f\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\x07\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x07\x00\x7d\x00\x7e\x00\x7f\x00\x25\x00\x26\x00\x7f\x00\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x7e\x00\x7f\x00\xff\xff\x19\x00\xff\xff\x1b\x00\x36\x00\x1d\x00\x1e\x00\x1f\x00\x3a\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\x3a\x00\xff\xff\xff\xff\xff\xff\x4f\x00\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\x07\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\x5d\x00\x7d\x00\x7e\x00\x7f\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x4f\x00\x31\x00\x32\x00\x33\x00\xff\xff\xff\xff\x36\x00\x78\x00\x79\x00\xff\xff\x3a\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x07\x00\x73\x00\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\xff\xff\x19\x00\xff\xff\x1b\x00\xff\xff\x1d\x00\x1e\x00\x1f\x00\xff\xff\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x07\x00\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x19\x00\xff\xff\x1b\x00\xff\xff\x1d\x00\x1e\x00\x1f\x00\xff\xff\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\x39\x00\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\xff\xff\xff\xff\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x19\x00\xff\xff\x1b\x00\xff\xff\x1d\x00\x1e\x00\x1f\x00\xff\xff\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x07\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\x7d\x00\x7e\x00\x7f\x00\x3a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x19\x00\xff\xff\x1b\x00\xff\xff\x1d\x00\x1e\x00\x1f\x00\xff\xff\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\x01\x00\xff\xff\x03\x00\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\x21\x00\x22\x00\x23\x00\x24\x00\x0d\x00\x26\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\x39\x00\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\x31\x00\xff\xff\xff\xff\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\x65\x00\x7e\x00\x7f\x00\x31\x00\xff\xff\x01\x00\xff\xff\x6c\x00\x6d\x00\xff\xff\x38\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x77\x00\x78\x00\x10\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\x1b\x00\x49\x00\x4a\x00\xff\xff\xff\xff\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x2f\x00\xff\xff\x31\x00\xff\xff\x65\x00\x05\x00\x06\x00\x07\x00\xff\xff\x38\x00\xff\xff\xff\xff\x6d\x00\xff\xff\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x3a\x00\xff\xff\x77\x00\x78\x00\x3e\x00\x3f\x00\x40\x00\x4a\x00\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\x7e\x00\x7f\x00\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\xff\xff\xff\xff\x5a\x00\x5b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x65\x00\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\xff\xff\x77\x00\x78\x00\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x1b\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\x2f\x00\xff\xff\x31\x00\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x7c\x00\x38\x00\x20\x00\xff\xff\x22\x00\x23\x00\x24\x00\xff\xff\x26\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x2d\x00\x2e\x00\x2f\x00\xff\xff\x4a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\x04\x00\xff\xff\x39\x00\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\xff\xff\xff\xff\x5a\x00\x5b\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\xff\xff\xff\xff\x65\x00\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\xff\xff\x77\x00\x78\x00\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x1b\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\xff\xff\x7f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x2f\x00\xff\xff\x31\x00\xff\xff\x5d\x00\x05\x00\x06\x00\x07\x00\x61\x00\x38\x00\x63\x00\x64\x00\x65\x00\x66\x00\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\xff\xff\x39\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4a\x00\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\xff\xff\xff\xff\x5a\x00\x5b\x00\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\xff\xff\xff\xff\xff\xff\x65\x00\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\xff\xff\x77\x00\x78\x00\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x5d\x00\xff\xff\xff\xff\x1b\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\x2f\x00\xff\xff\x31\x00\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x7c\x00\x38\x00\xff\xff\xff\xff\xff\xff\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\x5d\x00\xff\xff\x4a\x00\xff\xff\x61\x00\x36\x00\x63\x00\x64\x00\x65\x00\x3a\x00\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\xff\xff\xff\xff\x5a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\xff\xff\x03\x00\x78\x00\x79\x00\x65\x00\x4f\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x0d\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\x5f\x00\x77\x00\x78\x00\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\x1b\x00\x31\x00\x05\x00\x06\x00\x07\x00\x7d\x00\x7e\x00\x7f\x00\x38\x00\xff\xff\xff\xff\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\xff\xff\xff\xff\x2f\x00\xff\xff\x31\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x38\x00\xff\xff\x05\x00\x06\x00\x07\x00\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\x4a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x65\x00\x7e\x00\x7f\x00\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x6d\x00\xff\xff\x5a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x77\x00\x78\x00\xff\xff\x65\x00\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x5d\x00\xff\xff\x77\x00\x78\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\x5d\x00\xff\xff\x7c\x00\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\x05\x00\x06\x00\x07\x00\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x7c\x00\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\xff\xff\x05\x00\x06\x00\x07\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\xff\xff\xff\xff\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\xff\xff\xff\xff\x05\x00\x06\x00\x07\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\x39\x00\xff\xff\xff\xff\xff\xff\xff\xff\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\x49\x00\x4a\x00\xff\xff\xff\xff\x5d\x00\x7d\x00\x7e\x00\x7f\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\xff\xff\x5d\x00\x78\x00\x79\x00\xff\xff\x61\x00\x7c\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\x7e\x00\x7f\x00\xff\xff\x5d\x00\x78\x00\x79\x00\xff\xff\x61\x00\x7c\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\x05\x00\x06\x00\x07\x00\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x7c\x00\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\xff\xff\x05\x00\x06\x00\x07\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\xff\xff\xff\xff\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\xff\xff\xff\xff\x05\x00\x06\x00\x07\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\x39\x00\xff\xff\xff\xff\xff\xff\xff\xff\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x7d\x00\x7e\x00\x7f\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\xff\xff\x5d\x00\x78\x00\x79\x00\xff\xff\x61\x00\x7c\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\x7e\x00\x7f\x00\xff\xff\x5d\x00\x78\x00\x79\x00\xff\xff\x61\x00\x7c\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\x05\x00\x06\x00\x07\x00\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x7c\x00\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\xff\xff\x49\x00\x4a\x00\xff\xff\x01\x00\xff\xff\x03\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x5d\x00\x03\x00\x0d\x00\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\xff\xff\xff\xff\x0d\x00\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\x31\x00\x32\x00\x33\x00\x78\x00\x79\x00\x36\x00\x01\x00\xff\xff\x03\x00\x3a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x31\x00\x01\x00\x7e\x00\x7f\x00\x0d\x00\xff\xff\xff\xff\x38\x00\xff\xff\x31\x00\xff\xff\x5d\x00\xff\xff\x0d\x00\xff\xff\x61\x00\x38\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\x53\x00\x54\x00\xff\xff\x56\x00\x78\x00\x79\x00\x31\x00\xff\xff\x7c\x00\x53\x00\x54\x00\xff\xff\x56\x00\x38\x00\xff\xff\x31\x00\xff\xff\xff\xff\x65\x00\xff\xff\xff\xff\xff\xff\x38\x00\xff\xff\x6b\x00\x6c\x00\x6d\x00\x65\x00\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\x6b\x00\x6c\x00\x6d\x00\x77\x00\x78\x00\xff\xff\xff\xff\x53\x00\x54\x00\x01\x00\x56\x00\x03\x00\x77\x00\x78\x00\x01\x00\xff\xff\x53\x00\x54\x00\x01\x00\x56\x00\x04\x00\x0d\x00\xff\xff\xff\xff\xff\xff\x65\x00\x0d\x00\xff\xff\xff\xff\xff\xff\x0d\x00\x6b\x00\x6c\x00\x6d\x00\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6b\x00\x6c\x00\x6d\x00\x77\x00\x78\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x77\x00\x78\x00\xff\xff\xff\xff\x01\x00\x31\x00\x03\x00\xff\xff\xff\xff\xff\xff\x31\x00\xff\xff\x38\x00\xff\xff\x31\x00\xff\xff\x0d\x00\x38\x00\xff\xff\xff\xff\xff\xff\x38\x00\xff\xff\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x53\x00\x54\x00\x01\x00\x56\x00\x53\x00\x54\x00\xff\xff\x56\x00\x31\x00\xff\xff\xff\xff\xff\xff\xff\xff\x65\x00\x0d\x00\x38\x00\xff\xff\xff\xff\x65\x00\x6b\x00\xff\xff\x6d\x00\x65\x00\xff\xff\x6b\x00\x6c\x00\x6d\x00\xff\xff\x6b\x00\x6c\x00\x6d\x00\x77\x00\x78\x00\xff\xff\xff\xff\xff\xff\x77\x00\x78\x00\xff\xff\xff\xff\x77\x00\x78\x00\x53\x00\x54\x00\x01\x00\x56\x00\x03\x00\x5d\x00\xff\xff\x01\x00\x31\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x0d\x00\x38\x00\x01\x00\xff\xff\x65\x00\x0d\x00\xff\xff\xff\xff\xff\xff\xff\xff\x6b\x00\xff\xff\x6d\x00\xff\xff\x0d\x00\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x77\x00\x78\x00\xff\xff\xff\xff\xff\xff\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\xff\xff\xff\xff\xff\xff\x31\x00\xff\xff\xff\xff\xff\xff\xff\xff\x31\x00\xff\xff\x38\x00\xff\xff\xff\xff\x65\x00\xff\xff\x38\x00\x01\x00\x31\x00\xff\xff\x6b\x00\x6c\x00\x6d\x00\xff\xff\xff\xff\x38\x00\xff\xff\xff\xff\xff\xff\x0d\x00\x5d\x00\xff\xff\x77\x00\x78\x00\x61\x00\xff\xff\x63\x00\x64\x00\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x01\x00\xff\xff\x03\x00\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\x65\x00\x78\x00\x79\x00\xff\xff\x0d\x00\x65\x00\x6b\x00\xff\xff\x6d\x00\x31\x00\xff\xff\x6b\x00\x6c\x00\x6d\x00\x65\x00\xff\xff\x38\x00\xff\xff\x77\x00\x78\x00\x6b\x00\xff\xff\x6d\x00\x77\x00\x78\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x77\x00\x78\x00\xff\xff\xff\xff\x01\x00\xff\xff\x03\x00\xff\xff\x31\x00\x01\x00\xff\xff\x53\x00\x54\x00\x5d\x00\x56\x00\x38\x00\x0d\x00\x61\x00\xff\xff\x63\x00\x64\x00\x0d\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x65\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x6b\x00\xff\xff\x6d\x00\xff\xff\xff\xff\x78\x00\x79\x00\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x77\x00\x78\x00\xff\xff\xff\xff\xff\xff\x31\x00\x78\x00\x79\x00\xff\xff\xff\xff\x31\x00\xff\xff\x38\x00\x65\x00\xff\xff\xff\xff\xff\xff\x38\x00\xff\xff\xff\xff\xff\xff\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x77\x00\x78\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\x01\x00\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\x65\x00\x10\x00\xff\xff\xff\xff\xff\xff\x65\x00\xff\xff\xff\xff\x6d\x00\xff\xff\x5d\x00\x6b\x00\x1b\x00\x6d\x00\x61\x00\xff\xff\x63\x00\x64\x00\x77\x00\x78\x00\xff\xff\xff\xff\xff\xff\x77\x00\x78\x00\xff\xff\xff\xff\xff\xff\x21\x00\x22\x00\x23\x00\x24\x00\x2f\x00\x26\x00\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\x39\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4a\x00\xff\xff\x01\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\x5a\x00\x10\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\x1b\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\xff\xff\x2c\x00\xff\xff\xff\xff\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\x7f\x00\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\x4a\x00\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\x59\x00\x5a\x00\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\xff\xff\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\x1b\x00\x49\x00\x4a\x00\xff\xff\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\x31\x00\x32\x00\x33\x00\xff\xff\x2f\x00\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\x4a\x00\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\x59\x00\x5a\x00\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\xff\xff\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1e\x00\x1f\x00\x1b\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x2b\x00\x2c\x00\xff\xff\xff\xff\x2f\x00\xff\xff\x36\x00\x32\x00\xff\xff\x34\x00\x3a\x00\x36\x00\xff\xff\xff\xff\x39\x00\xff\xff\x3b\x00\x3c\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\x4b\x00\x4c\x00\x4d\x00\x49\x00\x4a\x00\x4b\x00\x4c\x00\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\x57\x00\xff\xff\xff\xff\x5a\x00\xff\xff\xff\xff\xff\xff\x5e\x00\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\xff\xff\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x0c\x00\x0d\x00\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\x7e\x00\x7f\x00\xff\xff\x04\x00\xff\xff\xff\xff\x19\x00\xff\xff\x1b\x00\xff\xff\x1d\x00\x1e\x00\x1f\x00\xff\xff\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\x01\x00\xff\xff\x03\x00\xff\xff\xff\xff\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x1b\x00\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x2c\x00\x2d\x00\xff\xff\x2f\x00\xff\xff\x01\x00\xff\xff\x03\x00\xff\xff\xff\xff\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x78\x00\x79\x00\x10\x00\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\x39\x00\x4a\x00\x1b\x00\xff\xff\xff\xff\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\x5a\x00\xff\xff\x2c\x00\x2d\x00\xff\xff\x2f\x00\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x4a\x00\xff\xff\x01\x00\x61\x00\x03\x00\x63\x00\x64\x00\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\x5a\x00\x10\x00\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\x1b\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\xff\xff\xff\xff\x2c\x00\xff\xff\x01\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\x5d\x00\x10\x00\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\x3a\x00\x4a\x00\x1e\x00\xff\xff\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\x78\x00\x79\x00\xff\xff\x5a\x00\xff\xff\x2f\x00\xff\xff\xff\xff\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\xff\xff\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\x02\x00\x4a\x00\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\x5a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x1b\x00\xff\xff\xff\xff\xff\xff\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\x3a\x00\x1b\x00\xff\xff\x4a\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\xff\xff\xff\xff\x2c\x00\x5a\x00\xff\xff\x2f\x00\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\xff\xff\xff\xff\x4a\x00\xff\xff\x01\x00\x78\x00\x79\x00\xff\xff\x7e\x00\x7f\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\x5a\x00\x10\x00\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\xff\xff\xff\xff\x2c\x00\x01\x00\x02\x00\x2f\x00\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\xff\xff\x1b\x00\xff\xff\xff\xff\x4a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x5a\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\xff\xff\x4a\x00\xff\xff\x01\x00\x4f\x00\xff\xff\xff\xff\x7e\x00\x7f\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\x5a\x00\x10\x00\x5e\x00\x5f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\xff\xff\xff\xff\x2c\x00\x01\x00\xff\xff\x2f\x00\x7d\x00\x7e\x00\x7f\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\x01\x00\x4a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\x5a\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\xff\xff\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\x4a\x00\x2f\x00\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\x5a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\xff\xff\x4a\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\xff\xff\x5a\x00\x2f\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\x4a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\x5a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\xff\xff\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\xff\xff\x2f\x00\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\x01\x00\x4a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\x5a\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\xff\xff\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\x4a\x00\x2f\x00\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\x5a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\xff\xff\x4a\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\xff\xff\x5a\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\x01\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\xff\xff\x4a\x00\xff\xff\xff\xff\x0d\x00\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\x5a\x00\xff\xff\xff\xff\xff\xff\x1e\x00\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x35\x00\xff\xff\x37\x00\x4f\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\x6b\x00\x6c\x00\x6d\x00\x1e\x00\x1f\x00\xff\xff\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\xff\xff\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\xff\xff\x4b\x00\x4c\x00\x4d\x00\xff\xff\xff\xff\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\xff\xff\xff\xff\xff\xff\x1e\x00\x1f\x00\xff\xff\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x36\x00\x45\x00\x46\x00\x47\x00\x3a\x00\x49\x00\x4a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\xff\xff\x4b\x00\x4c\x00\x4d\x00\xff\xff\xff\xff\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x1e\x00\x1f\x00\xff\xff\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\x7e\x00\x7f\x00\x3a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\x4b\x00\x4c\x00\x4d\x00\xff\xff\xff\xff\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x1e\x00\x1f\x00\xff\xff\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\x20\x00\xff\xff\x22\x00\x23\x00\x24\x00\xff\xff\x26\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x2d\x00\x2e\x00\x2f\x00\x4b\x00\x4c\x00\x4d\x00\x4e\x00\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\x39\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x21\x00\x22\x00\x23\x00\x24\x00\xff\xff\x26\x00\x21\x00\x22\x00\x23\x00\x24\x00\xff\xff\x26\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\x2d\x00\x2e\x00\x2f\x00\x36\x00\xff\xff\xff\xff\x39\x00\xff\xff\x7f\x00\x36\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x21\x00\x22\x00\x23\x00\x24\x00\xff\xff\x26\x00\x21\x00\x22\x00\x23\x00\x24\x00\xff\xff\x26\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\x2d\x00\x2e\x00\x2f\x00\x36\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\xff\xff\x45\x00\x46\x00\x47\x00\xff\xff\x7e\x00\x7f\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\x7f\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x21\x00\x22\x00\x23\x00\x24\x00\xff\xff\x26\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x2d\x00\x2e\x00\x2f\x00\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\x36\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\x7f\x00\x3a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x7f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x25\x00\x26\x00\xff\xff\x28\x00\x4f\x00\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\x5d\x00\xff\xff\xff\xff\x3a\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\x7f\x00\x4f\x00\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x25\x00\x26\x00\xff\xff\x28\x00\x4f\x00\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\x5d\x00\xff\xff\xff\xff\x3a\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\x4f\x00\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\x25\x00\x26\x00\xff\xff\x28\x00\x4f\x00\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\x5d\x00\xff\xff\xff\xff\x3a\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\x4f\x00\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x77\x00\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\x25\x00\x26\x00\x36\x00\x28\x00\xff\xff\x2a\x00\x3a\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\x25\x00\x26\x00\x36\x00\x28\x00\xff\xff\x2a\x00\x3a\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\x4f\x00\xff\xff\xff\xff\x25\x00\x26\x00\x36\x00\x28\x00\xff\xff\x2a\x00\x3a\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\x4f\x00\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\x26\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4f\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\x39\x00\x4f\x00\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\x2b\x00\xff\xff\xff\xff\xff\xff\xff\xff\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x7d\x00\x7e\x00\x7f\x00\x38\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x40\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x7e\x00\x7f\x00\x4d\x00\xff\xff\xff\xff\xff\xff\xff\xff\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\x78\x00\x79\x00\x2b\x00\x5b\x00\xff\xff\xff\xff\xff\xff\x5f\x00\x31\x00\x61\x00\x33\x00\xff\xff\xff\xff\x65\x00\xff\xff\x38\x00\xff\xff\xff\xff\x3e\x00\x3f\x00\x40\x00\x6d\x00\xff\xff\x40\x00\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\xff\xff\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5b\x00\xff\xff\xff\xff\xff\xff\x5f\x00\xff\xff\x61\x00\xff\xff\xff\xff\xff\xff\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x2c\x00\xff\xff\xff\xff\xff\xff\x30\x00\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\xff\xff\xff\xff\x55\x00\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\x5c\x00\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\xff\xff\xff\xff\x79\x00\x7a\x00\x2e\x00\xff\xff\x30\x00\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\xff\xff\xff\xff\x55\x00\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\xff\xff\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\xff\xff\xff\xff\x79\x00\x7a\x00\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\xff\xff\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6b\x00\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\xff\xff\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\xff\xff\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\xff\xff\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\xff\xff\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\xff\xff\xff\xff\xff\xff\x5f\x00\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\x6d\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\xff\xff\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x30\x00\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x78\x00\x79\x00\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\xff\xff\xff\xff\x55\x00\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\x5c\x00\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\x30\x00\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x76\x00\xff\xff\x3a\x00\x79\x00\x7a\x00\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\xff\xff\xff\xff\x55\x00\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\xff\xff\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\xff\xff\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x6c\x00\x6d\x00\xff\xff\x38\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x34\x00\x76\x00\x40\x00\xff\xff\x79\x00\x7a\x00\xff\xff\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x4d\x00\x44\x00\x45\x00\x46\x00\x47\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5b\x00\xff\xff\xff\xff\xff\xff\x5f\x00\xff\xff\x61\x00\xff\xff\xff\xff\xff\xff\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\xff\xff\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\xff\xff\xff\xff\xff\xff\x5f\x00\x31\x00\x61\x00\x33\x00\x63\x00\x64\x00\x65\x00\xff\xff\x38\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6d\x00\xff\xff\x40\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5b\x00\xff\xff\xff\xff\xff\xff\x5f\x00\xff\xff\x61\x00\xff\xff\xff\xff\xff\xff\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x31\x00\xff\xff\xff\xff\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x31\x00\xff\xff\x77\x00\x78\x00\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x31\x00\xff\xff\x77\x00\x78\x00\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x31\x00\xff\xff\x77\x00\x78\x00\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\x31\x00\xff\xff\x6c\x00\x6d\x00\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\x77\x00\x78\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\x39\x00\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x63\x00\x64\x00\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6d\x00\xff\xff\xff\xff\x39\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x77\x00\x78\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\xff\xff\x78\x00\x79\x00\x3a\x00\xff\xff\x5d\x00\x7d\x00\x7e\x00\x7f\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x7f\x00\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\xff\xff\x78\x00\x79\x00\x2b\x00\xff\xff\x2d\x00\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\x2b\x00\xff\xff\x2d\x00\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\x6e\x00\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\x39\x00\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\x6e\x00\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\x78\x00\x79\x00\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\x6e\x00\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\x3b\x00\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\x6c\x00\x6d\x00\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\x6c\x00\x6d\x00\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\x6c\x00\x6d\x00\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\x56\x00\xff\xff\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\x56\x00\x7c\x00\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\x56\x00\xff\xff\x7c\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x78\x00\x79\x00\xff\xff\x61\x00\x7c\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x56\x00\x77\x00\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\x82\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x56\x00\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x56\x00\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\xff\xff\x78\x00\x79\x00\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\x7f\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\x75\x00\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\x75\x00\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\x75\x00\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\x75\x00\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\x75\x00\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\x74\x00\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\xff\xff\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x34\x00\x44\x00\x45\x00\x46\x00\x47\x00\x78\x00\x79\x00\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"#
happyTable :: HappyAddr
happyTable :: HappyAddr
happyTable = Addr# -> HappyAddr
HappyA# "\x00\x00\x4d\x00\x4e\x00\x4f\x00\xb7\x01\x48\x03\x17\x03\x0a\x03\xb2\x01\x00\x02\x6c\x03\xa3\x02\xb6\x03\x5c\x03\x32\x02\x8f\x02\xf2\x00\x14\x01\x1f\x02\x0f\x03\xf2\x00\xd9\x00\xbd\x02\x7b\x03\x50\x00\x58\x03\x51\x00\x39\x01\x52\x00\x53\x00\x54\x00\x1b\xfe\x55\x00\x56\x00\x57\x00\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\xa1\x03\x0b\x01\xae\x03\xbe\x02\x7c\x03\x6d\x03\x64\x00\x15\x01\x90\x02\x1b\x03\x65\x00\x20\x02\x10\x03\x01\x02\x5b\x01\x4e\x00\x4f\x00\x4b\x02\x59\x03\x3b\x01\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x06\x02\xb7\x01\x4c\x02\xaf\x03\x43\x03\x44\x03\x45\x03\x33\x02\xa1\x00\x6f\x00\x50\x00\x97\x00\x51\x00\xf2\x00\x52\x00\x53\x00\x54\x00\xda\x00\x55\x00\x56\x00\x57\x00\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x01\x03\x2b\x00\xb7\x03\x95\x00\xb8\x01\x97\x00\x64\x00\x95\x00\xf3\x00\x97\x00\x65\x00\x97\x00\x1d\x02\x97\x00\x9c\x00\x4e\x00\x4f\x00\x6d\x00\x6e\x00\x6f\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x97\x00\x00\x03\x97\x00\xc8\x00\x3a\x01\x9f\x03\x44\x03\x45\x03\x0c\x01\x4d\x00\x50\x00\x46\x03\x51\x00\x1d\x02\x52\x00\x53\x00\x54\x00\xd0\x00\x55\x00\x56\x00\x57\x00\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\xc4\x00\x4b\x02\x38\x01\x95\x00\xf3\x00\x97\x00\x64\x00\xae\x02\xe0\x00\xff\xff\x65\x00\x46\x03\x91\x03\x4c\x02\x95\x00\xb8\x01\x97\x00\x6d\x00\x6e\x00\x6f\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\xe1\x00\xc2\x01\xc5\x00\x56\x00\x57\x00\x58\x00\xb7\x01\xc6\x00\xaf\x02\x44\x01\x45\x01\xee\x02\xa8\x02\x6f\x00\xc7\x00\x62\x00\x63\x00\x01\x03\xf2\x00\x95\x00\xb8\x01\x97\x00\x2c\x02\x64\x00\xc4\x00\x92\x03\xc8\x00\xd1\x00\xf9\x01\x1d\x02\xbd\x01\x35\x01\x71\x00\xf3\x00\x2d\x02\x42\x01\x43\x01\xc9\x00\x67\x00\x68\x00\x69\x00\xca\x00\x6b\x00\x6c\x00\x72\x00\x46\x03\xae\x00\x95\x00\xf3\x00\x97\x00\x6d\x00\x6e\x00\x6f\x00\xaf\x00\x62\x00\x63\x00\x9d\x02\x04\x02\x05\x02\x9e\x02\xeb\x01\xf4\x00\x64\x00\xd3\x00\xd4\x00\xd5\x00\x4b\x02\xf5\x00\x26\x01\x19\x03\xe2\x00\xb2\x00\xec\x01\xeb\x01\xf6\x00\x62\x00\x63\x00\xbe\x01\x4c\x02\x1d\x01\x95\x00\xf3\x00\x97\x00\x64\x00\x65\x03\xec\x01\xd6\x00\x8d\xfe\x07\x03\x05\x02\x8d\xfe\x0c\x01\x4d\x00\x0c\x01\x4d\x00\xcb\x00\x6f\x00\xf7\x00\x67\x00\x68\x00\x69\x00\xf8\x00\x6b\x00\x6c\x00\x4b\x02\xeb\x01\xbf\x01\x56\x00\x57\x00\x58\x00\x1c\x02\xc0\x01\x95\x00\xb8\x01\x97\x00\x8d\xfe\x4c\x02\xec\x01\xc1\x01\x62\x00\x63\x00\xac\x00\x1d\x02\x95\x00\xb8\x01\x97\x00\x06\x02\x64\x00\x95\x00\xf3\x00\xc2\x01\x0c\x01\x4d\x00\x23\x01\x2d\x03\xb2\x00\xbe\x03\xeb\x01\x95\x00\x36\x03\x97\x00\xc3\x01\x67\x00\x68\x00\x69\x00\xc4\x01\x6b\x00\x6c\x00\xf1\x00\xec\x01\xad\x00\x56\x00\x57\x00\x58\x00\xdf\x00\xae\x00\xf9\x00\x06\x02\xe0\x00\xd8\x00\xf2\x00\x1c\x02\xaf\x00\x62\x00\x63\x00\xb3\x02\x95\x00\x95\x01\x97\x00\xff\xff\xe6\x01\x64\x00\x95\x00\x1d\x02\x97\x00\x1c\x01\xbf\x03\xe1\x00\xcf\x00\x95\x00\x90\x01\x97\x00\xd9\x00\x96\x01\x91\x01\xb0\x00\x67\x00\x68\x00\x69\x00\xb1\x00\x6b\x00\x6c\x00\xb6\x02\x1b\x01\xc5\x00\x56\x00\x57\x00\x58\x00\xd8\x00\xc6\x00\xb2\x00\xd0\x00\xa4\x01\x46\x01\x47\x01\x48\x01\xc7\x00\x62\x00\x63\x00\xc8\x01\x95\x00\x95\x00\x97\x00\x1a\x01\xb9\x01\x64\x00\x95\x00\xf3\x00\xc8\x00\x4e\x03\xf4\x00\xd9\x00\xd3\x00\xd4\x00\xd5\x00\xc2\x01\xf5\x00\x8e\x03\x19\x01\xc9\x00\x67\x00\x68\x00\xf0\x01\xf6\x00\x62\x00\x63\x00\x0b\x02\x67\x00\x68\x00\xf0\x01\x14\x01\xa4\x01\x64\x00\x95\x00\xb2\x00\xd6\x00\xa4\x01\xe2\x00\xbf\x01\x56\x00\x57\x00\x58\x00\xda\x00\xc0\x01\x95\x00\xf3\x00\xf7\x00\x67\x00\x68\x00\xf0\x01\xc1\x01\x62\x00\x63\x00\x33\x00\x34\x00\x35\x00\x18\x01\x95\x00\xf3\x00\x64\x00\x10\x01\xd1\x00\xc2\x01\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\xef\x01\x67\x00\x68\x00\xf0\x01\x0f\x01\xc3\x01\x67\x00\x68\x00\xf0\x01\xb4\x02\x6f\x00\x0c\x01\x4d\x00\xda\x00\x6c\x02\x34\x00\x35\x00\xb2\x00\x6d\x02\x0d\x01\x6e\x02\x6f\x02\x70\x02\x09\x01\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x83\x01\xa9\x01\xc4\x00\x0b\x03\xa3\x01\x71\x02\x0c\x03\x51\x00\xf9\x00\x52\x00\x72\x02\x73\x02\x84\x01\x55\x00\x56\x00\x57\x00\x58\x00\x74\x02\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x06\x01\xc8\x00\xb2\x00\xe5\xff\x05\x01\xa4\x01\x64\x00\xb2\x00\xa4\x01\xa6\x01\x75\x02\x1d\xfe\xf1\x01\x67\x00\x68\x00\x69\x00\x06\x00\xf2\x01\x6c\x00\xc3\x00\x07\x00\xc4\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x40\x02\x3b\x00\xa8\x00\x68\x00\x0f\x02\xe6\x01\x18\x00\x19\x00\x06\x00\x98\x01\x3c\x00\xff\xff\x07\x00\x3f\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\xad\x01\x3b\x00\xc4\x00\xa4\x01\xf3\x01\x6f\x00\x18\x00\x19\x00\xa4\x01\xc8\x01\x3c\x00\x6d\x00\xe3\x01\x6f\x00\x6c\x02\x34\x00\x35\x00\x97\x00\xba\x02\xa4\x00\x6e\x02\x6f\x02\x70\x02\xa3\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\xa9\x01\xab\x00\x6f\x00\xc6\x02\x97\x00\x71\x02\xff\xff\x51\x00\xa0\x00\x52\x00\x72\x02\x73\x02\xa4\x01\x55\x00\x56\x00\x57\x00\x58\x00\x74\x02\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x3e\x01\x3f\x01\x40\x01\x41\x01\xa4\x01\xc5\x02\x64\x00\xa4\x01\x06\x00\x9f\x00\x75\x02\x40\x02\x07\x00\x97\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x9e\x00\x06\x01\xfd\x01\x99\x01\xb2\x01\xeb\x00\x18\x00\x19\x00\xa4\x01\x71\x00\xa8\x00\x68\x00\x0f\x02\x2b\x00\xa4\x01\xdc\x00\x06\x00\xd3\x00\xd4\x00\xd5\x00\x07\x00\x72\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x56\x01\x3b\x00\x57\x01\xd6\x00\x58\x01\x59\x01\x18\x00\x19\x00\x5a\x01\x5b\x01\x3c\x00\x6d\x00\xe3\x01\x6f\x00\x5d\x01\xef\x01\xe8\x01\x68\x00\xe9\x01\x73\x00\x67\x03\x74\x00\x75\x00\x68\x03\x76\x00\x1c\x03\x77\x00\xed\x01\x1d\x03\x78\x00\xb5\x01\x6f\x00\x79\x00\x3f\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x6e\x03\xe5\x01\xfc\x00\x6f\x03\x84\x00\x85\x00\x86\x00\x87\x00\xc4\x00\x88\x00\x53\x03\x54\x03\x89\x00\xbe\x01\x55\x03\x8a\x00\x8b\x00\x3f\x00\x8c\x00\x8d\x00\x8e\x00\x3f\x00\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\xa6\x01\xdd\x00\xb2\x00\xe5\xff\x1b\x00\x3f\x00\x95\x00\x96\x00\x97\x00\x98\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x99\x00\xa8\x01\x23\x00\x9a\x00\x9b\x00\xfb\xff\x84\x01\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\xfd\x00\x24\x00\xe8\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xed\x00\x3f\x00\xee\x00\x67\x00\x68\x00\x69\x00\xfe\x00\x6b\x00\x6c\x00\xa6\x01\x3e\x00\x3f\x00\x3c\x01\x3d\x01\x25\x00\x73\x00\x1b\xfe\x40\x00\x75\x00\x41\x00\x76\x00\x42\x00\x77\x00\x1b\xfe\x43\x00\x78\x00\x44\x00\x45\x00\x79\x00\x97\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x46\x00\x26\x00\x47\x00\x48\x00\x84\x00\x85\x00\x86\x00\x87\x00\x9e\x01\x88\x00\x1b\xfe\x1b\xfe\x89\x00\x1b\xfe\x49\x00\x8a\x00\x8b\x00\x27\x00\x8c\x00\x8d\x00\x8e\x00\x4a\x00\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x1b\xfe\x4b\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x4c\x00\x77\x02\x97\x00\x78\x02\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x99\x00\x1b\xfe\x1b\xfe\x9a\x00\x9b\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x36\x01\x37\x01\x23\x00\xc2\x01\x5e\x02\x67\x00\x68\x00\xf0\x01\xcb\x02\xea\x00\xeb\x00\xcc\x02\xed\x00\x24\x00\x0b\x02\x67\x00\x68\x00\xf0\x01\xc3\x00\xee\x01\xc4\x00\xe3\x00\x9c\x01\xd3\x00\xd4\x00\xd5\x00\x94\x01\xe4\x00\x46\x01\x47\x01\x48\x01\x0c\x01\x4d\x00\x25\x00\xd7\xff\xd7\xff\x98\x01\xd7\xff\x93\x01\xd7\xff\x97\x00\xd7\xff\xd7\xff\x8a\x01\xd7\xff\x86\x01\xd6\x00\xd7\xff\x7c\x01\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\x7b\x01\x26\x00\x02\x01\x03\x01\xd7\xff\xd7\xff\xd7\xff\xd7\xff\x91\x02\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xb2\x00\xd7\xff\xd7\xff\x27\x00\xd7\xff\xd7\xff\xd7\xff\x3b\x01\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\x39\x01\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\xd7\xff\xd7\xff\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\xe5\x00\x3a\x01\x23\x00\x49\x02\xeb\x00\xad\x01\x11\x02\xc4\x00\x8e\x02\xe8\x01\x68\x00\xe9\x01\x38\x01\x24\x00\xd0\x01\xd1\x01\x8c\x02\x55\x00\x56\x00\x57\x00\x58\x00\xd2\x01\x5a\x00\x5b\x00\x5c\x00\xd3\x01\xd4\x01\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x97\x00\x25\x00\x73\x00\x00\x01\x01\x01\x75\x00\x64\x00\x76\x00\x81\x02\x77\x00\xd5\x01\x80\x02\x78\x00\x0c\x01\x4d\x00\x79\x00\x7f\x02\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x7e\x02\x26\x00\xfb\x02\x7d\x02\x84\x00\x85\x00\x86\x00\x87\x00\xb2\x00\x88\x00\x44\x01\x45\x01\x89\x00\x42\x01\x43\x01\x8a\x00\x8b\x00\x27\x00\x8c\x00\x8d\x00\x8e\x00\x6c\x02\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x3c\x01\x3d\x01\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x96\x00\x97\x00\x78\x02\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x27\x02\x99\x00\xc4\x00\x2b\x00\x9a\x00\x9b\x00\x6d\x00\xda\x01\x6f\x00\x64\x02\x7c\x02\x51\x00\x28\x02\x52\x00\xdf\x01\xe0\x01\x7b\x02\x55\x00\x56\x00\x57\x00\x58\x00\xe1\x01\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x7a\x02\xd2\x00\xdc\x01\xd3\x00\xd4\x00\xd5\x00\x64\x00\xad\x01\xee\x01\xc4\x00\xe2\x01\xad\x01\xd5\x02\xc4\x00\x66\x02\x73\x00\xb7\x00\x64\x02\x75\x00\x62\x02\x76\x00\x63\x02\x77\x00\xb8\x00\x61\x02\x78\x00\xd6\x00\x60\x02\x79\x00\xc8\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\xf1\x01\x67\x00\x68\x00\xf0\x01\x84\x00\x85\x00\x86\x00\x87\x00\x97\x00\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x14\x02\x8a\x00\x8b\x00\x27\x02\x8c\x00\xc4\x00\x8e\x00\x5a\x02\x8f\x00\xfb\x00\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\x28\x02\xad\x01\xcf\x02\xc4\x00\x14\x02\x95\x00\xfc\x00\x97\x00\x6d\x00\xe3\x01\x6f\x00\xad\x01\x3b\x03\xc4\x00\x0c\x01\x4d\x00\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\xdc\x00\x4f\x02\xd3\x00\xd4\x00\xd5\x00\x4e\x02\xd7\x00\x14\x02\xf3\x01\x6f\x00\xad\x01\x81\x03\xc4\x00\x46\x02\x73\x00\xb7\x00\x3f\x00\x75\x00\x3f\x02\x76\x00\x38\x02\x77\x00\xb8\x00\x22\x02\x78\x00\xd6\x00\x14\x02\x79\x00\x97\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\xce\x00\xa1\x00\x6f\x00\x21\x02\x84\x00\x85\x00\x86\x00\x87\x00\x12\x02\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x14\x02\x8a\x00\x8b\x00\x27\x02\x8c\x00\xc4\x00\x8e\x00\x0b\x02\x8f\x00\xcd\x00\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\x28\x02\xbf\x00\xc0\x00\xc1\x00\x0a\x02\x95\x00\xce\x00\x97\x00\x09\x02\xbf\x01\x56\x00\x57\x00\x58\x00\x08\x02\xc0\x01\x04\x02\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\xc1\x01\x62\x00\x63\x00\xa0\x00\xa1\x00\x6f\x00\xdd\x00\x20\x02\xbc\x02\x64\x00\x0c\x01\x4d\x00\xc2\x01\x03\x02\x73\x00\x1b\xfe\x02\x02\x75\x00\x0e\x03\x76\x00\x07\x03\x77\x00\x1b\xfe\x2b\x00\x78\x00\x20\x02\x4b\x03\x79\x00\x04\x03\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\xbf\x00\xc0\x00\xc1\x00\x03\x03\x84\x00\x85\x00\x86\x00\x87\x00\xa6\x01\x88\x00\x1b\xfe\x1b\xfe\x89\x00\x1b\xfe\xfe\x02\x8a\x00\x8b\x00\x2c\x02\x8c\x00\xc4\x00\x8e\x00\x97\x00\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x1b\xfe\x2d\x02\xab\x01\xc0\x00\xc1\x00\x14\x02\x95\x00\x96\x00\x97\x00\x32\x03\x33\x03\xad\x00\x56\x00\x57\x00\x58\x00\xb2\x00\xae\x00\x99\x00\x1b\xfe\x1b\xfe\x9a\x00\x9b\x00\xed\x02\xaf\x00\x62\x00\x63\x00\xa1\x01\xa1\x00\x6f\x00\xa0\x01\xa1\x00\x6f\x00\x64\x00\x8f\x01\xa1\x00\x6f\x00\x73\x00\x1b\xfe\xec\x02\x75\x00\xea\x02\x76\x00\xe9\x02\x77\x00\x1b\xfe\xe1\x02\x78\x00\x30\x03\x31\x03\x79\x00\xe0\x02\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x5a\x02\xa1\x00\x6f\x00\xd4\x02\x84\x00\x85\x00\x86\x00\x87\x00\xd2\x02\x88\x00\x1b\xfe\x1b\xfe\x89\x00\x1b\xfe\xca\x02\x8a\x00\x8b\x00\x71\x00\x8c\x00\xc9\x02\x8e\x00\x2b\x00\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x1b\xfe\x72\x00\x4c\x02\xc0\x00\xc1\x00\x06\x00\x95\x00\x96\x00\x97\x00\x07\x00\x86\x03\x93\x03\x09\x00\x77\x03\x78\x03\xc6\x00\xb2\x00\x99\x00\x1b\xfe\x1b\xfe\x9a\x00\x9b\x00\xc7\x00\x62\x00\x63\x00\x2b\x03\x67\x00\x68\x00\xf0\x01\x0c\x01\x4d\x00\x64\x00\x18\x00\x19\x00\xc8\x00\x94\x03\x73\x00\xb7\x00\xbf\x02\x75\x00\xa6\x01\x76\x00\xdc\x01\x77\x00\xb8\x00\xb9\x02\x78\x00\xfd\x01\xfe\x01\x79\x00\x1c\xfe\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x34\x02\xa1\x00\x6f\x00\xa5\x02\x84\x00\x85\x00\x86\x00\x87\x00\x8b\x02\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\xa4\x02\x8a\x00\x8b\x00\x71\x00\x8c\x00\x62\x03\x8e\x00\x5e\x03\x8f\x00\xfb\x00\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\x72\x00\xbf\x00\xc0\x00\xc1\x00\x5d\x03\x95\x00\xfc\x00\x97\x00\x9b\x00\x05\x00\x9b\x03\x5a\x03\x2d\x03\x2e\x03\x6f\x00\xc0\x01\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\x57\x03\xc1\x01\x62\x00\x63\x00\x2b\x03\x67\x00\x68\x00\xf0\x01\x08\x03\x6f\x00\x64\x00\x62\x03\x63\x03\xc2\x01\x73\x00\xb7\x00\x56\x03\x75\x00\x52\x03\x76\x00\x51\x03\x77\x00\xb8\x00\x3f\x00\x78\x00\x4a\x03\x49\x03\x79\x00\x42\x03\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x0d\x02\xc0\x00\xc1\x00\x41\x03\x84\x00\x85\x00\x86\x00\x87\x00\x40\x03\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x3f\x03\x8a\x00\x8b\x00\x71\x00\x8c\x00\x14\x02\x8e\x00\x3c\x03\x8f\x00\xcd\x00\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\x72\x00\x0c\x02\xc0\x00\xc1\x00\x29\x03\x95\x00\xce\x00\x97\x00\xbf\x00\xc0\x00\xc1\x00\x05\x03\xc0\x00\xc1\x00\x28\x03\xb2\x00\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\xfa\x02\xa1\x00\x6f\x00\x27\x03\x50\x02\xea\x00\xeb\x00\xf6\x02\xa1\x00\x6f\x00\xef\x01\x67\x00\x68\x00\xf0\x01\x73\x00\xb7\x00\x26\x03\x75\x00\x23\x03\x76\x00\x97\x00\x77\x00\xb8\x00\x22\x03\x78\x00\xa6\x01\x17\x03\x79\x00\x12\x03\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\xf5\x02\xa1\x00\x6f\x00\x8d\x03\x84\x00\x85\x00\x86\x00\x87\x00\x90\x03\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x8b\x03\x8a\x00\x8b\x00\x83\x01\x8c\x00\xc4\x00\x8e\x00\x97\x00\x8f\x00\xc6\x01\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\x84\x01\xb2\x00\xf1\x02\xa1\x00\x6f\x00\x95\x00\xc7\x01\x97\x00\x89\x03\xef\x01\x67\x00\x68\x00\xf0\x01\xf0\x02\xa1\x00\x6f\x00\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\xa5\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\xa5\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\x97\x00\x83\x03\x73\x00\x1b\xfe\x7d\x03\x75\x00\x7a\x03\x76\x00\x79\x03\x77\x00\x1b\xfe\x3f\x00\x78\x00\xa6\x03\xa5\x03\x79\x00\xa4\x03\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\xef\x02\xa1\x00\x6f\x00\xa1\x03\x84\x00\x85\x00\x86\x00\x87\x00\xb2\x00\x88\x00\x1b\xfe\x1b\xfe\x89\x00\x1b\xfe\xb2\x00\x8a\x00\x8b\x00\xeb\x01\x8c\x00\x9f\x03\x8e\x00\x9e\x03\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x1b\xfe\xec\x01\x99\x03\x97\x00\x50\x02\xea\x00\xeb\x00\x96\x00\x97\x00\x97\x00\xef\x01\x67\x00\x68\x00\xf0\x01\xea\x02\xa1\x00\x6f\x00\x99\x00\x1b\xfe\x1b\xfe\x9a\x00\x9b\x00\xa5\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\xe5\x02\xa1\x00\x6f\x00\x4c\x02\xc0\x00\xc1\x00\xad\x03\x2b\x00\x73\x00\xb7\x00\xaa\x03\x75\x00\xbb\x03\x76\x00\xba\x03\x77\x00\xb8\x00\xb9\x03\x78\x00\x2b\x00\xc3\x03\x79\x00\xc2\x03\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\xd0\x02\xc0\x00\xc1\x00\x2b\x00\x84\x00\x85\x00\x86\x00\x87\x00\xb2\x00\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x05\x00\x8a\x00\x8b\x00\xeb\x01\x8c\x00\xc1\x03\x8e\x00\x49\x01\x8f\x00\xfb\x00\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\xec\x01\xcf\x02\xc0\x00\xc1\x00\x06\x00\x95\x00\xfc\x00\x97\x00\x07\x00\x28\x01\xb3\x03\x09\x00\x4c\x02\xc0\x00\xc1\x00\x21\x01\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\x5a\x03\xc0\x00\xc1\x00\x4c\x02\xc0\x00\xc1\x00\x37\x03\xc0\x00\xc1\x00\x16\x01\x18\x00\x19\x00\x09\x01\xb4\x03\x73\x00\xb7\x00\x03\x01\x75\x00\xbe\x00\x76\x00\xf7\x01\x77\x00\xb8\x00\xf6\x01\x78\x00\xb5\x00\xe7\x01\x79\x00\xb2\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x24\x03\xa1\x00\x6f\x00\xe5\x01\x84\x00\x85\x00\x86\x00\x87\x00\xc9\x01\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\xc7\x01\x8a\x00\x8b\x00\xeb\x01\x8c\x00\xdc\x01\x8e\x00\xbb\x01\x8f\x00\xcd\x00\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\xec\x01\x23\x03\xa1\x00\x6f\x00\x06\x00\x95\x00\xce\x00\x97\x00\x07\x00\xba\x01\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x6e\x01\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\x85\x03\xa1\x00\x6f\x00\x84\x03\xa1\x00\x6f\x00\x83\x03\xa1\x00\x6f\x00\xb8\x01\x18\x00\x19\x00\xaa\x01\xa8\x01\x73\x00\xb7\x00\xa6\x01\x75\x00\xa2\x01\x76\x00\x5e\x01\x77\x00\xb8\x00\x5d\x01\x78\x00\x88\x02\x6a\x02\x79\x00\x69\x02\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x4c\x02\xc0\x00\xc1\x00\x68\x02\x84\x00\x85\x00\x86\x00\x87\x00\x5b\x02\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x41\x02\x8a\x00\x8b\x00\xeb\x01\x8c\x00\x55\x02\x8e\x00\x46\x02\x8f\x00\xc6\x01\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\xec\x01\x6f\x03\xc0\x00\xc1\x00\x06\x00\x95\x00\xc7\x01\x97\x00\x07\x00\x44\x02\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x6d\x01\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\xb1\x03\xa1\x00\x6f\x00\x3f\x02\x3c\x02\x12\x02\x0c\x03\xd5\x02\xe1\x02\xc7\x02\x18\x00\x19\x00\xb9\x02\x88\x02\x73\x00\xb7\x00\x88\x02\x75\x00\x4f\x03\x76\x00\x5f\x03\x77\x00\xb8\x00\x4d\x03\x78\x00\x4c\x03\x4b\x03\x79\x00\x3d\x03\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x3c\x03\xb2\x00\x10\x03\x92\x03\x84\x00\x85\x00\x86\x00\x87\x00\x75\x03\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x89\x03\x8a\x00\x8b\x00\xeb\x01\x8c\x00\x89\x03\x8e\x00\x73\x03\x8f\x00\xfb\x00\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\xec\x01\xb2\x03\x89\x03\xab\x03\x06\x00\x95\x00\xfc\x00\x97\x00\x07\x00\xaa\x03\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x6c\x01\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\xb5\x03\xbf\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x73\x00\xb7\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\xb8\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x00\x00\x8a\x00\x8b\x00\xeb\x01\x8c\x00\x00\x00\x8e\x00\x00\x00\x8f\x00\xcd\x00\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\xec\x01\x00\x00\x00\x00\x00\x00\x06\x00\x95\x00\xce\x00\x97\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x6b\x01\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x73\x00\xb7\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\xb8\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x00\x00\x8a\x00\x8b\x00\x71\x00\x8c\x00\x00\x00\x8e\x00\x00\x00\x8f\x00\xc6\x01\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\x72\x00\x00\x00\x00\x00\x00\x00\x06\x00\x95\x00\xc7\x01\x97\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x6a\x01\x00\x00\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x73\x00\x00\x00\x74\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x8c\x00\x8d\x00\x8e\x00\x00\x00\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x2c\x02\x00\x00\xc4\x00\x00\x00\xdd\x01\x00\x00\x95\x00\x96\x00\x97\x00\x98\x00\x00\x00\x00\x00\x2d\x02\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\x00\x00\x00\x00\x9a\x00\x9b\x00\xde\x01\x00\x00\x51\x00\x00\x00\x52\x00\xdf\x01\xe0\x01\x00\x00\x55\x00\x56\x00\x57\x00\x58\x00\xe1\x01\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x73\x00\x00\x00\x00\x00\x75\x00\x64\x00\x76\x00\x00\x00\x77\x00\xe2\x01\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x27\x02\x8c\x00\xc4\x00\x8e\x00\xb7\x00\x8f\x00\xb4\x00\x91\x00\x92\x00\x93\x00\x94\x00\xb8\x00\x28\x02\x00\x00\x00\x00\x00\x00\x06\x00\x95\x00\xb5\x00\x97\x00\x07\x00\x00\x00\x10\x01\x09\x00\x48\x01\xa8\x00\x68\x00\xa9\x00\x99\x00\xaa\x00\x6c\x00\x9a\x00\x9b\x00\x6d\x00\xe3\x01\x6f\x00\x00\x00\x00\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x73\x00\x00\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\xbc\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\xbd\x00\xbe\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\xab\x00\x6f\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x71\x00\x8c\x00\x00\x00\x8e\x00\x00\x00\x8f\x00\xb4\x00\x91\x00\x92\x00\x93\x00\x94\x00\x00\x00\x72\x00\x00\x00\x00\x00\x00\x00\x00\x00\x95\x00\xb5\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\x00\x00\xc2\x01\x9a\x00\x9b\x00\x00\x00\x00\x00\xcb\x02\xea\x00\xeb\x00\x00\x00\x00\x00\x00\x00\x0b\x02\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x73\x00\x00\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\xeb\x01\x8c\x00\x00\x00\x8e\x00\x00\x00\x8f\x00\xb4\x00\x91\x00\x92\x00\x93\x00\x94\x00\xb2\x00\xec\x01\x00\x00\x00\x00\x00\x00\x06\x00\x95\x00\xb5\x00\x97\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x69\x01\x00\x00\x99\x00\x00\x00\x00\x00\x9a\x00\x9b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x73\x00\x00\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x83\x01\x8c\x00\xc4\x00\x8e\x00\x00\x00\x8f\x00\xb4\x00\x91\x00\x92\x00\x93\x00\x94\x00\x00\x00\x84\x01\x00\x00\x00\x00\x00\x00\x00\x00\x95\x00\xb5\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\x00\x00\x00\x00\x9a\x00\x9b\x00\xad\x01\x00\x00\x00\x00\x00\x00\xae\x01\xea\x00\xeb\x00\xaf\x01\xed\x00\x00\x00\xa5\x00\x67\x00\x68\x00\x69\x00\x73\x00\xa6\x00\x6c\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x8c\x00\x00\x00\x8e\x00\x2b\x01\x8f\x00\xb4\x00\x91\x00\x92\x00\x93\x00\x94\x00\x6d\x00\xb0\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb5\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\x00\x00\x5c\x02\x9a\x00\x9b\x00\x00\x00\x2c\x01\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\xde\x01\x00\x00\x51\x00\x64\x00\x52\x00\xdf\x01\xe0\x01\x30\x01\x55\x00\x56\x00\x57\x00\x58\x00\xe1\x01\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x00\x00\xa4\x00\x00\x00\x00\x00\x00\x00\x31\x01\x64\x00\x00\x00\x00\x00\x00\x00\xe2\x01\xa5\x00\x67\x00\x68\x00\x69\x00\x00\x00\xa6\x00\x6c\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x2b\x01\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x32\x01\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x2c\x01\x5a\x00\x00\x00\x2d\x01\xae\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\xaf\x00\x62\x00\x63\x00\x6d\x00\xa7\x00\x6f\x00\x64\x00\x00\x00\x2a\x03\x64\x00\x30\x01\x06\x00\x6d\x00\xe3\x01\x6f\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x68\x01\x00\x00\xc8\x00\x2b\x03\x67\x00\x68\x00\xf0\x01\x51\x02\xea\x00\xeb\x00\x00\x00\x8a\x01\x00\x00\xf1\x01\x67\x00\x68\x00\xf0\x01\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x2b\x01\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x32\x01\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x56\x02\x6d\x00\x33\x01\x6f\x00\x2c\x01\x5a\x00\xb2\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x38\x03\x6f\x00\x00\x00\xde\x01\x00\x00\x51\x00\x64\x00\x52\x00\xdf\x01\xe0\x01\x30\x01\x55\x00\x56\x00\x57\x00\x58\x00\xe1\x01\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x00\x00\x0e\x02\x00\x00\x00\x00\x00\x00\x88\x01\x64\x00\x00\x00\x00\x00\x00\x00\xe2\x01\xa5\x00\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x2b\x01\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x32\x01\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x2c\x01\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x6d\x00\xa7\x00\x6f\x00\x64\x00\x00\x00\x00\x00\x00\x00\x30\x01\x06\x00\x6d\x00\xe3\x01\x6f\x00\x07\x00\x00\x00\x10\x01\x09\x00\x20\x01\xd6\x02\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x86\x01\xd7\x02\xd8\x02\xd9\x02\x00\x00\x00\x00\x64\x00\x18\x00\x19\x00\x00\x00\xda\x02\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x47\x02\x32\x01\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\xde\x01\x00\x00\x51\x00\x00\x00\x52\x00\xdf\x01\xe0\x01\x00\x00\x55\x00\x56\x00\x57\x00\x58\x00\xe1\x01\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x3d\x02\x6d\x00\xdb\x02\x6f\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\x00\x00\xe2\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xde\x01\x00\x00\x51\x00\x00\x00\x52\x00\xdf\x01\xe0\x01\x00\x00\x55\x00\x56\x00\x57\x00\x58\x00\xe1\x01\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x00\x00\xc8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\x00\x00\xe2\x01\x00\x00\xf1\x01\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x14\x02\x00\x00\x00\x00\xa6\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6d\x00\xe3\x01\x6f\x00\xde\x01\x00\x00\x51\x00\x00\x00\x52\x00\xdf\x01\xe0\x01\x00\x00\x55\x00\x56\x00\x57\x00\x58\x00\xe1\x01\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\xe2\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\xa7\x02\x1e\x03\x6f\x00\xe2\x01\x00\x00\x00\x00\x00\x00\x00\x00\x6d\x00\xe3\x01\x6f\x00\xde\x01\x00\x00\x51\x00\x00\x00\x52\x00\xdf\x01\xe0\x01\x00\x00\x55\x00\x56\x00\x57\x00\x58\x00\xe1\x01\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x83\x01\x00\x00\xc4\x00\x64\x00\x00\x00\x00\x00\x00\x00\xe2\x01\xc5\x00\x56\x00\x57\x00\x58\x00\x84\x01\xc6\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc7\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\xc8\x00\x6d\x00\xe3\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x02\x67\x00\x68\x00\xf0\x01\x00\x00\xb7\x00\x00\x00\x00\x00\x00\x00\x76\x00\x00\x00\x77\x00\xb8\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x6d\x00\xe3\x01\x6f\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\xcd\x00\x00\x00\x92\x00\x93\x00\x94\x00\xbc\x00\x19\x02\x6f\x00\xb7\x00\x00\x00\x1b\x00\x00\x00\xce\x00\x97\x00\x00\x00\xb8\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\xcf\x01\xbd\x00\xbe\x00\x23\x00\x00\x00\xb2\x01\xeb\x00\xb3\x01\xed\x00\xb4\x01\x00\x00\xa8\x00\x68\x00\xa9\x00\x24\x00\xaa\x00\x6c\x00\x00\x00\x00\x00\x00\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x25\x00\x00\x00\x1b\xfe\x00\x00\xbc\x00\x0d\x01\x34\x00\x35\x00\x00\x00\x1b\xfe\x00\x00\x00\x00\x97\x00\x00\x00\x00\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\xd2\x02\x00\x00\xbd\x00\xbe\x00\xae\x01\xea\x00\xeb\x00\x26\x00\x00\x00\x00\x00\xa5\x00\x67\x00\x68\x00\xf0\x01\xb5\x01\x6f\x00\x1b\xfe\x1b\xfe\x00\x00\x1b\xfe\x00\x00\x00\x00\x00\x00\x27\x00\xd0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1b\xfe\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x97\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x00\x00\x1b\xfe\x1b\xfe\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x3c\x02\x00\x00\x00\x00\x23\x00\x00\x00\x6d\x00\xb0\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x24\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3b\x00\x25\x00\x00\x00\xb7\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x3c\x00\xb8\x00\xf4\x00\x00\x00\xd3\x00\xd4\x00\xd5\x00\x00\x00\xf5\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf6\x00\x62\x00\x63\x00\x00\x00\x26\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\xe6\x00\x00\x00\xd6\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x00\x00\x00\x00\x27\x00\x1b\xfe\x00\x00\x1d\x02\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x00\x00\x00\x00\xbc\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x97\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x00\x00\xbd\x00\xbe\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\xe8\x02\x00\x00\x00\x00\x23\x00\x00\x00\x00\x00\xe7\x00\x00\x00\xe8\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xed\x00\x24\x00\xee\x00\x67\x00\x68\x00\x69\x00\xef\x00\x6b\x00\x6c\x00\x00\x00\xf9\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x25\x00\x00\x00\xb7\x00\x00\x00\x06\x00\x96\x01\x34\x00\x35\x00\x07\x00\xb8\x00\x10\x01\x09\x00\x0a\x00\x67\x01\x00\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x00\x00\x00\x00\xc8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x26\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x00\x00\x00\x00\x27\x00\x1a\xfe\xa6\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\x00\x00\x00\x00\x00\x00\xbc\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x97\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x00\x00\xbd\x00\xbe\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x37\x02\x00\x00\x00\x00\x23\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa7\x02\xa8\x02\x6f\x00\x06\x00\x00\x00\x00\x00\x24\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3b\x00\x25\x00\x00\x00\x1a\xfe\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x3c\x00\x1a\xfe\x00\x00\x00\x00\x00\x00\x2c\x01\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x06\x00\x00\x00\x26\x00\x00\x00\x07\x00\x64\x00\x10\x01\x09\x00\x66\x01\x30\x01\x00\x00\x1a\xfe\x1a\xfe\x00\x00\x1a\xfe\x00\x00\x00\x00\x00\x00\x27\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x83\x01\x00\x00\xc4\x00\x18\x00\x19\x00\x1a\xfe\xa9\x02\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x84\x01\x97\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x71\x03\x1a\xfe\x1a\xfe\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\xb2\x01\xeb\x00\xb3\x01\xed\x00\xb4\x01\x00\x00\xa8\x00\x68\x00\x0f\x02\x24\x00\x1b\xfe\x78\x02\x34\x00\x35\x00\x6d\x00\x33\x01\x6f\x00\x1b\xfe\x00\x00\x00\x00\x00\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x00\x00\x00\x00\x00\x00\x25\x00\x00\x00\xb7\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb8\x00\x00\x00\x67\x02\x34\x00\x35\x00\x00\x00\x1b\xfe\x1b\xfe\x00\x00\x1b\xfe\x00\x00\x00\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x00\x00\x26\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1b\xfe\xb5\x01\x6f\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x97\x00\x00\x00\x27\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1b\xfe\x1b\xfe\x00\x00\xbc\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x06\x00\x00\x00\xbd\x00\xbe\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x06\x00\x00\x00\x3c\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3b\x00\xc4\x02\x34\x00\x35\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x3c\x00\x00\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf7\x02\x00\x00\x00\x00\x00\x00\xc3\x02\x34\x00\x35\x00\x00\x00\x00\x00\x00\x00\xa5\x00\x67\x00\x68\x00\xf0\x01\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x00\x00\x00\x00\x00\x00\x82\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\x00\x00\x00\x00\xc2\x02\x34\x00\x35\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x00\x00\xc8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x51\x02\xea\x00\xeb\x00\x52\x02\xed\x00\x00\x00\xf1\x01\x67\x00\x68\x00\x69\x00\x00\x00\xf2\x01\x6c\x00\x00\x00\x00\x00\x06\x00\x6d\x00\xf8\x02\x6f\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3b\x00\x00\x00\x00\x00\x00\x00\x06\x00\x18\x00\x19\x00\x00\x00\x07\x00\x3c\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3b\x00\x53\x02\x6f\x00\x00\x00\x06\x00\x18\x00\x19\x00\x00\x00\x07\x00\x3c\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3b\x00\x42\x03\x34\x00\x35\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x3c\x00\x00\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x81\x02\x00\x00\x00\x00\x00\x00\x7f\x03\x34\x00\x35\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x00\x00\x00\x00\x00\x00\x82\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\x00\x00\x00\x00\xb0\x03\x34\x00\x35\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x00\x00\xc8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x51\x02\xea\x00\xeb\x00\x52\x02\xed\x00\x00\x00\xf1\x01\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x6d\x00\x83\x02\x6f\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3b\x00\x00\x00\x00\x00\x00\x00\x06\x00\x18\x00\x19\x00\x00\x00\x07\x00\x3c\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3b\x00\x53\x02\x6f\x00\x00\x00\x06\x00\x18\x00\x19\x00\x00\x00\x07\x00\x3c\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3b\x00\xaf\x03\x34\x00\x35\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x3c\x00\x00\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x00\x00\xb2\x01\xeb\x00\xb3\x01\xed\x00\x4f\x02\x00\x00\xa8\x00\x68\x00\xa9\x00\x00\x00\xaa\x00\x6c\x00\x00\x00\x2c\x02\x00\x00\xc4\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2c\x02\x06\x00\xc4\x00\x2d\x02\x00\x00\x07\x00\x00\x00\x10\x01\x09\x00\x65\x01\x00\x00\x00\x00\x2d\x02\xd6\x02\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\xd7\x02\xd8\x02\xd9\x02\x18\x00\x19\x00\x64\x00\x2c\x02\x00\x00\xc4\x00\xda\x02\x00\x00\x00\x00\x00\x00\x00\x00\x1b\xfe\x55\x02\xb5\x01\x6f\x00\x2d\x02\x00\x00\x00\x00\x1b\xfe\x00\x00\xb7\x00\x00\x00\x06\x00\x00\x00\xf2\x00\x00\x00\x07\x00\xb8\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3b\x00\x1b\xfe\x1b\xfe\x00\x00\x1b\xfe\x18\x00\x19\x00\x1a\xfe\x00\x00\x3c\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x1a\xfe\x00\x00\xb7\x00\x00\x00\x00\x00\x1b\xfe\x00\x00\x00\x00\x00\x00\xb8\x00\x00\x00\x95\x00\xf3\x00\x97\x00\xbc\x00\x6d\x00\xdb\x02\x6f\x00\x00\x00\x00\x00\x95\x00\xf3\x00\x97\x00\x1b\xfe\x1b\xfe\x00\x00\x00\x00\x1a\xfe\x1a\xfe\x27\x02\x1a\xfe\xc4\x00\xbd\x00\xbe\x00\xce\x02\x00\x00\xb9\x00\xba\x00\x4b\x02\xbb\x00\xb7\x02\x28\x02\x00\x00\x00\x00\x00\x00\x1a\xfe\x1d\x02\x00\x00\x00\x00\x00\x00\x4c\x02\x95\x00\xf3\x00\x97\x00\xbc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x95\x00\xf3\x00\x97\x00\x1a\xfe\x1a\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xbd\x00\xbe\x00\x00\x00\x00\x00\x27\x02\x1b\xfe\xc4\x00\x00\x00\x00\x00\x00\x00\xb7\x00\x00\x00\x1b\xfe\x00\x00\xb7\x00\x00\x00\x28\x02\xb8\x00\x00\x00\x00\x00\x00\x00\xb8\x00\x00\x00\xfd\x00\x00\x00\xe8\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xed\x00\x00\x00\xee\x00\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x00\x00\x1b\xfe\x1b\xfe\x00\x00\x1b\xfe\x00\x00\xb9\x00\xba\x00\x1e\x03\xbb\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\xb7\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1b\xfe\x1d\x02\xb8\x00\x00\x00\x00\x00\xbc\x00\x95\x00\x00\x00\x97\x00\xbc\x00\x00\x00\x95\x00\xf3\x00\x97\x00\x00\x00\x95\x00\xf3\x00\x97\x00\x1b\xfe\x1b\xfe\x00\x00\x00\x00\x00\x00\xbd\x00\xbe\x00\x00\x00\x00\x00\xbd\x00\xbe\x00\xb9\x00\xba\x00\x27\x02\xbb\x00\xc4\x00\x06\x00\x00\x00\x4b\x02\xb7\x00\x07\x00\x00\x00\x10\x01\x09\x00\x64\x01\x28\x02\xb8\x00\x71\x00\x00\x00\xbc\x00\x4c\x02\x00\x00\x00\x00\x00\x00\x00\x00\x95\x00\x00\x00\x97\x00\x00\x00\x72\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\xbd\x00\xbe\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1a\xfe\x00\x00\x00\x00\x00\x00\x00\x00\xb7\x00\x00\x00\x1a\xfe\x00\x00\x00\x00\xbc\x00\x00\x00\xb8\x00\xeb\x01\xb7\x00\x00\x00\x95\x00\xf3\x00\x97\x00\x00\x00\x00\x00\xb8\x00\x00\x00\x00\x00\x00\x00\xec\x01\x06\x00\x00\x00\xbd\x00\xbe\x00\x07\x00\x00\x00\x2a\x01\x09\x00\x1a\xfe\x1a\xfe\x00\x00\x1a\xfe\x00\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x83\x01\x00\x00\xc4\x00\x00\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x1a\xfe\x18\x00\x19\x00\x00\x00\x84\x01\xbc\x00\x95\x00\x00\x00\x97\x00\xb7\x00\x00\x00\x95\x00\xf3\x00\x97\x00\xbc\x00\x00\x00\xb8\x00\x00\x00\x1a\xfe\x1a\xfe\x95\x00\x00\x00\x97\x00\xbd\x00\xbe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xbd\x00\xbe\x00\x00\x00\x00\x00\x83\x01\x00\x00\xc4\x00\x00\x00\xb7\x00\xeb\x01\x00\x00\xb9\x00\xba\x00\x06\x00\xbb\x00\xb8\x00\x84\x01\x07\x00\x00\x00\x29\x01\x09\x00\xec\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\xbc\x00\x07\x00\x00\x00\x10\x01\x09\x00\x89\x02\x95\x00\x00\x00\x97\x00\x00\x00\x00\x00\x18\x00\x19\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\xbd\x00\xbe\x00\x00\x00\x00\x00\x00\x00\x1a\xfe\x18\x00\x19\x00\x00\x00\x00\x00\xb7\x00\x00\x00\x1a\xfe\xbc\x00\x00\x00\x00\x00\x00\x00\xb8\x00\x00\x00\x00\x00\x00\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xbd\x00\xbe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1a\xfe\x1a\xfe\x00\x00\x1a\xfe\x1f\x01\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x1a\xfe\x23\x00\x00\x00\x00\x00\x00\x00\xbc\x00\x00\x00\x00\x00\x97\x00\x00\x00\x06\x00\x95\x00\x24\x00\x97\x00\x07\x00\x00\x00\x26\x01\x09\x00\x1a\xfe\x1a\xfe\x00\x00\x00\x00\x00\x00\xbd\x00\xbe\x00\x00\x00\x00\x00\x00\x00\xbf\x01\x56\x00\x57\x00\x58\x00\x25\x00\xc0\x01\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\xc1\x01\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\xc2\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x26\x00\x00\x00\x1b\x00\x00\x00\x01\x03\x67\x00\x68\x00\xf0\x01\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x27\x00\x23\x00\x00\x00\xb2\x01\xeb\x00\xb3\x01\xed\x00\x39\x03\x00\x00\xa8\x00\x68\x00\x0f\x02\x24\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x96\x03\x00\x00\x3f\x00\x00\x00\x00\x00\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\xb2\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x26\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\xb5\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x27\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\x90\x00\x00\x00\x92\x00\x93\x00\x94\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x96\x00\x97\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\xb2\x01\xeb\x00\xb3\x01\xed\x00\x48\x02\x00\x00\xa8\x00\x68\x00\xa9\x00\x24\x00\xaa\x00\x6c\x00\x00\x00\xd6\x02\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x29\x03\xd8\x02\xd9\x02\x00\x00\x25\x00\x64\x00\x00\x00\x00\x00\x00\x00\xda\x02\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x26\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\xb5\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x27\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\x90\x00\x00\x00\x92\x00\x93\x00\x94\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x96\x00\x97\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x00\x00\x6d\x00\xdb\x02\x6f\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd0\x01\xd1\x01\x24\x00\x55\x00\x56\x00\x57\x00\x58\x00\xd2\x01\x5a\x00\x5b\x00\x5c\x00\xd3\x01\xd4\x01\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x3e\x00\x3f\x00\x00\x00\x00\x00\x25\x00\x00\x00\x64\x00\x40\x00\x00\x00\x41\x00\xd5\x01\x42\x00\x00\x00\x00\x00\x43\x00\x00\x00\x44\x00\x45\x00\xb2\x01\xeb\x00\xb3\x01\xed\x00\x4f\x02\x00\x00\xa8\x00\x68\x00\x0f\x02\xd6\x01\xd7\x01\xd8\x01\x46\x00\x26\x00\x47\x00\x48\x00\x2f\x02\xea\x00\xeb\x00\x00\x00\x00\x00\x00\x00\x30\x02\x67\x00\x68\x00\xf0\x01\x49\x00\x00\x00\x00\x00\x27\x00\x00\x00\x00\x00\x00\x00\x4a\x00\x31\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\x00\x00\x4b\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x4c\x00\x4d\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\xb2\x02\x70\x02\x00\x00\x6d\x00\xda\x01\x6f\x00\x00\x00\xb5\x01\x6f\x00\x00\x00\xb5\x02\x00\x00\x00\x00\x71\x02\x00\x00\x51\x00\x00\x00\x52\x00\x72\x02\x73\x02\x00\x00\x55\x00\x56\x00\x57\x00\x58\x00\x74\x02\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\x00\x00\x75\x02\x1b\x00\x00\x00\x9d\x02\x00\x00\x00\x00\x9e\x02\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x00\x00\xe7\x00\x00\x00\xe8\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xed\x00\x24\x00\xee\x00\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x10\x01\x09\x00\x20\x01\x9f\x02\x6b\x03\x00\x00\x25\x00\x00\x00\x1b\x00\x00\x00\x9d\x02\x00\x00\x00\x00\x9e\x02\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x18\x00\x19\x00\x23\x00\x00\x00\x00\x00\x6d\x00\xe3\x01\x6f\x00\x00\x00\x00\x00\x00\x00\xc8\x00\x26\x00\x24\x00\x00\x00\x00\x00\x51\x02\xea\x00\xeb\x00\x00\x00\x00\x00\x00\x00\xf1\x01\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x27\x00\x00\x00\x9f\x02\xa7\x03\x00\x00\x25\x00\xa6\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x4c\x00\x4d\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x26\x00\x00\x00\x1b\x00\x07\x00\x9d\x02\x23\x01\x09\x00\x9e\x02\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x27\x00\x23\x00\x00\x00\xa7\x02\x1f\x03\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x24\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x4c\x00\x4d\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x00\x00\x9f\x02\x00\x00\x1b\x00\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x06\x00\x23\x00\x00\x00\x00\x00\x07\x00\x00\x00\x1f\x01\x09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\xf2\x02\x26\x00\x77\x01\x00\x00\xae\x01\xea\x00\xeb\x00\x00\x00\x00\x00\x00\x00\xa5\x00\x67\x00\x68\x00\xf0\x01\x18\x00\x19\x00\x00\x00\x27\x00\x00\x00\x25\x00\x00\x00\x00\x00\x82\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x4c\x00\x4d\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x63\x01\x26\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x00\x00\x27\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6d\x00\xf3\x02\x6f\x00\x24\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\xb2\x01\xeb\x00\xb3\x01\xed\x00\x48\x02\x00\x00\xa8\x00\x68\x00\x0f\x02\xfe\x02\x24\x00\x00\x00\x26\x00\xae\x01\xea\x00\xeb\x00\xaf\x01\xed\x00\x00\x00\xa5\x00\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x8b\x02\x27\x00\x00\x00\x25\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x1d\x01\x09\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x00\x00\x26\x00\x00\x00\x1b\x00\x18\x00\x19\x00\x00\x00\xb5\x01\x6f\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x27\x00\x23\x00\x00\x00\x6d\x00\xb0\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x00\x00\x9f\x02\x1b\x00\x16\x03\x25\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\xb2\x01\xeb\x00\xb3\x01\xed\x00\xca\x02\x00\x00\xa8\x00\x68\x00\x0f\x02\x00\x00\x24\x00\x00\x00\x00\x00\x26\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2c\x01\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x27\x00\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\x00\x00\x30\x01\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x26\x00\x00\x00\x1b\x00\xa9\x02\x00\x00\x00\x00\xb5\x01\x6f\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x27\x00\x23\x00\xaa\x02\xab\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x00\x00\x9f\x02\x1b\x00\x00\x00\x25\x00\x6d\x00\x33\x01\x6f\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x1f\x01\x26\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x27\x00\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x28\x01\x26\x00\x25\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x27\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x00\x00\x26\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x27\x00\x25\x00\x4b\x01\x4c\x01\x4d\x01\x4e\x01\x4f\x01\x50\x01\x51\x01\x52\x01\x53\x01\x54\x01\x55\x01\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x25\x01\x26\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x27\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x00\x00\x25\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x1f\x01\x26\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x27\x00\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x26\x00\x25\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x27\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x00\x00\x26\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x27\x00\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\xeb\x01\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x26\x00\x00\x00\x00\x00\xec\x01\x2c\x01\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x27\x00\x00\x00\x00\x00\x00\x00\x2d\x03\x64\x00\x00\x00\x00\x00\x00\x00\x30\x01\x00\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x76\x00\x00\x00\x77\x00\x8d\x01\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\xb4\x00\x00\x00\x92\x00\x93\x00\x94\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x00\x00\x00\x00\x95\x00\xb5\x00\x97\x00\xd0\x01\xd1\x01\x00\x00\x55\x00\x56\x00\x57\x00\x58\x00\xd2\x01\x5a\x00\x5b\x00\x5c\x00\xd3\x01\xd4\x01\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\x00\x00\xd5\x01\x00\x00\x00\x00\x00\x00\x00\x00\xb2\x01\xeb\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa8\x00\x68\x00\x0f\x02\x00\x00\x00\x00\x00\x00\xd6\x01\xd7\x01\xd8\x01\x00\x00\x00\x00\x00\x00\x84\x02\xc0\x00\xc1\x00\x85\x02\x86\x02\x00\x00\x00\x00\x00\x00\xd0\x01\xd1\x01\x00\x00\x55\x00\x56\x00\x57\x00\x58\x00\xd2\x01\x5a\x00\x5b\x00\x5c\x00\xd3\x01\xd4\x01\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x00\x00\xb2\x01\xeb\x00\xb3\x01\xed\x00\xca\x02\x64\x00\xa8\x00\x68\x00\xa9\x00\xd5\x01\xaa\x00\x6c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6d\x00\xf4\x02\x6f\x00\xa8\x00\x68\x00\x0f\x02\x00\x00\x00\x00\x00\x00\xd6\x01\xd7\x01\xd8\x01\x00\x00\x00\x00\x00\x00\x84\x02\xc0\x00\xc1\x00\x85\x02\x86\x02\xd0\x01\xd1\x01\x00\x00\x55\x00\x56\x00\x57\x00\x58\x00\xd2\x01\x5a\x00\x5b\x00\x5c\x00\xd3\x01\xd4\x01\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\xb5\x01\x6f\x00\xd5\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6d\x00\xf9\x02\x6f\x00\x00\x00\x00\x00\x00\x00\xd6\x01\xd7\x01\xd8\x01\x00\x00\x00\x00\x00\x00\x84\x02\xc0\x00\xc1\x00\x85\x02\x86\x02\xd0\x01\xd1\x01\x00\x00\x55\x00\x56\x00\x57\x00\x58\x00\xd2\x01\x5a\x00\x5b\x00\x5c\x00\xd3\x01\xd4\x01\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\x00\x00\xd5\x01\xf4\x00\x00\x00\xd3\x00\xd4\x00\xd5\x00\x00\x00\xf5\x00\x00\x00\x00\x00\x00\x00\x6d\x00\x87\x02\x6f\x00\xf6\x00\x62\x00\x63\x00\xd6\x01\xd7\x01\xd8\x01\xd9\x01\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\xd6\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2d\x02\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2e\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6d\x00\xda\x01\x6f\x00\xc5\x00\x56\x00\x57\x00\x58\x00\x00\x00\xc6\x00\xad\x00\x56\x00\x57\x00\x58\x00\x00\x00\xae\x00\xc7\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\xaf\x00\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\xc8\x00\x00\x00\xf9\x00\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x22\x02\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x17\x02\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x23\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\xad\x00\x56\x00\x57\x00\x58\x00\x00\x00\xae\x00\xad\x00\x56\x00\x57\x00\x58\x00\x00\x00\xae\x00\xaf\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\xaf\x00\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\x49\x02\xeb\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe8\x01\x68\x00\xe9\x01\x00\x00\x24\x02\x25\x02\xe8\x01\x68\x00\xe9\x01\x00\x00\x00\x00\xb2\x00\x9f\x02\xc0\x00\xc1\x00\xa0\x02\xa1\x02\x00\x00\x9f\x02\xc0\x00\xc1\x00\xa0\x02\xa1\x02\xad\x00\x56\x00\x57\x00\x58\x00\x00\x00\xae\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xaf\x00\x62\x00\x63\x00\x2c\x01\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x64\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\xb2\x00\x30\x01\x00\x00\x00\x00\x00\x00\x00\x00\xb2\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9f\x02\xc0\x00\xc1\x00\xa0\x02\xa1\x02\x2c\x01\x5a\x00\x00\x00\x2d\x01\xfa\x01\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x06\x00\x00\x00\x00\x00\x30\x01\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\xfb\x01\xb2\x00\x57\x02\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x58\x02\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x2c\x01\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\x00\x00\x30\x01\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x73\x01\x2c\x01\x5a\x00\x00\x00\x2d\x01\x42\x02\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x06\x00\x00\x00\x00\x00\x30\x01\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x43\x02\x00\x00\x15\x02\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x16\x02\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x2c\x01\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\x00\x00\x30\x01\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x72\x01\x00\x00\x2c\x01\x5a\x00\x00\x00\x2d\x01\xe3\x02\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x06\x00\x00\x00\x00\x00\x30\x01\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\xe4\x02\x00\x00\xf4\x01\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf5\x01\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x2c\x01\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2c\x01\x5a\x00\x64\x00\x2d\x01\x00\x00\x2e\x01\x30\x01\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2c\x01\x5a\x00\x64\x00\x2d\x01\x00\x00\x2e\x01\x30\x01\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x8c\x01\x00\x00\x00\x00\x2c\x01\x5a\x00\x64\x00\x2d\x01\x00\x00\x2e\x01\x30\x01\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\xb1\x02\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\x00\x00\x30\x01\xc6\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb0\x02\x00\x00\xc7\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\xc8\x00\xad\x02\x6d\x00\x33\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x7c\x01\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\x00\x00\x00\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x00\x00\x00\x00\xdf\x00\x00\x00\x00\x00\x00\x00\x00\x00\x73\x00\xb7\x00\x00\x00\x75\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\xb8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x7b\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x71\x01\x80\x01\x81\x01\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x00\x00\x18\x00\x19\x00\xdc\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\xb7\x00\x91\x00\x75\x00\x00\x00\x00\x00\xbc\x00\x00\x00\xb8\x00\x00\x00\x00\x00\x28\x02\xea\x00\xeb\x00\x97\x00\x00\x00\x7b\x00\x29\x02\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\x00\x00\x2a\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\xb9\x00\xba\x00\x89\x00\xbb\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\x00\x00\x91\x00\x00\x00\x00\x00\x00\x00\xbc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\x3f\x00\x00\x00\x00\x00\x00\x00\x73\x00\x00\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x8c\x00\x8d\x00\x8e\x00\x00\x00\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x96\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\x00\x00\x00\x00\x9a\x00\x9b\x00\xfd\x02\x00\x00\x73\x00\x00\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x8c\x00\x00\x00\x8e\x00\x00\x00\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x96\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\x00\x00\x00\x00\x9a\x00\x9b\x00\x73\x00\x1b\xfe\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\x1b\xfe\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x1b\xfe\x1b\xfe\x89\x00\x1b\xfe\x00\x00\x8a\x00\x8b\x00\x00\x00\x8c\x00\x00\x00\x8e\x00\x00\x00\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x1b\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xdc\x01\x96\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\x1b\xfe\x1b\xfe\x9a\x00\x9b\x00\x73\x00\x1b\xfe\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\x1b\xfe\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x1b\xfe\x1b\xfe\x89\x00\x1b\xfe\x00\x00\x8a\x00\x8b\x00\x00\x00\x8c\x00\x00\x00\x8e\x00\x00\x00\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x1b\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x96\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\x1b\xfe\x1b\xfe\x9a\x00\x9b\x00\x73\x00\xb7\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\xb8\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x8c\x00\x00\x00\x8e\x00\x00\x00\x8f\x00\xc6\x01\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc7\x01\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\x19\xfe\x19\xfe\x00\x00\x19\xfe\x00\x00\x19\xfe\x00\x00\x19\xfe\x19\xfe\x00\x00\x19\xfe\x00\x00\x00\x00\x19\xfe\x00\x00\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x00\x00\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x00\x00\x19\xfe\x19\xfe\x00\x00\x19\xfe\x00\x00\x19\xfe\x00\x00\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x19\xfe\x19\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x73\x00\xb7\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\xb8\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x00\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\x00\x00\x91\x00\x00\x00\x93\x00\x94\x00\xbc\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x97\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x70\x01\x00\x00\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\x73\x00\x00\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\x18\x00\x19\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x8c\x00\x8d\x00\x8e\x00\x00\x00\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x96\x00\x97\x00\x73\x00\x00\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\x99\x00\x00\x00\x78\x00\x9a\x00\x9b\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x8c\x00\x00\x00\x8e\x00\x00\x00\x8f\x00\xb4\x00\x91\x00\x92\x00\x93\x00\x94\x00\x00\x00\x00\x00\x73\x00\xb7\x00\x00\x00\x75\x00\x00\x00\xb5\x00\x97\x00\x00\x00\xb8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x33\x03\x99\x00\x7b\x00\x00\x00\x9a\x00\x9b\x00\x00\x00\x34\x03\x00\x00\xe8\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xed\x00\x84\x00\x1a\x02\x67\x00\x68\x00\xf0\x01\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\x00\x00\x91\x00\x00\x00\x00\x00\x00\x00\xbc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\xb7\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\xb8\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x00\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\xb7\x00\x91\x00\x75\x00\x93\x00\x94\x00\xbc\x00\x00\x00\xb8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x97\x00\x00\x00\x7b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\x00\x00\x91\x00\x00\x00\x00\x00\x00\x00\xbc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\xb7\x00\x00\x00\x00\x00\x00\x00\x76\x00\x00\x00\x77\x00\xb8\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\xc6\x01\x00\x00\x92\x00\x93\x00\x94\x00\xbc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc7\x01\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x19\xfe\x00\x00\xbd\x00\xbe\x00\x19\xfe\x00\x00\x19\xfe\x19\xfe\x00\x00\x19\xfe\x00\x00\x00\x00\x19\xfe\x00\x00\x19\xfe\x00\x00\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x19\xfe\x19\xfe\x19\xfe\x00\x00\x00\x00\x19\xfe\x19\xfe\x00\x00\x19\xfe\x00\x00\x19\xfe\x19\xfe\x00\x00\x00\x00\x00\x00\x19\xfe\x00\x00\x00\x00\x19\xfe\x00\x00\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x19\xfe\x19\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb7\x00\x00\x00\x19\xfe\x19\xfe\x76\x00\x00\x00\x77\x00\xb8\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\xcd\x00\x00\x00\x92\x00\x93\x00\x94\x00\xbc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xce\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb7\x00\x00\x00\xbd\x00\xbe\x00\x76\x00\x00\x00\x77\x00\xb8\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\xc6\x01\x00\x00\x92\x00\x93\x00\x94\x00\xbc\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb7\x00\x00\x00\xc7\x01\x97\x00\x76\x00\x00\x00\x77\x00\xb8\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\xbd\x00\xbe\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\xc8\x00\x00\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x93\x00\x94\x00\xbc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x97\x00\x00\x00\x00\x00\xc2\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\xbd\x00\xbe\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\xcb\x01\x00\x00\x00\x00\x00\x00\x00\x00\x38\x02\x00\x00\x18\x00\x19\x00\xca\x01\x00\x00\x06\x00\x39\x02\x3a\x02\x6f\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\xcb\x01\x00\x00\x00\x00\x00\x00\x00\x00\xe6\x02\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\xb2\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\xcb\x01\x00\x00\x00\x00\x00\x00\x00\x00\xcc\x01\x00\x00\x18\x00\x19\x00\xdd\x02\x00\x00\xde\x02\x6d\x00\xcd\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\x90\x00\x00\x00\x92\x00\x93\x00\x94\x00\xdd\x02\x00\x00\x37\x03\x00\x00\x00\x00\x00\x00\x00\x00\x96\x00\x97\x00\xdf\x02\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\xb5\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\x90\x00\x00\x00\x92\x00\x93\x00\x94\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x96\x00\x97\x00\xdf\x02\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\xed\x02\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x18\x00\x19\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\x90\x00\x00\x00\x92\x00\x93\x00\x94\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x96\x00\x97\x00\xdf\x02\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\xad\x02\x00\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\x90\x00\x00\x00\x92\x00\x93\x00\x94\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x96\x00\x97\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\x90\x00\x00\x00\x92\x00\x93\x00\x94\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x96\x00\x97\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\xb4\x00\x00\x00\x92\x00\x93\x00\x94\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\xb5\x00\x97\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\x90\x00\x00\x00\x92\x00\x93\x00\x94\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x96\x00\x97\x00\x94\x02\x00\x00\x95\x02\x96\x02\x97\x02\x98\x02\x99\x02\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x9a\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x94\x02\x9b\x02\x5e\x03\x96\x02\x97\x02\x98\x02\x99\x02\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x9a\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x68\x03\x00\x00\x9b\x02\x69\x03\x97\x02\x98\x02\x99\x02\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x9a\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x18\x00\x19\x00\x00\x00\x07\x00\x9b\x02\x12\x03\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x03\x13\x03\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x14\x03\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x9a\x02\x00\x00\x65\x03\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x9a\x02\x00\x00\xa8\x03\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x9a\x02\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\xcb\x01\x00\x00\x00\x00\x00\x00\x00\x00\x35\x02\x00\x00\x18\x00\x19\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\xb2\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x06\x01\x00\x00\x07\x01\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x06\x01\x00\x00\xc1\x02\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x06\x01\x00\x00\xc0\x02\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x06\x01\x00\x00\x7e\x03\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x06\x01\x00\x00\x7d\x03\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x17\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x9f\x01\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x9e\x01\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x9c\x01\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x9a\x01\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x78\x01\x00\x00\x00\x00\x79\x01\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x75\x01\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x60\x01\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x61\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x5f\x01\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\xbf\x02\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x74\x03\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\xa2\x03\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\xbc\x03\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\xbb\x03\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x12\x01\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\xf9\x01\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x8e\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x8b\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x87\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x63\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x66\x02\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x93\x02\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x91\x02\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x60\x03\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x20\x03\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x19\x03\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x8e\x03\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x8b\x03\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x87\x03\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x81\x03\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x72\x03\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x70\x03\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\xa7\x03\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x9c\x03\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x99\x03\x18\x00\x19\x00\x07\x00\x00\x00\x96\x03\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x97\x03\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x8c\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x92\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x77\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x74\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x6f\x01\x00\x00\x5d\x02\x00\x00\xe8\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xed\x00\x9a\x03\x1a\x02\x67\x00\x68\x00\xf0\x01\x18\x00\x19\x00\x34\x03\x00\x00\xe8\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xed\x00\x00\x00\x1a\x02\x67\x00\x68\x00\xf0\x01\xfd\x00\x00\x00\xe8\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xed\x00\x00\x00\x1a\x02\x67\x00\x68\x00\xf0\x01\xe7\x00\x00\x00\xe8\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xed\x00\x00\x00\x1a\x02\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
happyReduceArr :: Array
Int
(Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn)
happyReduceArr = (Int, Int)
-> [(Int,
Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn)]
-> Array
Int
(Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn)
forall i e. Ix i => (i, i) -> [(i, e)] -> Array i e
Happy_Data_Array.array (4, 501) [
(4 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_4),
(5 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_5),
(6 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_6),
(7 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_7),
(8 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_8),
(9 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_9),
(10 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_10),
(11 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_11),
(12 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_12),
(13 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_13),
(14 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_14),
(15 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_15),
(16 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_16),
(17 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_17),
(18 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_18),
(19 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_19),
(20 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_20),
(21 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_21),
(22 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_22),
(23 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_23),
(24 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_24),
(25 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_25),
(26 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_26),
(27 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_27),
(28 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_28),
(29 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_29),
(30 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_30),
(31 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_31),
(32 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_32),
(33 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_33),
(34 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_34),
(35 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_35),
(36 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_36),
(37 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_37),
(38 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_38),
(39 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_39),
(40 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_40),
(41 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_41),
(42 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_42),
(43 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_43),
(44 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_44),
(45 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_45),
(46 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_46),
(47 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_47),
(48 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_48),
(49 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_49),
(50 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_50),
(51 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_51),
(52 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_52),
(53 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_53),
(54 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_54),
(55 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_55),
(56 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_56),
(57 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_57),
(58 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_58),
(59 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_59),
(60 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_60),
(61 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_61),
(62 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_62),
(63 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_63),
(64 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_64),
(65 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_65),
(66 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_66),
(67 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_67),
(68 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_68),
(69 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_69),
(70 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_70),
(71 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_71),
(72 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_72),
(73 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_73),
(74 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_74),
(75 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_75),
(76 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_76),
(77 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_77),
(78 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_78),
(79 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_79),
(80 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_80),
(81 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_81),
(82 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_82),
(83 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_83),
(84 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_84),
(85 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_85),
(86 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_86),
(87 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_87),
(88 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_88),
(89 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_89),
(90 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_90),
(91 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_91),
(92 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_92),
(93 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_93),
(94 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_94),
(95 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_95),
(96 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_96),
(97 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_97),
(98 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_98),
(99 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_99),
(100 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_100),
(101 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_101),
(102 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_102),
(103 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_103),
(104 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_104),
(105 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_105),
(106 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_106),
(107 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_107),
(108 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_108),
(109 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_109),
(110 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_110),
(111 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_111),
(112 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_112),
(113 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_113),
(114 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_114),
(115 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_115),
(116 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_116),
(117 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_117),
(118 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_118),
(119 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_119),
(120 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_120),
(121 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_121),
(122 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_122),
(123 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_123),
(124 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_124),
(125 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_125),
(126 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_126),
(127 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_127),
(128 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_128),
(129 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_129),
(130 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_130),
(131 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_131),
(132 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_132),
(133 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_133),
(134 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_134),
(135 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_135),
(136 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_136),
(137 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_137),
(138 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_138),
(139 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_139),
(140 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_140),
(141 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_141),
(142 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_142),
(143 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_143),
(144 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_144),
(145 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_145),
(146 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_146),
(147 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_147),
(148 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_148),
(149 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_149),
(150 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_150),
(151 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_151),
(152 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_152),
(153 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_153),
(154 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_154),
(155 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_155),
(156 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_156),
(157 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_157),
(158 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_158),
(159 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_159),
(160 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_160),
(161 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_161),
(162 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_162),
(163 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_163),
(164 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_164),
(165 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_165),
(166 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_166),
(167 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_167),
(168 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_168),
(169 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_169),
(170 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_170),
(171 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_171),
(172 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_172),
(173 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_173),
(174 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_174),
(175 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_175),
(176 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_176),
(177 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_177),
(178 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_178),
(179 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_179),
(180 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_180),
(181 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_181),
(182 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_182),
(183 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_183),
(184 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_184),
(185 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_185),
(186 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_186),
(187 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_187),
(188 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_188),
(189 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_189),
(190 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_190),
(191 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_191),
(192 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_192),
(193 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_193),
(194 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_194),
(195 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_195),
(196 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_196),
(197 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_197),
(198 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_198),
(199 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_199),
(200 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_200),
(201 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_201),
(202 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_202),
(203 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_203),
(204 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_204),
(205 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_205),
(206 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_206),
(207 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_207),
(208 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_208),
(209 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_209),
(210 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_210),
(211 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_211),
(212 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_212),
(213 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_213),
(214 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_214),
(215 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_215),
(216 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_216),
(217 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_217),
(218 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_218),
(219 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_219),
(220 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_220),
(221 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_221),
(222 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_222),
(223 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_223),
(224 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_224),
(225 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_225),
(226 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_226),
(227 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_227),
(228 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_228),
(229 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_229),
(230 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_230),
(231 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_231),
(232 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_232),
(233 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_233),
(234 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_234),
(235 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_235),
(236 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_236),
(237 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_237),
(238 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_238),
(239 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_239),
(240 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_240),
(241 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_241),
(242 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_242),
(243 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_243),
(244 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_244),
(245 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_245),
(246 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_246),
(247 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_247),
(248 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_248),
(249 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_249),
(250 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_250),
(251 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_251),
(252 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_252),
(253 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_253),
(254 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_254),
(255 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_255),
(256 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_256),
(257 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_257),
(258 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_258),
(259 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_259),
(260 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_260),
(261 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_261),
(262 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_262),
(263 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_263),
(264 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_264),
(265 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_265),
(266 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_266),
(267 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_267),
(268 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_268),
(269 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_269),
(270 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_270),
(271 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_271),
(272 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_272),
(273 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_273),
(274 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_274),
(275 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_275),
(276 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_276),
(277 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_277),
(278 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_278),
(279 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_279),
(280 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_280),
(281 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_281),
(282 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_282),
(283 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_283),
(284 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_284),
(285 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_285),
(286 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_286),
(287 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_287),
(288 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_288),
(289 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_289),
(290 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_290),
(291 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_291),
(292 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_292),
(293 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_293),
(294 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_294),
(295 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_295),
(296 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_296),
(297 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_297),
(298 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_298),
(299 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_299),
(300 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_300),
(301 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_301),
(302 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_302),
(303 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_303),
(304 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_304),
(305 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_305),
(306 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_306),
(307 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_307),
(308 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_308),
(309 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_309),
(310 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_310),
(311 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_311),
(312 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_312),
(313 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_313),
(314 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_314),
(315 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_315),
(316 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_316),
(317 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_317),
(318 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_318),
(319 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_319),
(320 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_320),
(321 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_321),
(322 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_322),
(323 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_323),
(324 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_324),
(325 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_325),
(326 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_326),
(327 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_327),
(328 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_328),
(329 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_329),
(330 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_330),
(331 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_331),
(332 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_332),
(333 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_333),
(334 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_334),
(335 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_335),
(336 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_336),
(337 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_337),
(338 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_338),
(339 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_339),
(340 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_340),
(341 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_341),
(342 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_342),
(343 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_343),
(344 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_344),
(345 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_345),
(346 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_346),
(347 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_347),
(348 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_348),
(349 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_349),
(350 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_350),
(351 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_351),
(352 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_352),
(353 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_353),
(354 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_354),
(355 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_355),
(356 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_356),
(357 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_357),
(358 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_358),
(359 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_359),
(360 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_360),
(361 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_361),
(362 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_362),
(363 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_363),
(364 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_364),
(365 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_365),
(366 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_366),
(367 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_367),
(368 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_368),
(369 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_369),
(370 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_370),
(371 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_371),
(372 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_372),
(373 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_373),
(374 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_374),
(375 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_375),
(376 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_376),
(377 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_377),
(378 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_378),
(379 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_379),
(380 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_380),
(381 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_381),
(382 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_382),
(383 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_383),
(384 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_384),
(385 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_385),
(386 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_386),
(387 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_387),
(388 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_388),
(389 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_389),
(390 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_390),
(391 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_391),
(392 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_392),
(393 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_393),
(394 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_394),
(395 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_395),
(396 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_396),
(397 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_397),
(398 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_398),
(399 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_399),
(400 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_400),
(401 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_401),
(402 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_402),
(403 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_403),
(404 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_404),
(405 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_405),
(406 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_406),
(407 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_407),
(408 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_408),
(409 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_409),
(410 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_410),
(411 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_411),
(412 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_412),
(413 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_413),
(414 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_414),
(415 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_415),
(416 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_416),
(417 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_417),
(418 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_418),
(419 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_419),
(420 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_420),
(421 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_421),
(422 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_422),
(423 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_423),
(424 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_424),
(425 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_425),
(426 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_426),
(427 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_427),
(428 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_428),
(429 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_429),
(430 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_430),
(431 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_431),
(432 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_432),
(433 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_433),
(434 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_434),
(435 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_435),
(436 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_436),
(437 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_437),
(438 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_438),
(439 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_439),
(440 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_440),
(441 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_441),
(442 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_442),
(443 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_443),
(444 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_444),
(445 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_445),
(446 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_446),
(447 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_447),
(448 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_448),
(449 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_449),
(450 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_450),
(451 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_451),
(452 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_452),
(453 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_453),
(454 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_454),
(455 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_455),
(456 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_456),
(457 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_457),
(458 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_458),
(459 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_459),
(460 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_460),
(461 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_461),
(462 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_462),
(463 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_463),
(464 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_464),
(465 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_465),
(466 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_466),
(467 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_467),
(468 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_468),
(469 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_469),
(470 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_470),
(471 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_471),
(472 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_472),
(473 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_473),
(474 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_474),
(475 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_475),
(476 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_476),
(477 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_477),
(478 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_478),
(479 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_479),
(480 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_480),
(481 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_481),
(482 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_482),
(483 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_483),
(484 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_484),
(485 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_485),
(486 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_486),
(487 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_487),
(488 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_488),
(489 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_489),
(490 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_490),
(491 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_491),
(492 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_492),
(493 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_493),
(494 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_494),
(495 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_495),
(496 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_496),
(497 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_497),
(498 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_498),
(499 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_499),
(500 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_500),
(501 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_501)
]
happy_n_terms :: Int
happy_n_terms = 124 :: Int
happy_n_nonterms :: Int
happy_n_nonterms = 131 :: Int
happyReduce_4 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_4 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_4 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 0# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_4
happyReduction_4 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_4 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTranslUnit -> (CTranslUnit -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CExtDecl]
happyOut8 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CExtDecl]
happy_var_1 ->
( let decls :: [CExtDecl]
decls = Reversed [CExtDecl] -> [CExtDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CExtDecl]
happy_var_1 in
case [CExtDecl]
decls of
[] -> do{ Name
n <- P Name
getNewName; Position
p <- P Position
getCurrentPosition; CTranslUnit -> P CTranslUnit
forall (m :: * -> *) a. Monad m => a -> m a
return (CTranslUnit -> P CTranslUnit) -> CTranslUnit -> P CTranslUnit
forall a b. (a -> b) -> a -> b
$ [CExtDecl] -> NodeInfo -> CTranslUnit
forall a. [CExternalDeclaration a] -> a -> CTranslationUnit a
CTranslUnit [CExtDecl]
decls (Position -> PosLength -> Name -> NodeInfo
mkNodeInfo' Position
p (Position
p,0) Name
n) }
(d :: CExtDecl
d:ds :: [CExtDecl]
ds) -> CExtDecl -> (NodeInfo -> CTranslUnit) -> P CTranslUnit
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExtDecl
d ((NodeInfo -> CTranslUnit) -> P CTranslUnit)
-> (NodeInfo -> CTranslUnit) -> P CTranslUnit
forall a b. (a -> b) -> a -> b
$ [CExtDecl] -> NodeInfo -> CTranslUnit
forall a. [CExternalDeclaration a] -> a -> CTranslationUnit a
CTranslUnit [CExtDecl]
decls)})
) (\r :: CTranslUnit
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTranslUnit -> HappyAbsSyn
happyIn7 CTranslUnit
r))
happyReduce_5 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_5 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_5 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 1# HappyAbsSyn
happyReduction_5
happyReduction_5 :: HappyAbsSyn
happyReduction_5 = Reversed [CExtDecl] -> HappyAbsSyn
happyIn8
(Reversed [CExtDecl]
forall a. Reversed [a]
empty
)
happyReduce_6 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_6 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_6 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 1# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_6
happyReduction_6 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_6 happy_x_2 :: p
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CExtDecl]
happyOut8 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CExtDecl]
happy_var_1 ->
Reversed [CExtDecl] -> HappyAbsSyn
happyIn8
(Reversed [CExtDecl]
happy_var_1
)}
happyReduce_7 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_7 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_7 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 1# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_7
happyReduction_7 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_7 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CExtDecl]
happyOut8 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CExtDecl]
happy_var_1 ->
case HappyAbsSyn -> CExtDecl
happyOut9 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CExtDecl
happy_var_2 ->
Reversed [CExtDecl] -> HappyAbsSyn
happyIn8
(Reversed [CExtDecl]
happy_var_1 Reversed [CExtDecl] -> CExtDecl -> Reversed [CExtDecl]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CExtDecl
happy_var_2
)}}
happyReduce_8 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_8 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_8 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 2# HappyAbsSyn -> HappyAbsSyn
happyReduction_8
happyReduction_8 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_8 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CFunDef
happyOut10 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CFunDef
happy_var_1 ->
CExtDecl -> HappyAbsSyn
happyIn9
(CFunDef -> CExtDecl
forall a. CFunctionDef a -> CExternalDeclaration a
CFDefExt CFunDef
happy_var_1
)}
happyReduce_9 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_9 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_9 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 2# HappyAbsSyn -> HappyAbsSyn
happyReduction_9
happyReduction_9 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_9 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDecl
happyOut32 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDecl
happy_var_1 ->
CExtDecl -> HappyAbsSyn
happyIn9
(CDecl -> CExtDecl
forall a. CDeclaration a -> CExternalDeclaration a
CDeclExt CDecl
happy_var_1
)}
happyReduce_10 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_10 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_10 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 2# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_10
happyReduction_10 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_10 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: p
happy_x_1
= case HappyAbsSyn -> CExtDecl
happyOut9 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CExtDecl
happy_var_2 ->
CExtDecl -> HappyAbsSyn
happyIn9
(CExtDecl
happy_var_2
)}
happyReduce_11 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_11 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_11 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 2# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_11
happyReduction_11 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_11 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExtDecl -> (CExtDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CStrLit
happyOut128 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CStrLit
happy_var_3 ->
( CToken -> (NodeInfo -> CExtDecl) -> P CExtDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExtDecl) -> P CExtDecl)
-> (NodeInfo -> CExtDecl) -> P CExtDecl
forall a b. (a -> b) -> a -> b
$ CStrLit -> NodeInfo -> CExtDecl
forall a. CStringLiteral a -> a -> CExternalDeclaration a
CAsmExt CStrLit
happy_var_3)}})
) (\r :: CExtDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExtDecl -> HappyAbsSyn
happyIn9 CExtDecl
r))
happyReduce_12 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_12 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_12 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_12
happyReduction_12 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_12 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CDeclr
happyOut11 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclr
happy_var_1 ->
case HappyAbsSyn -> CStat
happyOut14 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CStat
happy_var_2 ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (CDeclr -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CDeclr
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [] CDeclr
happy_var_1 [] CStat
happy_var_2))}})
) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_13 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_13 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_13 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_13
happyReduction_13 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_13 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CAttr]
happy_var_1 ->
case HappyAbsSyn -> CDeclr
happyOut11 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclr
happy_var_2 ->
case HappyAbsSyn -> CStat
happyOut14 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CStat
happy_var_3 ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ([CAttr] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CAttr]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_14 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_14 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_14 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_14
happyReduction_14 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_14 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CDeclSpec]
happyOut37 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclr
happyOut11 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclr
happy_var_2 ->
case HappyAbsSyn -> CStat
happyOut14 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CStat
happy_var_3 ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ([CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_15 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_15 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_15 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_15
happyReduction_15 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_15 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CDeclSpec]
happyOut44 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclr
happyOut11 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclr
happy_var_2 ->
case HappyAbsSyn -> CStat
happyOut14 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CStat
happy_var_3 ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ([CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_16 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_16 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_16 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_16
happyReduction_16 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_16 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut38 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclr
happyOut11 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclr
happy_var_2 ->
case HappyAbsSyn -> CStat
happyOut14 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CStat
happy_var_3 ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_17 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_17 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_17 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_17
happyReduction_17 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_17 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> CDeclr
happyOut11 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclr
happy_var_2 ->
case HappyAbsSyn -> CStat
happyOut14 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CStat
happy_var_3 ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CTypeQual] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_18 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_18 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_18 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_18
happyReduction_18 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_18 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CDeclr
happyOut11 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclr
happy_var_3 ->
case HappyAbsSyn -> CStat
happyOut14 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CStat
happy_var_4 ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CTypeQual] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 [CDeclSpec] -> [CDeclSpec] -> [CDeclSpec]
forall a. [a] -> [a] -> [a]
++ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) CDeclr
happy_var_3 [] CStat
happy_var_4))}}}})
) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_19 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_19 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_19 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_19
happyReduction_19 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_19 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CDeclr
happyOut79 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclr
happy_var_1 ->
case HappyAbsSyn -> Reversed [CDecl]
happyOut33 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Reversed [CDecl]
happy_var_2 ->
case HappyAbsSyn -> CStat
happyOut14 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CStat
happy_var_3 ->
( CDeclr -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CDeclr
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [] CDeclr
happy_var_1 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_2) CStat
happy_var_3)}}})
) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_20 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_20 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_20 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_20
happyReduction_20 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_20 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CAttr]
happy_var_1 ->
case HappyAbsSyn -> CDeclr
happyOut79 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclr
happy_var_2 ->
case HappyAbsSyn -> Reversed [CDecl]
happyOut33 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Reversed [CDecl]
happy_var_3 ->
case HappyAbsSyn -> CStat
happyOut14 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CStat
happy_var_4 ->
( CDeclr -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CDeclr
happy_var_2 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) CDeclr
happy_var_2 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_3) CStat
happy_var_4)}}}})
) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_21 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_21 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_21 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_21
happyReduction_21 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_21 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CDeclSpec]
happyOut37 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclr
happyOut79 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclr
happy_var_2 ->
case HappyAbsSyn -> Reversed [CDecl]
happyOut33 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Reversed [CDecl]
happy_var_3 ->
case HappyAbsSyn -> CStat
happyOut14 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CStat
happy_var_4 ->
( [CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_3) CStat
happy_var_4)}}}})
) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_22 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_22 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_22 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_22
happyReduction_22 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_22 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CDeclSpec]
happyOut44 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclr
happyOut79 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclr
happy_var_2 ->
case HappyAbsSyn -> Reversed [CDecl]
happyOut33 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Reversed [CDecl]
happy_var_3 ->
case HappyAbsSyn -> CStat
happyOut14 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CStat
happy_var_4 ->
( [CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_3) CStat
happy_var_4)}}}})
) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_23 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_23 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_23 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_23
happyReduction_23 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_23 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut38 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclr
happyOut79 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclr
happy_var_2 ->
case HappyAbsSyn -> Reversed [CDecl]
happyOut33 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Reversed [CDecl]
happy_var_3 ->
case HappyAbsSyn -> CStat
happyOut14 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CStat
happy_var_4 ->
( Reversed [CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) CDeclr
happy_var_2 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_3) CStat
happy_var_4)}}}})
) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_24 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_24 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_24 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_24
happyReduction_24 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_24 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> CDeclr
happyOut79 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclr
happy_var_2 ->
case HappyAbsSyn -> Reversed [CDecl]
happyOut33 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Reversed [CDecl]
happy_var_3 ->
case HappyAbsSyn -> CStat
happyOut14 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CStat
happy_var_4 ->
( Reversed [CTypeQual] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) CDeclr
happy_var_2 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_3) CStat
happy_var_4)}}}})
) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_25 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_25 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_25 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_25
happyReduction_25 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_25 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CDeclr
happyOut79 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclr
happy_var_3 ->
case HappyAbsSyn -> Reversed [CDecl]
happyOut33 HappyAbsSyn
happy_x_4 of { happy_var_4 :: Reversed [CDecl]
happy_var_4 ->
case HappyAbsSyn -> CStat
happyOut14 HappyAbsSyn
happy_x_5 of { happy_var_5 :: CStat
happy_var_5 ->
( Reversed [CTypeQual] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 [CDeclSpec] -> [CDeclSpec] -> [CDeclSpec]
forall a. [a] -> [a] -> [a]
++ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) CDeclr
happy_var_3 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_4) CStat
happy_var_5)}}}}})
) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_26 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_26 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_26 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 4# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_26
happyReduction_26 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_26 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CDeclrR
happyOut75 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR
happy_var_1 ->
( let declr :: CDeclr
declr = CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_1 in
P ()
enterScope P () -> P () -> P ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> CDeclr -> P ()
doFuncParamDeclIdent CDeclr
declr P () -> P CDeclr -> P CDeclr
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> CDeclr -> P CDeclr
forall (m :: * -> *) a. Monad m => a -> m a
return CDeclr
declr)})
) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn11 CDeclr
r))
happyReduce_27 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_27 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_27 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 5# HappyAbsSyn -> HappyAbsSyn
happyReduction_27
happyReduction_27 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_27 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CStat
happyOut13 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CStat
happy_var_1 ->
CStat -> HappyAbsSyn
happyIn12
(CStat
happy_var_1
)}
happyReduce_28 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_28 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_28 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 5# HappyAbsSyn -> HappyAbsSyn
happyReduction_28
happyReduction_28 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_28 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CStat
happyOut14 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CStat
happy_var_1 ->
CStat -> HappyAbsSyn
happyIn12
(CStat
happy_var_1
)}
happyReduce_29 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_29 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_29 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 5# HappyAbsSyn -> HappyAbsSyn
happyReduction_29
happyReduction_29 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_29 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CStat
happyOut22 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CStat
happy_var_1 ->
CStat -> HappyAbsSyn
happyIn12
(CStat
happy_var_1
)}
happyReduce_30 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_30 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_30 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 5# HappyAbsSyn -> HappyAbsSyn
happyReduction_30
happyReduction_30 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_30 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CStat
happyOut23 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CStat
happy_var_1 ->
CStat -> HappyAbsSyn
happyIn12
(CStat
happy_var_1
)}
happyReduce_31 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_31 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_31 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 5# HappyAbsSyn -> HappyAbsSyn
happyReduction_31
happyReduction_31 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_31 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CStat
happyOut24 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CStat
happy_var_1 ->
CStat -> HappyAbsSyn
happyIn12
(CStat
happy_var_1
)}
happyReduce_32 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_32 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_32 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 5# HappyAbsSyn -> HappyAbsSyn
happyReduction_32
happyReduction_32 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_32 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CStat
happyOut25 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CStat
happy_var_1 ->
CStat -> HappyAbsSyn
happyIn12
(CStat
happy_var_1
)}
happyReduce_33 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_33 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_33 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 5# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_33
happyReduction_33 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_33 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CAsmStmt
happyOut26 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CAsmStmt
happy_var_1 ->
( CAsmStmt -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CAsmStmt
happy_var_1 (CAsmStmt -> NodeInfo -> CStat
forall a. CAssemblyStatement a -> a -> CStatement a
CAsm CAsmStmt
happy_var_1))})
) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn12 CStat
r))
happyReduce_34 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_34 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_34 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 6# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_34
happyReduction_34 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_34 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Ident
happyOut131 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Ident
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CAttr]
happy_var_3 ->
case HappyAbsSyn -> CStat
happyOut12 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CStat
happy_var_4 ->
( Ident -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Ident -> CStat -> [CAttr] -> NodeInfo -> CStat
forall a.
Ident -> CStatement a -> [CAttribute a] -> a -> CStatement a
CLabel Ident
happy_var_1 CStat
happy_var_4 [CAttr]
happy_var_3)}}})
) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn13 CStat
r))
happyReduce_35 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_35 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_35 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 6# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_35
happyReduction_35 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_35 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut126 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CExpr
happy_var_2 ->
case HappyAbsSyn -> CStat
happyOut12 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CStat
happy_var_4 ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> NodeInfo -> CStat
forall a. CExpression a -> CStatement a -> a -> CStatement a
CCase CExpr
happy_var_2 CStat
happy_var_4)}}})
) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn13 CStat
r))
happyReduce_36 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_36 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_36 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 6# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_36
happyReduction_36 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_36 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CStat
happyOut12 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CStat
happy_var_3 ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CStat -> NodeInfo -> CStat
forall a. CStatement a -> a -> CStatement a
CDefault CStat
happy_var_3)}})
) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn13 CStat
r))
happyReduce_37 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_37 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_37 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 6# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_37
happyReduction_37 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_37 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut126 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CExpr
happy_var_2 ->
case HappyAbsSyn -> CExpr
happyOut126 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CExpr
happy_var_4 ->
case HappyAbsSyn -> CStat
happyOut12 HappyAbsSyn
happy_x_6 of { happy_var_6 :: CStat
happy_var_6 ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CExpr -> CStat -> NodeInfo -> CStat
forall a.
CExpression a -> CExpression a -> CStatement a -> a -> CStatement a
CCases CExpr
happy_var_2 CExpr
happy_var_4 CStat
happy_var_6)}}}})
) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn13 CStat
r))
happyReduce_38 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_38 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_38 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 7# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_38
happyReduction_38 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_38 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Reversed [CBlockItem]
happyOut17 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Reversed [CBlockItem]
happy_var_3 ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ [Ident] -> [CBlockItem] -> NodeInfo -> CStat
forall a. [Ident] -> [CCompoundBlockItem a] -> a -> CStatement a
CCompound [] (Reversed [CBlockItem] -> [CBlockItem]
forall a. Reversed [a] -> [a]
reverse Reversed [CBlockItem]
happy_var_3))}})
) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn14 CStat
r))
happyReduce_39 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_39 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_39 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 7# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_39
happyReduction_39 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_39 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Reversed [Ident]
happyOut21 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Reversed [Ident]
happy_var_3 ->
case HappyAbsSyn -> Reversed [CBlockItem]
happyOut17 HappyAbsSyn
happy_x_4 of { happy_var_4 :: Reversed [CBlockItem]
happy_var_4 ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ [Ident] -> [CBlockItem] -> NodeInfo -> CStat
forall a. [Ident] -> [CCompoundBlockItem a] -> a -> CStatement a
CCompound (Reversed [Ident] -> [Ident]
forall a. Reversed [a] -> [a]
reverse Reversed [Ident]
happy_var_3) (Reversed [CBlockItem] -> [CBlockItem]
forall a. Reversed [a] -> [a]
reverse Reversed [CBlockItem]
happy_var_4))}}})
) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn14 CStat
r))
happyReduce_40 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_40 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_40 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 0# 8# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p p. p -> p -> P HappyAbsSyn
happyReduction_40
happyReduction_40 :: p -> p -> P HappyAbsSyn
happyReduction_40 (p
happyRest) tk :: p
tk
= P () -> (() -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((( P ()
enterScope))
) (\r :: ()
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (() -> HappyAbsSyn
happyIn15 ()
r))
happyReduce_41 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_41 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_41 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 0# 9# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p p. p -> p -> P HappyAbsSyn
happyReduction_41
happyReduction_41 :: p -> p -> P HappyAbsSyn
happyReduction_41 (p
happyRest) tk :: p
tk
= P () -> (() -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((( P ()
leaveScope))
) (\r :: ()
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (() -> HappyAbsSyn
happyIn16 ()
r))
happyReduce_42 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_42 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_42 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 10# HappyAbsSyn
happyReduction_42
happyReduction_42 :: HappyAbsSyn
happyReduction_42 = Reversed [CBlockItem] -> HappyAbsSyn
happyIn17
(Reversed [CBlockItem]
forall a. Reversed [a]
empty
)
happyReduce_43 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_43 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_43 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 10# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_43
happyReduction_43 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_43 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CBlockItem]
happyOut17 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CBlockItem]
happy_var_1 ->
case HappyAbsSyn -> CBlockItem
happyOut18 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CBlockItem
happy_var_2 ->
Reversed [CBlockItem] -> HappyAbsSyn
happyIn17
(Reversed [CBlockItem]
happy_var_1 Reversed [CBlockItem] -> CBlockItem -> Reversed [CBlockItem]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CBlockItem
happy_var_2
)}}
happyReduce_44 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_44 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_44 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 11# HappyAbsSyn -> HappyAbsSyn
happyReduction_44
happyReduction_44 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_44 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CStat
happyOut12 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CStat
happy_var_1 ->
CBlockItem -> HappyAbsSyn
happyIn18
(CStat -> CBlockItem
forall a. CStatement a -> CCompoundBlockItem a
CBlockStmt CStat
happy_var_1
)}
happyReduce_45 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_45 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_45 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 11# HappyAbsSyn -> HappyAbsSyn
happyReduction_45
happyReduction_45 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_45 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CBlockItem
happyOut19 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CBlockItem
happy_var_1 ->
CBlockItem -> HappyAbsSyn
happyIn18
(CBlockItem
happy_var_1
)}
happyReduce_46 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_46 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_46 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 12# HappyAbsSyn -> HappyAbsSyn
happyReduction_46
happyReduction_46 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_46 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDecl
happyOut32 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDecl
happy_var_1 ->
CBlockItem -> HappyAbsSyn
happyIn19
(CDecl -> CBlockItem
forall a. CDeclaration a -> CCompoundBlockItem a
CBlockDecl CDecl
happy_var_1
)}
happyReduce_47 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_47 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_47 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 12# HappyAbsSyn -> HappyAbsSyn
happyReduction_47
happyReduction_47 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_47 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CFunDef
happyOut20 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CFunDef
happy_var_1 ->
CBlockItem -> HappyAbsSyn
happyIn19
(CFunDef -> CBlockItem
forall a. CFunctionDef a -> CCompoundBlockItem a
CNestedFunDef CFunDef
happy_var_1
)}
happyReduce_48 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_48 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_48 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 12# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_48
happyReduction_48 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_48 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: p
happy_x_1
= case HappyAbsSyn -> CBlockItem
happyOut19 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CBlockItem
happy_var_2 ->
CBlockItem -> HappyAbsSyn
happyIn19
(CBlockItem
happy_var_2
)}
happyReduce_49 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_49 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_49 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 13# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_49
happyReduction_49 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_49 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CDeclSpec]
happyOut37 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclr
happyOut11 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclr
happy_var_2 ->
case HappyAbsSyn -> CStat
happyOut14 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CStat
happy_var_3 ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ([CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn20 CFunDef
r))
happyReduce_50 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_50 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_50 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 13# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_50
happyReduction_50 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_50 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CDeclSpec]
happyOut44 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclr
happyOut11 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclr
happy_var_2 ->
case HappyAbsSyn -> CStat
happyOut14 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CStat
happy_var_3 ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ([CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn20 CFunDef
r))
happyReduce_51 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_51 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_51 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 13# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_51
happyReduction_51 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_51 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut38 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclr
happyOut11 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclr
happy_var_2 ->
case HappyAbsSyn -> CStat
happyOut14 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CStat
happy_var_3 ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn20 CFunDef
r))
happyReduce_52 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_52 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_52 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 13# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_52
happyReduction_52 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_52 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> CDeclr
happyOut11 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclr
happy_var_2 ->
case HappyAbsSyn -> CStat
happyOut14 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CStat
happy_var_3 ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CTypeQual] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn20 CFunDef
r))
happyReduce_53 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_53 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_53 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 13# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_53
happyReduction_53 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_53 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CDeclr
happyOut11 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclr
happy_var_3 ->
case HappyAbsSyn -> CStat
happyOut14 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CStat
happy_var_4 ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CTypeQual] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 [CDeclSpec] -> [CDeclSpec] -> [CDeclSpec]
forall a. [a] -> [a] -> [a]
++ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) CDeclr
happy_var_3 [] CStat
happy_var_4))}}}})
) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn20 CFunDef
r))
happyReduce_54 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_54 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_54 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 14# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_54
happyReduction_54 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_54 happy_x_3 :: p
happy_x_3
happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: p
happy_x_1
= case HappyAbsSyn -> Reversed [Ident]
happyOut85 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Reversed [Ident]
happy_var_2 ->
Reversed [Ident] -> HappyAbsSyn
happyIn21
(Reversed [Ident]
happy_var_2
)}
happyReduce_55 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_55 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_55 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 14# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_55
happyReduction_55 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_55 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> Reversed [Ident]
happyOut21 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [Ident]
happy_var_1 ->
case HappyAbsSyn -> Reversed [Ident]
happyOut85 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Reversed [Ident]
happy_var_3 ->
Reversed [Ident] -> HappyAbsSyn
happyIn21
(Reversed [Ident]
happy_var_1 Reversed [Ident] -> Reversed [Ident] -> Reversed [Ident]
forall a. Reversed [a] -> Reversed [a] -> Reversed [a]
`rappendr` Reversed [Ident]
happy_var_3
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_56 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_56 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_56 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 15# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_56
happyReduction_56 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_56 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Maybe CExpr -> NodeInfo -> CStat
forall a. Maybe (CExpression a) -> a -> CStatement a
CExpr Maybe CExpr
forall k1. Maybe k1
Nothing)})
) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn22 CStat
r))
happyReduce_57 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_57 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_57 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 15# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_57
happyReduction_57 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_57 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut122 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
( CExpr -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Maybe CExpr -> NodeInfo -> CStat
forall a. Maybe (CExpression a) -> a -> CStatement a
CExpr (CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_1))})
) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn22 CStat
r))
happyReduce_58 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_58 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_58 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 16# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_58
happyReduction_58 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_58 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut122 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
case HappyAbsSyn -> CStat
happyOut12 HappyAbsSyn
happy_x_5 of { happy_var_5 :: CStat
happy_var_5 ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> Maybe CStat -> NodeInfo -> CStat
forall a.
CExpression a
-> CStatement a -> Maybe (CStatement a) -> a -> CStatement a
CIf CExpr
happy_var_3 CStat
happy_var_5 Maybe CStat
forall k1. Maybe k1
Nothing)}}})
) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn23 CStat
r))
happyReduce_59 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_59 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_59 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 7# 16# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_59
happyReduction_59 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_59 (happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut122 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
case HappyAbsSyn -> CStat
happyOut12 HappyAbsSyn
happy_x_5 of { happy_var_5 :: CStat
happy_var_5 ->
case HappyAbsSyn -> CStat
happyOut12 HappyAbsSyn
happy_x_7 of { happy_var_7 :: CStat
happy_var_7 ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> Maybe CStat -> NodeInfo -> CStat
forall a.
CExpression a
-> CStatement a -> Maybe (CStatement a) -> a -> CStatement a
CIf CExpr
happy_var_3 CStat
happy_var_5 (CStat -> Maybe CStat
forall k1. k1 -> Maybe k1
Just CStat
happy_var_7))}}}})
) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn23 CStat
r))
happyReduce_60 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_60 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_60 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 16# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_60
happyReduction_60 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_60 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut122 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
case HappyAbsSyn -> CStat
happyOut12 HappyAbsSyn
happy_x_5 of { happy_var_5 :: CStat
happy_var_5 ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> NodeInfo -> CStat
forall a. CExpression a -> CStatement a -> a -> CStatement a
CSwitch CExpr
happy_var_3 CStat
happy_var_5)}}})
) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn23 CStat
r))
happyReduce_61 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_61 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_61 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 17# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_61
happyReduction_61 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_61 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut122 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
case HappyAbsSyn -> CStat
happyOut12 HappyAbsSyn
happy_x_5 of { happy_var_5 :: CStat
happy_var_5 ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> Bool -> NodeInfo -> CStat
forall a.
CExpression a -> CStatement a -> Bool -> a -> CStatement a
CWhile CExpr
happy_var_3 CStat
happy_var_5 Bool
False)}}})
) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn24 CStat
r))
happyReduce_62 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_62 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_62 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 7# 17# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_62
happyReduction_62 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_62 (happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CStat
happyOut12 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CStat
happy_var_2 ->
case HappyAbsSyn -> CExpr
happyOut122 HappyAbsSyn
happy_x_5 of { happy_var_5 :: CExpr
happy_var_5 ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> Bool -> NodeInfo -> CStat
forall a.
CExpression a -> CStatement a -> Bool -> a -> CStatement a
CWhile CExpr
happy_var_5 CStat
happy_var_2 Bool
True)}}})
) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn24 CStat
r))
happyReduce_63 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_63 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_63 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 9# 17# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_63
happyReduction_63 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_63 (happy_x_9 :: HappyAbsSyn
happy_x_9 `HappyStk`
happy_x_8 :: HappyAbsSyn
happy_x_8 `HappyStk`
happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Maybe CExpr
happyOut124 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Maybe CExpr
happy_var_3 ->
case HappyAbsSyn -> Maybe CExpr
happyOut124 HappyAbsSyn
happy_x_5 of { happy_var_5 :: Maybe CExpr
happy_var_5 ->
case HappyAbsSyn -> Maybe CExpr
happyOut124 HappyAbsSyn
happy_x_7 of { happy_var_7 :: Maybe CExpr
happy_var_7 ->
case HappyAbsSyn -> CStat
happyOut12 HappyAbsSyn
happy_x_9 of { happy_var_9 :: CStat
happy_var_9 ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Either (Maybe CExpr) CDecl
-> Maybe CExpr -> Maybe CExpr -> CStat -> NodeInfo -> CStat
forall a.
Either (Maybe (CExpression a)) (CDeclaration a)
-> Maybe (CExpression a)
-> Maybe (CExpression a)
-> CStatement a
-> a
-> CStatement a
CFor (Maybe CExpr -> Either (Maybe CExpr) CDecl
forall a b. a -> Either a b
Left Maybe CExpr
happy_var_3) Maybe CExpr
happy_var_5 Maybe CExpr
happy_var_7 CStat
happy_var_9)}}}}})
) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn24 CStat
r))
happyReduce_64 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_64 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_64 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 10# 17# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_64
happyReduction_64 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_64 (happy_x_10 :: HappyAbsSyn
happy_x_10 `HappyStk`
happy_x_9 :: HappyAbsSyn
happy_x_9 `HappyStk`
happy_x_8 :: HappyAbsSyn
happy_x_8 `HappyStk`
happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CDecl
happyOut32 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CDecl
happy_var_4 ->
case HappyAbsSyn -> Maybe CExpr
happyOut124 HappyAbsSyn
happy_x_5 of { happy_var_5 :: Maybe CExpr
happy_var_5 ->
case HappyAbsSyn -> Maybe CExpr
happyOut124 HappyAbsSyn
happy_x_7 of { happy_var_7 :: Maybe CExpr
happy_var_7 ->
case HappyAbsSyn -> CStat
happyOut12 HappyAbsSyn
happy_x_9 of { happy_var_9 :: CStat
happy_var_9 ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Either (Maybe CExpr) CDecl
-> Maybe CExpr -> Maybe CExpr -> CStat -> NodeInfo -> CStat
forall a.
Either (Maybe (CExpression a)) (CDeclaration a)
-> Maybe (CExpression a)
-> Maybe (CExpression a)
-> CStatement a
-> a
-> CStatement a
CFor (CDecl -> Either (Maybe CExpr) CDecl
forall a b. b -> Either a b
Right CDecl
happy_var_4) Maybe CExpr
happy_var_5 Maybe CExpr
happy_var_7 CStat
happy_var_9)}}}}})
) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn24 CStat
r))
happyReduce_65 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_65 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_65 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 18# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_65
happyReduction_65 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_65 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Ident
happyOut131 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Ident
happy_var_2 ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Ident -> NodeInfo -> CStat
forall a. Ident -> a -> CStatement a
CGoto Ident
happy_var_2)}})
) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn25 CStat
r))
happyReduce_66 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_66 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_66 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 18# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_66
happyReduction_66 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_66 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut122 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CStat
forall a. CExpression a -> a -> CStatement a
CGotoPtr CExpr
happy_var_3)}})
) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn25 CStat
r))
happyReduce_67 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_67 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_67 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 18# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_67
happyReduction_67 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_67 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStat
forall a. a -> CStatement a
CCont)})
) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn25 CStat
r))
happyReduce_68 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_68 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_68 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 18# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_68
happyReduction_68 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_68 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStat
forall a. a -> CStatement a
CBreak)})
) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn25 CStat
r))
happyReduce_69 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_69 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_69 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 18# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_69
happyReduction_69 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_69 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Maybe CExpr
happyOut124 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Maybe CExpr
happy_var_2 ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Maybe CExpr -> NodeInfo -> CStat
forall a. Maybe (CExpression a) -> a -> CStatement a
CReturn Maybe CExpr
happy_var_2)}})
) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn25 CStat
r))
happyReduce_70 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_70 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_70 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 19# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_70
happyReduction_70 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_70 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CAsmStmt -> (CAsmStmt -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Maybe CTypeQual
happyOut27 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Maybe CTypeQual
happy_var_2 ->
case HappyAbsSyn -> CStrLit
happyOut128 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CStrLit
happy_var_4 ->
( CToken -> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAsmStmt) -> P CAsmStmt)
-> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall a b. (a -> b) -> a -> b
$ Maybe CTypeQual
-> CStrLit
-> [CAsmOperand]
-> [CAsmOperand]
-> [CStrLit]
-> NodeInfo
-> CAsmStmt
forall a.
Maybe (CTypeQualifier a)
-> CStringLiteral a
-> [CAssemblyOperand a]
-> [CAssemblyOperand a]
-> [CStringLiteral a]
-> a
-> CAssemblyStatement a
CAsmStmt Maybe CTypeQual
happy_var_2 CStrLit
happy_var_4 [] [] [])}}})
) (\r :: CAsmStmt
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAsmStmt -> HappyAbsSyn
happyIn26 CAsmStmt
r))
happyReduce_71 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_71 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_71 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 8# 19# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_71
happyReduction_71 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_71 (happy_x_8 :: HappyAbsSyn
happy_x_8 `HappyStk`
happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CAsmStmt -> (CAsmStmt -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Maybe CTypeQual
happyOut27 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Maybe CTypeQual
happy_var_2 ->
case HappyAbsSyn -> CStrLit
happyOut128 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CStrLit
happy_var_4 ->
case HappyAbsSyn -> [CAsmOperand]
happyOut28 HappyAbsSyn
happy_x_6 of { happy_var_6 :: [CAsmOperand]
happy_var_6 ->
( CToken -> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAsmStmt) -> P CAsmStmt)
-> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall a b. (a -> b) -> a -> b
$ Maybe CTypeQual
-> CStrLit
-> [CAsmOperand]
-> [CAsmOperand]
-> [CStrLit]
-> NodeInfo
-> CAsmStmt
forall a.
Maybe (CTypeQualifier a)
-> CStringLiteral a
-> [CAssemblyOperand a]
-> [CAssemblyOperand a]
-> [CStringLiteral a]
-> a
-> CAssemblyStatement a
CAsmStmt Maybe CTypeQual
happy_var_2 CStrLit
happy_var_4 [CAsmOperand]
happy_var_6 [] [])}}}})
) (\r :: CAsmStmt
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAsmStmt -> HappyAbsSyn
happyIn26 CAsmStmt
r))
happyReduce_72 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_72 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_72 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 10# 19# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_72
happyReduction_72 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_72 (happy_x_10 :: HappyAbsSyn
happy_x_10 `HappyStk`
happy_x_9 :: HappyAbsSyn
happy_x_9 `HappyStk`
happy_x_8 :: HappyAbsSyn
happy_x_8 `HappyStk`
happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CAsmStmt -> (CAsmStmt -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Maybe CTypeQual
happyOut27 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Maybe CTypeQual
happy_var_2 ->
case HappyAbsSyn -> CStrLit
happyOut128 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CStrLit
happy_var_4 ->
case HappyAbsSyn -> [CAsmOperand]
happyOut28 HappyAbsSyn
happy_x_6 of { happy_var_6 :: [CAsmOperand]
happy_var_6 ->
case HappyAbsSyn -> [CAsmOperand]
happyOut28 HappyAbsSyn
happy_x_8 of { happy_var_8 :: [CAsmOperand]
happy_var_8 ->
( CToken -> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAsmStmt) -> P CAsmStmt)
-> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall a b. (a -> b) -> a -> b
$ Maybe CTypeQual
-> CStrLit
-> [CAsmOperand]
-> [CAsmOperand]
-> [CStrLit]
-> NodeInfo
-> CAsmStmt
forall a.
Maybe (CTypeQualifier a)
-> CStringLiteral a
-> [CAssemblyOperand a]
-> [CAssemblyOperand a]
-> [CStringLiteral a]
-> a
-> CAssemblyStatement a
CAsmStmt Maybe CTypeQual
happy_var_2 CStrLit
happy_var_4 [CAsmOperand]
happy_var_6 [CAsmOperand]
happy_var_8 [])}}}}})
) (\r :: CAsmStmt
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAsmStmt -> HappyAbsSyn
happyIn26 CAsmStmt
r))
happyReduce_73 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_73 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_73 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 12# 19# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_73
happyReduction_73 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_73 (happy_x_12 :: HappyAbsSyn
happy_x_12 `HappyStk`
happy_x_11 :: HappyAbsSyn
happy_x_11 `HappyStk`
happy_x_10 :: HappyAbsSyn
happy_x_10 `HappyStk`
happy_x_9 :: HappyAbsSyn
happy_x_9 `HappyStk`
happy_x_8 :: HappyAbsSyn
happy_x_8 `HappyStk`
happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CAsmStmt -> (CAsmStmt -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Maybe CTypeQual
happyOut27 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Maybe CTypeQual
happy_var_2 ->
case HappyAbsSyn -> CStrLit
happyOut128 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CStrLit
happy_var_4 ->
case HappyAbsSyn -> [CAsmOperand]
happyOut28 HappyAbsSyn
happy_x_6 of { happy_var_6 :: [CAsmOperand]
happy_var_6 ->
case HappyAbsSyn -> [CAsmOperand]
happyOut28 HappyAbsSyn
happy_x_8 of { happy_var_8 :: [CAsmOperand]
happy_var_8 ->
case HappyAbsSyn -> Reversed [CStrLit]
happyOut31 HappyAbsSyn
happy_x_10 of { happy_var_10 :: Reversed [CStrLit]
happy_var_10 ->
( CToken -> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAsmStmt) -> P CAsmStmt)
-> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall a b. (a -> b) -> a -> b
$ Maybe CTypeQual
-> CStrLit
-> [CAsmOperand]
-> [CAsmOperand]
-> [CStrLit]
-> NodeInfo
-> CAsmStmt
forall a.
Maybe (CTypeQualifier a)
-> CStringLiteral a
-> [CAssemblyOperand a]
-> [CAssemblyOperand a]
-> [CStringLiteral a]
-> a
-> CAssemblyStatement a
CAsmStmt Maybe CTypeQual
happy_var_2 CStrLit
happy_var_4 [CAsmOperand]
happy_var_6 [CAsmOperand]
happy_var_8 (Reversed [CStrLit] -> [CStrLit]
forall a. Reversed [a] -> [a]
reverse Reversed [CStrLit]
happy_var_10))}}}}}})
) (\r :: CAsmStmt
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAsmStmt -> HappyAbsSyn
happyIn26 CAsmStmt
r))
happyReduce_74 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_74 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_74 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 20# HappyAbsSyn
happyReduction_74
happyReduction_74 :: HappyAbsSyn
happyReduction_74 = Maybe CTypeQual -> HappyAbsSyn
happyIn27
(Maybe CTypeQual
forall k1. Maybe k1
Nothing
)
happyReduce_75 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_75 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_75 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 20# HappyAbsSyn -> HappyAbsSyn
happyReduction_75
happyReduction_75 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_75 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CTypeQual
happyOut64 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CTypeQual
happy_var_1 ->
Maybe CTypeQual -> HappyAbsSyn
happyIn27
(CTypeQual -> Maybe CTypeQual
forall k1. k1 -> Maybe k1
Just CTypeQual
happy_var_1
)}
happyReduce_76 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_76 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_76 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 21# HappyAbsSyn
happyReduction_76
happyReduction_76 :: HappyAbsSyn
happyReduction_76 = [CAsmOperand] -> HappyAbsSyn
happyIn28
([]
)
happyReduce_77 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_77 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_77 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 21# HappyAbsSyn -> HappyAbsSyn
happyReduction_77
happyReduction_77 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_77 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CAsmOperand]
happyOut29 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CAsmOperand]
happy_var_1 ->
[CAsmOperand] -> HappyAbsSyn
happyIn28
(Reversed [CAsmOperand] -> [CAsmOperand]
forall a. Reversed [a] -> [a]
reverse Reversed [CAsmOperand]
happy_var_1
)}
happyReduce_78 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_78 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_78 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 22# HappyAbsSyn -> HappyAbsSyn
happyReduction_78
happyReduction_78 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_78 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CAsmOperand
happyOut30 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CAsmOperand
happy_var_1 ->
Reversed [CAsmOperand] -> HappyAbsSyn
happyIn29
(CAsmOperand -> Reversed [CAsmOperand]
forall a. a -> Reversed [a]
singleton CAsmOperand
happy_var_1
)}
happyReduce_79 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_79 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_79 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 22# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_79
happyReduction_79 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_79 happy_x_3 :: HappyAbsSyn
happy_x_3
happy_x_2 :: p
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CAsmOperand]
happyOut29 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CAsmOperand]
happy_var_1 ->
case HappyAbsSyn -> CAsmOperand
happyOut30 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CAsmOperand
happy_var_3 ->
Reversed [CAsmOperand] -> HappyAbsSyn
happyIn29
(Reversed [CAsmOperand]
happy_var_1 Reversed [CAsmOperand] -> CAsmOperand -> Reversed [CAsmOperand]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CAsmOperand
happy_var_3
)}}
happyReduce_80 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_80 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_80 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 23# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_80
happyReduction_80 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_80 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CAsmOperand -> (CAsmOperand -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CStrLit
happyOut128 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CStrLit
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut122 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CStrLit -> (NodeInfo -> CAsmOperand) -> P CAsmOperand
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CStrLit
happy_var_1 ((NodeInfo -> CAsmOperand) -> P CAsmOperand)
-> (NodeInfo -> CAsmOperand) -> P CAsmOperand
forall a b. (a -> b) -> a -> b
$ Maybe Ident -> CStrLit -> CExpr -> NodeInfo -> CAsmOperand
forall a.
Maybe Ident
-> CStringLiteral a -> CExpression a -> a -> CAssemblyOperand a
CAsmOperand Maybe Ident
forall k1. Maybe k1
Nothing CStrLit
happy_var_1 CExpr
happy_var_3)}})
) (\r :: CAsmOperand
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAsmOperand -> HappyAbsSyn
happyIn30 CAsmOperand
r))
happyReduce_81 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_81 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_81 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 7# 23# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_81
happyReduction_81 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_81 (happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CAsmOperand -> (CAsmOperand -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { (CTokIdent _ happy_var_2 :: Ident
happy_var_2) ->
case HappyAbsSyn -> CStrLit
happyOut128 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CStrLit
happy_var_4 ->
case HappyAbsSyn -> CExpr
happyOut122 HappyAbsSyn
happy_x_6 of { happy_var_6 :: CExpr
happy_var_6 ->
( CToken -> (NodeInfo -> CAsmOperand) -> P CAsmOperand
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAsmOperand) -> P CAsmOperand)
-> (NodeInfo -> CAsmOperand) -> P CAsmOperand
forall a b. (a -> b) -> a -> b
$ Maybe Ident -> CStrLit -> CExpr -> NodeInfo -> CAsmOperand
forall a.
Maybe Ident
-> CStringLiteral a -> CExpression a -> a -> CAssemblyOperand a
CAsmOperand (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_2) CStrLit
happy_var_4 CExpr
happy_var_6)}}}})
) (\r :: CAsmOperand
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAsmOperand -> HappyAbsSyn
happyIn30 CAsmOperand
r))
happyReduce_82 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_82 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_82 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 7# 23# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_82
happyReduction_82 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_82 (happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CAsmOperand -> (CAsmOperand -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { (CTokTyIdent _ happy_var_2 :: Ident
happy_var_2) ->
case HappyAbsSyn -> CStrLit
happyOut128 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CStrLit
happy_var_4 ->
case HappyAbsSyn -> CExpr
happyOut122 HappyAbsSyn
happy_x_6 of { happy_var_6 :: CExpr
happy_var_6 ->
( CToken -> (NodeInfo -> CAsmOperand) -> P CAsmOperand
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAsmOperand) -> P CAsmOperand)
-> (NodeInfo -> CAsmOperand) -> P CAsmOperand
forall a b. (a -> b) -> a -> b
$ Maybe Ident -> CStrLit -> CExpr -> NodeInfo -> CAsmOperand
forall a.
Maybe Ident
-> CStringLiteral a -> CExpression a -> a -> CAssemblyOperand a
CAsmOperand (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_2) CStrLit
happy_var_4 CExpr
happy_var_6)}}}})
) (\r :: CAsmOperand
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAsmOperand -> HappyAbsSyn
happyIn30 CAsmOperand
r))
happyReduce_83 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_83 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_83 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 24# HappyAbsSyn -> HappyAbsSyn
happyReduction_83
happyReduction_83 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_83 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CStrLit
happyOut128 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CStrLit
happy_var_1 ->
Reversed [CStrLit] -> HappyAbsSyn
happyIn31
(CStrLit -> Reversed [CStrLit]
forall a. a -> Reversed [a]
singleton CStrLit
happy_var_1
)}
happyReduce_84 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_84 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_84 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 24# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_84
happyReduction_84 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_84 happy_x_3 :: HappyAbsSyn
happy_x_3
happy_x_2 :: p
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CStrLit]
happyOut31 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CStrLit]
happy_var_1 ->
case HappyAbsSyn -> CStrLit
happyOut128 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CStrLit
happy_var_3 ->
Reversed [CStrLit] -> HappyAbsSyn
happyIn31
(Reversed [CStrLit]
happy_var_1 Reversed [CStrLit] -> CStrLit -> Reversed [CStrLit]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CStrLit
happy_var_3
)}}
happyReduce_85 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_85 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_85 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 25# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_85
happyReduction_85 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_85 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut48 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
( Reversed [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) [])})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn32 CDecl
r))
happyReduce_86 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_86 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_86 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 25# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_86
happyReduction_86 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_86 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut49 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
( Reversed [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) [])})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn32 CDecl
r))
happyReduce_87 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_87 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_87 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 25# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_87
happyReduction_87 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_87 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CDecl
happyOut36 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDecl
happy_var_1 ->
( case CDecl
happy_var_1 of CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies at :: NodeInfo
at -> NodeInfo -> (NodeInfo -> CDecl) -> P CDecl
forall a. NodeInfo -> (NodeInfo -> a) -> P a
withLength NodeInfo
at ([CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ([(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall a. [a] -> [a]
List.reverse [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies)))})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn32 CDecl
r))
happyReduce_88 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_88 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_88 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 25# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_88
happyReduction_88 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_88 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CDecl
happyOut34 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDecl
happy_var_1 ->
( case CDecl
happy_var_1 of CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies at :: NodeInfo
at -> NodeInfo -> (NodeInfo -> CDecl) -> P CDecl
forall a. NodeInfo -> (NodeInfo -> a) -> P a
withLength NodeInfo
at ([CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ([(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall a. [a] -> [a]
List.reverse [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies)))})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn32 CDecl
r))
happyReduce_89 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_89 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_89 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 7# 25# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_89
happyReduction_89 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_89 (happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut126 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
case HappyAbsSyn -> CStrLit
happyOut128 HappyAbsSyn
happy_x_5 of { happy_var_5 :: CStrLit
happy_var_5 ->
( CToken -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ CExpr -> CStrLit -> NodeInfo -> CDecl
forall a. CExpression a -> CStringLiteral a -> a -> CDeclaration a
CStaticAssert CExpr
happy_var_3 CStrLit
happy_var_5)}}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn32 CDecl
r))
happyReduce_90 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_90 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_90 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 26# HappyAbsSyn
happyReduction_90
happyReduction_90 :: HappyAbsSyn
happyReduction_90 = Reversed [CDecl] -> HappyAbsSyn
happyIn33
(Reversed [CDecl]
forall a. Reversed [a]
empty
)
happyReduce_91 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_91 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_91 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 26# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_91
happyReduction_91 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_91 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDecl]
happyOut33 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDecl]
happy_var_1 ->
case HappyAbsSyn -> CDecl
happyOut32 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDecl
happy_var_2 ->
Reversed [CDecl] -> HappyAbsSyn
happyIn33
(Reversed [CDecl]
happy_var_1 Reversed [CDecl] -> CDecl -> Reversed [CDecl]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDecl
happy_var_2
)}}
happyReduce_92 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_92 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_92 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 27# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_92
happyReduction_92 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_92 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut38 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut75 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
case HappyAbsSyn -> (Maybe CStrLit, [CAttr])
happyOut35 HappyAbsSyn
happy_x_3 of { happy_var_3 :: (Maybe CStrLit, [CAttr])
happy_var_3 ->
case HappyAbsSyn -> Maybe CInit
happyOut94 HappyAbsSyn
happy_x_4 of { happy_var_4 :: Maybe CInit
happy_var_4 ->
( let declspecs :: [CDeclSpec]
declspecs = Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1 in
do{ CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs (Maybe CStrLit, [CAttr])
happy_var_3 CDeclrR
happy_var_2
; [CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
declspecs CDeclrR
declr
; Reversed [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$
[CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_4, Maybe CExpr
forall k1. Maybe k1
Nothing)] })}}}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn34 CDecl
r))
happyReduce_93 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_93 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_93 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 27# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_93
happyReduction_93 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_93 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut75 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
case HappyAbsSyn -> (Maybe CStrLit, [CAttr])
happyOut35 HappyAbsSyn
happy_x_3 of { happy_var_3 :: (Maybe CStrLit, [CAttr])
happy_var_3 ->
case HappyAbsSyn -> Maybe CInit
happyOut94 HappyAbsSyn
happy_x_4 of { happy_var_4 :: Maybe CInit
happy_var_4 ->
( let declspecs :: [CDeclSpec]
declspecs = Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 in
do{ CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs (Maybe CStrLit, [CAttr])
happy_var_3 CDeclrR
happy_var_2
; [CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
declspecs CDeclrR
declr
; Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_4, Maybe CExpr
forall k1. Maybe k1
Nothing)] })}}}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn34 CDecl
r))
happyReduce_94 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_94 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_94 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 27# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_94
happyReduction_94 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_94 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CDeclrR
happyOut75 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclrR
happy_var_3 ->
case HappyAbsSyn -> (Maybe CStrLit, [CAttr])
happyOut35 HappyAbsSyn
happy_x_4 of { happy_var_4 :: (Maybe CStrLit, [CAttr])
happy_var_4 ->
case HappyAbsSyn -> Maybe CInit
happyOut94 HappyAbsSyn
happy_x_5 of { happy_var_5 :: Maybe CInit
happy_var_5 ->
( let declspecs :: [CDeclSpec]
declspecs = Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 in
do{ CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs (Maybe CStrLit, [CAttr])
happy_var_4 CDeclrR
happy_var_3
; [CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
declspecs CDeclrR
declr
; Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl ([CDeclSpec]
declspecs [CDeclSpec] -> [CDeclSpec] -> [CDeclSpec]
forall a. [a] -> [a] -> [a]
++ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_5, Maybe CExpr
forall k1. Maybe k1
Nothing)] })}}}}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn34 CDecl
r))
happyReduce_95 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_95 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_95 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 27# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_95
happyReduction_95 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_95 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CAttr]
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut75 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
case HappyAbsSyn -> (Maybe CStrLit, [CAttr])
happyOut35 HappyAbsSyn
happy_x_3 of { happy_var_3 :: (Maybe CStrLit, [CAttr])
happy_var_3 ->
case HappyAbsSyn -> Maybe CInit
happyOut94 HappyAbsSyn
happy_x_4 of { happy_var_4 :: Maybe CInit
happy_var_4 ->
( let declspecs :: [CDeclSpec]
declspecs = [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1 in
do{ CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs (Maybe CStrLit, [CAttr])
happy_var_3 CDeclrR
happy_var_2
; [CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
declspecs CDeclrR
declr
; [CAttr] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CAttr]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_4, Maybe CExpr
forall k1. Maybe k1
Nothing)] })}}}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn34 CDecl
r))
happyReduce_96 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_96 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_96 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 27# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_96
happyReduction_96 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_96 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CDecl
happyOut34 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDecl
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CAttr]
happy_var_3 ->
case HappyAbsSyn -> CDeclrR
happyOut75 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CDeclrR
happy_var_4 ->
case HappyAbsSyn -> (Maybe CStrLit, [CAttr])
happyOut35 HappyAbsSyn
happy_x_5 of { happy_var_5 :: (Maybe CStrLit, [CAttr])
happy_var_5 ->
case HappyAbsSyn -> Maybe CInit
happyOut94 HappyAbsSyn
happy_x_6 of { happy_var_6 :: Maybe CInit
happy_var_6 ->
( case CDecl
happy_var_1 of
CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies at :: NodeInfo
at -> do
CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs ((Maybe CStrLit, [CAttr]) -> Maybe CStrLit
forall a b. (a, b) -> a
fst (Maybe CStrLit, [CAttr])
happy_var_5, (Maybe CStrLit, [CAttr]) -> [CAttr]
forall a b. (a, b) -> b
snd (Maybe CStrLit, [CAttr])
happy_var_5 [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
happy_var_3) CDeclrR
happy_var_4
[CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
declspecs CDeclrR
declr
NodeInfo -> (NodeInfo -> CDecl) -> P CDecl
forall a. NodeInfo -> (NodeInfo -> a) -> P a
withLength NodeInfo
at ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ((CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_6, Maybe CExpr
forall k1. Maybe k1
Nothing) (Maybe CDeclr, Maybe CInit, Maybe CExpr)
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall k1. k1 -> [k1] -> [k1]
: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies))}}}}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn34 CDecl
r))
happyReduce_97 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_97 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_97 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 28# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_97
happyReduction_97 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_97 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Maybe CStrLit
happyOut67 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Maybe CStrLit
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
(Maybe CStrLit, [CAttr]) -> HappyAbsSyn
happyIn35
((Maybe CStrLit
happy_var_1,[CAttr]
happy_var_2)
)}}
happyReduce_98 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_98 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_98 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 29# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_98
happyReduction_98 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_98 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CDeclSpec]
happyOut37 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut66 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
case HappyAbsSyn -> (Maybe CStrLit, [CAttr])
happyOut35 HappyAbsSyn
happy_x_3 of { happy_var_3 :: (Maybe CStrLit, [CAttr])
happy_var_3 ->
case HappyAbsSyn -> Maybe CInit
happyOut94 HappyAbsSyn
happy_x_4 of { happy_var_4 :: Maybe CInit
happy_var_4 ->
( do{
CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs (Maybe CStrLit, [CAttr])
happy_var_3 CDeclrR
happy_var_2;
[CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
happy_var_1 CDeclrR
declr;
[CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_4, Maybe CExpr
forall k1. Maybe k1
Nothing)] })}}}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn36 CDecl
r))
happyReduce_99 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_99 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_99 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 29# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_99
happyReduction_99 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_99 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CDeclSpec]
happyOut44 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut66 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
case HappyAbsSyn -> (Maybe CStrLit, [CAttr])
happyOut35 HappyAbsSyn
happy_x_3 of { happy_var_3 :: (Maybe CStrLit, [CAttr])
happy_var_3 ->
case HappyAbsSyn -> Maybe CInit
happyOut94 HappyAbsSyn
happy_x_4 of { happy_var_4 :: Maybe CInit
happy_var_4 ->
( do{
CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs (Maybe CStrLit, [CAttr])
happy_var_3 CDeclrR
happy_var_2;
[CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
happy_var_1 CDeclrR
declr;
[CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_4, Maybe CExpr
forall k1. Maybe k1
Nothing)] })}}}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn36 CDecl
r))
happyReduce_100 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_100 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_100 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 29# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_100
happyReduction_100 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_100 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CDecl
happyOut36 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDecl
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CAttr]
happy_var_3 ->
case HappyAbsSyn -> CDeclrR
happyOut66 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CDeclrR
happy_var_4 ->
case HappyAbsSyn -> (Maybe CStrLit, [CAttr])
happyOut35 HappyAbsSyn
happy_x_5 of { happy_var_5 :: (Maybe CStrLit, [CAttr])
happy_var_5 ->
case HappyAbsSyn -> Maybe CInit
happyOut94 HappyAbsSyn
happy_x_6 of { happy_var_6 :: Maybe CInit
happy_var_6 ->
( case CDecl
happy_var_1 of
CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies at :: NodeInfo
at -> do
CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs ((Maybe CStrLit, [CAttr]) -> Maybe CStrLit
forall a b. (a, b) -> a
fst (Maybe CStrLit, [CAttr])
happy_var_5, (Maybe CStrLit, [CAttr]) -> [CAttr]
forall a b. (a, b) -> b
snd (Maybe CStrLit, [CAttr])
happy_var_5 [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
happy_var_3) CDeclrR
happy_var_4
[CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
declspecs CDeclrR
declr
CDecl -> P CDecl
forall (m :: * -> *) a. Monad m => a -> m a
return ([CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ((CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_6, Maybe CExpr
forall k1. Maybe k1
Nothing) (Maybe CDeclr, Maybe CInit, Maybe CExpr)
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall k1. k1 -> [k1] -> [k1]
: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) NodeInfo
at))}}}}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn36 CDecl
r))
happyReduce_101 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_101 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_101 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 30# HappyAbsSyn -> HappyAbsSyn
happyReduction_101
happyReduction_101 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_101 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut46 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
[CDeclSpec] -> HappyAbsSyn
happyIn37
(Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1
)}
happyReduce_102 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_102 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_102 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 30# HappyAbsSyn -> HappyAbsSyn
happyReduction_102
happyReduction_102 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_102 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut48 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
[CDeclSpec] -> HappyAbsSyn
happyIn37
(Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1
)}
happyReduce_103 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_103 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_103 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 30# HappyAbsSyn -> HappyAbsSyn
happyReduction_103
happyReduction_103 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_103 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut50 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
[CDeclSpec] -> HappyAbsSyn
happyIn37
(Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1
)}
happyReduce_104 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_104 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_104 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 31# HappyAbsSyn -> HappyAbsSyn
happyReduction_104
happyReduction_104 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_104 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclSpec
happyOut40 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclSpec
happy_var_1 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn38
(CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
singleton CDeclSpec
happy_var_1
)}
happyReduce_105 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_105 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_105 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 31# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_105
happyReduction_105 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_105 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CAttr]
happy_var_1 ->
case HappyAbsSyn -> CDeclSpec
happyOut40 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclSpec
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn38
([CDeclSpec] -> Reversed [CDeclSpec]
forall a. [a] -> Reversed [a]
reverseList ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDeclSpec
happy_var_2
)}}
happyReduce_106 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_106 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_106 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 31# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_106
happyReduction_106 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_106 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> CDeclSpec
happyOut40 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclSpec
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn38
((CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDeclSpec
happy_var_2
)}}
happyReduce_107 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_107 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_107 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 31# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_107
happyReduction_107 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_107 happy_x_3 :: HappyAbsSyn
happy_x_3
happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CDeclSpec
happyOut40 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclSpec
happy_var_3 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn38
(((CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. Reversed [a] -> [a] -> Reversed [a]
`rappend` [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDeclSpec
happy_var_3
)}}}
happyReduce_108 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_108 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_108 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 31# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_108
happyReduction_108 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_108 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut38 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclSpec
happyOut39 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclSpec
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn38
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDeclSpec
happy_var_2
)}}
happyReduce_109 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_109 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_109 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 31# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_109
happyReduction_109 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_109 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut38 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut134 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn38
(Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs Reversed [CDeclSpec]
happy_var_1 [CAttr]
happy_var_2
)}}
happyReduce_110 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_110 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_110 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 32# HappyAbsSyn -> HappyAbsSyn
happyReduction_110
happyReduction_110 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_110 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CStorageSpec
happyOut41 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CStorageSpec
happy_var_1 ->
CDeclSpec -> HappyAbsSyn
happyIn39
(CStorageSpec -> CDeclSpec
forall a. CStorageSpecifier a -> CDeclarationSpecifier a
CStorageSpec CStorageSpec
happy_var_1
)}
happyReduce_111 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_111 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_111 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 32# HappyAbsSyn -> HappyAbsSyn
happyReduction_111
happyReduction_111 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_111 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CTypeQual
happyOut64 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CTypeQual
happy_var_1 ->
CDeclSpec -> HappyAbsSyn
happyIn39
(CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual CTypeQual
happy_var_1
)}
happyReduce_112 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_112 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_112 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 32# HappyAbsSyn -> HappyAbsSyn
happyReduction_112
happyReduction_112 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_112 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CFunSpec
happyOut42 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CFunSpec
happy_var_1 ->
CDeclSpec -> HappyAbsSyn
happyIn39
(CFunSpec -> CDeclSpec
forall a. CFunctionSpecifier a -> CDeclarationSpecifier a
CFunSpec CFunSpec
happy_var_1
)}
happyReduce_113 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_113 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_113 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 32# HappyAbsSyn -> HappyAbsSyn
happyReduction_113
happyReduction_113 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_113 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CAlignSpec
happyOut43 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CAlignSpec
happy_var_1 ->
CDeclSpec -> HappyAbsSyn
happyIn39
(CAlignSpec -> CDeclSpec
forall a. CAlignmentSpecifier a -> CDeclarationSpecifier a
CAlignSpec CAlignSpec
happy_var_1
)}
happyReduce_114 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_114 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_114 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 33# HappyAbsSyn -> HappyAbsSyn
happyReduction_114
happyReduction_114 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_114 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CStorageSpec
happyOut41 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CStorageSpec
happy_var_1 ->
CDeclSpec -> HappyAbsSyn
happyIn40
(CStorageSpec -> CDeclSpec
forall a. CStorageSpecifier a -> CDeclarationSpecifier a
CStorageSpec CStorageSpec
happy_var_1
)}
happyReduce_115 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_115 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_115 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 33# HappyAbsSyn -> HappyAbsSyn
happyReduction_115
happyReduction_115 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_115 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CFunSpec
happyOut42 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CFunSpec
happy_var_1 ->
CDeclSpec -> HappyAbsSyn
happyIn40
(CFunSpec -> CDeclSpec
forall a. CFunctionSpecifier a -> CDeclarationSpecifier a
CFunSpec CFunSpec
happy_var_1
)}
happyReduce_116 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_116 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_116 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 33# HappyAbsSyn -> HappyAbsSyn
happyReduction_116
happyReduction_116 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_116 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CAlignSpec
happyOut43 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CAlignSpec
happy_var_1 ->
CDeclSpec -> HappyAbsSyn
happyIn40
(CAlignSpec -> CDeclSpec
forall a. CAlignmentSpecifier a -> CDeclarationSpecifier a
CAlignSpec CAlignSpec
happy_var_1
)}
happyReduce_117 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_117 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_117 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_117
happyReduction_117 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_117 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CTypedef)})
) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn41 CStorageSpec
r))
happyReduce_118 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_118 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_118 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_118
happyReduction_118 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_118 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CExtern)})
) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn41 CStorageSpec
r))
happyReduce_119 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_119 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_119 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_119
happyReduction_119 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_119 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CStatic)})
) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn41 CStorageSpec
r))
happyReduce_120 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_120 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_120 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_120
happyReduction_120 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_120 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CAuto)})
) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn41 CStorageSpec
r))
happyReduce_121 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_121 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_121 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_121
happyReduction_121 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_121 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CRegister)})
) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn41 CStorageSpec
r))
happyReduce_122 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_122 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_122 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_122
happyReduction_122 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_122 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CThread)})
) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn41 CStorageSpec
r))
happyReduce_123 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_123 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_123 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_123
happyReduction_123 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_123 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CClKernel)})
) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn41 CStorageSpec
r))
happyReduce_124 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_124 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_124 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_124
happyReduction_124 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_124 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CClGlobal)})
) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn41 CStorageSpec
r))
happyReduce_125 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_125 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_125 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_125
happyReduction_125 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_125 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CClLocal)})
) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn41 CStorageSpec
r))
happyReduce_126 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_126 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_126 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 35# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_126
happyReduction_126 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_126 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CFunSpec -> (CFunSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CFunSpec) -> P CFunSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CFunSpec) -> P CFunSpec)
-> (NodeInfo -> CFunSpec) -> P CFunSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CFunSpec
forall a. a -> CFunctionSpecifier a
CInlineQual)})
) (\r :: CFunSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunSpec -> HappyAbsSyn
happyIn42 CFunSpec
r))
happyReduce_127 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_127 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_127 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 35# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_127
happyReduction_127 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_127 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CFunSpec -> (CFunSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CFunSpec) -> P CFunSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CFunSpec) -> P CFunSpec)
-> (NodeInfo -> CFunSpec) -> P CFunSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CFunSpec
forall a. a -> CFunctionSpecifier a
CNoreturnQual)})
) (\r :: CFunSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunSpec -> HappyAbsSyn
happyIn42 CFunSpec
r))
happyReduce_128 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_128 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_128 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 36# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_128
happyReduction_128 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_128 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CAlignSpec -> (CAlignSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CDecl
happyOut86 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDecl
happy_var_3 ->
( CToken -> (NodeInfo -> CAlignSpec) -> P CAlignSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAlignSpec) -> P CAlignSpec)
-> (NodeInfo -> CAlignSpec) -> P CAlignSpec
forall a b. (a -> b) -> a -> b
$ CDecl -> NodeInfo -> CAlignSpec
forall a. CDeclaration a -> a -> CAlignmentSpecifier a
CAlignAsType CDecl
happy_var_3)}})
) (\r :: CAlignSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAlignSpec -> HappyAbsSyn
happyIn43 CAlignSpec
r))
happyReduce_129 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_129 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_129 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 36# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_129
happyReduction_129 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_129 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CAlignSpec -> (CAlignSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut126 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CToken -> (NodeInfo -> CAlignSpec) -> P CAlignSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAlignSpec) -> P CAlignSpec)
-> (NodeInfo -> CAlignSpec) -> P CAlignSpec
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CAlignSpec
forall a. CExpression a -> a -> CAlignmentSpecifier a
CAlignAsExpr CExpr
happy_var_3)}})
) (\r :: CAlignSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAlignSpec -> HappyAbsSyn
happyIn43 CAlignSpec
r))
happyReduce_130 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_130 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_130 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 37# HappyAbsSyn -> HappyAbsSyn
happyReduction_130
happyReduction_130 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_130 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut47 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
[CDeclSpec] -> HappyAbsSyn
happyIn44
(Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1
)}
happyReduce_131 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_131 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_131 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 37# HappyAbsSyn -> HappyAbsSyn
happyReduction_131
happyReduction_131 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_131 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut49 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
[CDeclSpec] -> HappyAbsSyn
happyIn44
(Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1
)}
happyReduce_132 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_132 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_132 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 37# HappyAbsSyn -> HappyAbsSyn
happyReduction_132
happyReduction_132 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_132 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut51 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
[CDeclSpec] -> HappyAbsSyn
happyIn44
(Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1
)}
happyReduce_133 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_133 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_133 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_133
happyReduction_133 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_133 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CVoidType)})
) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))
happyReduce_134 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_134 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_134 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_134
happyReduction_134 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_134 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CCharType)})
) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))
happyReduce_135 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_135 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_135 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_135
happyReduction_135 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_135 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CShortType)})
) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))
happyReduce_136 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_136 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_136 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_136
happyReduction_136 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_136 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CIntType)})
) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))
happyReduce_137 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_137 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_137 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_137
happyReduction_137 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_137 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CLongType)})
) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))
happyReduce_138 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_138 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_138 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_138
happyReduction_138 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_138 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CFloatType)})
) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))
happyReduce_139 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_139 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_139 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_139
happyReduction_139 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_139 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CDoubleType)})
) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))
happyReduce_140 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_140 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_140 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_140
happyReduction_140 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_140 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CSignedType)})
) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))
happyReduce_141 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_141 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_141 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_141
happyReduction_141 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_141 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CUnsigType)})
) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))
happyReduce_142 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_142 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_142 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_142
happyReduction_142 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_142 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CBoolType)})
) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))
happyReduce_143 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_143 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_143 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_143
happyReduction_143 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_143 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CComplexType)})
) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))
happyReduce_144 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_144 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_144 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_144
happyReduction_144 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_144 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CInt128Type)})
) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))
happyReduce_145 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_145 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_145 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_145
happyReduction_145 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_145 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ (Int -> Bool -> NodeInfo -> CTypeSpec
forall a. Int -> Bool -> a -> CTypeSpecifier a
CFloatNType 32 Bool
False))})
) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))
happyReduce_146 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_146 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_146 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_146
happyReduction_146 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_146 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ (Int -> Bool -> NodeInfo -> CTypeSpec
forall a. Int -> Bool -> a -> CTypeSpecifier a
CFloatNType 32 Bool
True))})
) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))
happyReduce_147 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_147 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_147 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_147
happyReduction_147 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_147 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ (Int -> Bool -> NodeInfo -> CTypeSpec
forall a. Int -> Bool -> a -> CTypeSpecifier a
CFloatNType 64 Bool
False))})
) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))
happyReduce_148 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_148 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_148 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_148
happyReduction_148 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_148 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ (Int -> Bool -> NodeInfo -> CTypeSpec
forall a. Int -> Bool -> a -> CTypeSpecifier a
CFloatNType 64 Bool
True))})
) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))
happyReduce_149 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_149 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_149 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_149
happyReduction_149 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_149 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ (Int -> Bool -> NodeInfo -> CTypeSpec
forall a. Int -> Bool -> a -> CTypeSpecifier a
CFloatNType 128 Bool
False))})
) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))
happyReduce_150 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_150 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_150 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_150
happyReduction_150 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_150 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ (Int -> Bool -> NodeInfo -> CTypeSpec
forall a. Int -> Bool -> a -> CTypeSpecifier a
CFloatNType 128 Bool
True))})
) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))
happyReduce_151 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_151 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_151 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_151
happyReduction_151 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_151 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ (Int -> Bool -> NodeInfo -> CTypeSpec
forall a. Int -> Bool -> a -> CTypeSpecifier a
CFloatNType 128 Bool
False))})
) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))
happyReduce_152 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_152 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_152 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 39# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_152
happyReduction_152 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_152 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut38 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CTypeSpec
happyOut45 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CTypeSpec
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn46
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2
)}}
happyReduce_153 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_153 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_153 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 39# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_153
happyReduction_153 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_153 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut47 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CStorageSpec
happyOut41 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CStorageSpec
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn46
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CStorageSpec -> CDeclSpec
forall a. CStorageSpecifier a -> CDeclarationSpecifier a
CStorageSpec CStorageSpec
happy_var_2
)}}
happyReduce_154 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_154 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_154 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 39# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_154
happyReduction_154 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_154 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut46 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclSpec
happyOut39 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclSpec
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn46
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDeclSpec
happy_var_2
)}}
happyReduce_155 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_155 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_155 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 39# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_155
happyReduction_155 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_155 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut46 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CTypeSpec
happyOut45 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CTypeSpec
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn46
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2
)}}
happyReduce_156 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_156 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_156 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 39# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_156
happyReduction_156 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_156 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut46 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut134 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn46
(Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs Reversed [CDeclSpec]
happy_var_1 [CAttr]
happy_var_2
)}}
happyReduce_157 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_157 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_157 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 40# HappyAbsSyn -> HappyAbsSyn
happyReduction_157
happyReduction_157 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_157 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CTypeSpec
happyOut45 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CTypeSpec
happy_var_1 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn47
(CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
singleton (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_1)
)}
happyReduce_158 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_158 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_158 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 40# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_158
happyReduction_158 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_158 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CAttr]
happy_var_1 ->
case HappyAbsSyn -> CTypeSpec
happyOut45 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CTypeSpec
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn47
(([CDeclSpec] -> Reversed [CDeclSpec]
forall a. [a] -> Reversed [a]
reverseList ([CDeclSpec] -> Reversed [CDeclSpec])
-> [CDeclSpec] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> a -> b
$ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2)
)}}
happyReduce_159 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_159 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_159 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 40# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_159
happyReduction_159 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_159 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> CTypeSpec
happyOut45 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CTypeSpec
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn47
((CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2
)}}
happyReduce_160 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_160 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_160 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 40# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_160
happyReduction_160 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_160 happy_x_3 :: HappyAbsSyn
happy_x_3
happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CTypeSpec
happyOut45 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CTypeSpec
happy_var_3 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn47
((CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. Reversed [a] -> [a] -> Reversed [a]
`rappend` ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_3
)}}}
happyReduce_161 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_161 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_161 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 40# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_161
happyReduction_161 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_161 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut47 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CTypeQual
happyOut64 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CTypeQual
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn47
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual CTypeQual
happy_var_2
)}}
happyReduce_162 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_162 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_162 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 40# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_162
happyReduction_162 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_162 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut47 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CTypeSpec
happyOut45 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CTypeSpec
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn47
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2
)}}
happyReduce_163 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_163 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_163 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 40# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_163
happyReduction_163 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_163 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut47 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut134 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn47
(Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs Reversed [CDeclSpec]
happy_var_1 [CAttr]
happy_var_2
)}}
happyReduce_164 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_164 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_164 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 41# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_164
happyReduction_164 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_164 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut38 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CTypeSpec
happyOut52 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CTypeSpec
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn48
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2
)}}
happyReduce_165 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_165 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_165 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 41# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_165
happyReduction_165 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_165 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut49 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CStorageSpec
happyOut41 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CStorageSpec
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn48
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CStorageSpec -> CDeclSpec
forall a. CStorageSpecifier a -> CDeclarationSpecifier a
CStorageSpec CStorageSpec
happy_var_2
)}}
happyReduce_166 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_166 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_166 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 41# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_166
happyReduction_166 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_166 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut48 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclSpec
happyOut39 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclSpec
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn48
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDeclSpec
happy_var_2
)}}
happyReduce_167 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_167 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_167 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 41# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_167
happyReduction_167 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_167 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut48 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut134 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn48
(Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs Reversed [CDeclSpec]
happy_var_1 [CAttr]
happy_var_2
)}}
happyReduce_168 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_168 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_168 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 42# HappyAbsSyn -> HappyAbsSyn
happyReduction_168
happyReduction_168 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_168 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CTypeSpec
happyOut52 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CTypeSpec
happy_var_1 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn49
(CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
singleton (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_1)
)}
happyReduce_169 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_169 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_169 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 42# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_169
happyReduction_169 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_169 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CAttr]
happy_var_1 ->
case HappyAbsSyn -> CTypeSpec
happyOut52 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CTypeSpec
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn49
(([CDeclSpec] -> Reversed [CDeclSpec]
forall a. [a] -> Reversed [a]
reverseList ([CDeclSpec] -> Reversed [CDeclSpec])
-> [CDeclSpec] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> a -> b
$ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2)
)}}
happyReduce_170 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_170 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_170 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 42# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_170
happyReduction_170 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_170 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> CTypeSpec
happyOut52 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CTypeSpec
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn49
((CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2
)}}
happyReduce_171 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_171 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_171 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 42# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_171
happyReduction_171 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_171 happy_x_3 :: HappyAbsSyn
happy_x_3
happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CTypeSpec
happyOut52 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CTypeSpec
happy_var_3 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn49
((CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. Reversed [a] -> [a] -> Reversed [a]
`rappend` ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_3
)}}}
happyReduce_172 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_172 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_172 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 42# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_172
happyReduction_172 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_172 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut49 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CTypeQual
happyOut64 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CTypeQual
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn49
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual CTypeQual
happy_var_2
)}}
happyReduce_173 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_173 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_173 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 42# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_173
happyReduction_173 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_173 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut49 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut134 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn49
(Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs Reversed [CDeclSpec]
happy_var_1 [CAttr]
happy_var_2
)}}
happyReduce_174 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_174 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_174 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 43# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_174
happyReduction_174 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_174 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut51 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CStorageSpec
happyOut41 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CStorageSpec
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn50
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CStorageSpec -> CDeclSpec
forall a. CStorageSpecifier a -> CDeclarationSpecifier a
CStorageSpec CStorageSpec
happy_var_2
)}}
happyReduce_175 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_175 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_175 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 43# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_175
happyReduction_175 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_175 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut38 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { (CTokTyIdent _ happy_var_2 :: Ident
happy_var_2) ->
( Ident
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (Ident -> NodeInfo -> CTypeSpec
forall a. Ident -> a -> CTypeSpecifier a
CTypeDef Ident
happy_var_2 NodeInfo
at))}})
) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn50 Reversed [CDeclSpec]
r))
happyReduce_176 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_176 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_176 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 43# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_176
happyReduction_176 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_176 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut38 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 ->
case HappyAbsSyn -> CExpr
happyOut122 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CExpr
happy_var_4 ->
( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CExpr -> NodeInfo -> CTypeSpec
forall a. CExpression a -> a -> CTypeSpecifier a
CTypeOfExpr CExpr
happy_var_4 NodeInfo
at))}}})
) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn50 Reversed [CDeclSpec]
r))
happyReduce_177 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_177 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_177 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 43# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_177
happyReduction_177 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_177 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut38 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 ->
case HappyAbsSyn -> CDecl
happyOut86 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CDecl
happy_var_4 ->
( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CDecl -> NodeInfo -> CTypeSpec
forall a. CDeclaration a -> a -> CTypeSpecifier a
CTypeOfType CDecl
happy_var_4 NodeInfo
at))}}})
) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn50 Reversed [CDeclSpec]
r))
happyReduce_178 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_178 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_178 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 43# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_178
happyReduction_178 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_178 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut50 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclSpec
happyOut39 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclSpec
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn50
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDeclSpec
happy_var_2
)}}
happyReduce_179 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_179 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_179 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 43# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_179
happyReduction_179 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_179 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut50 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut134 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn50
(Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs Reversed [CDeclSpec]
happy_var_1 [CAttr]
happy_var_2
)}}
happyReduce_180 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_180 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_180 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_180
happyReduction_180 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_180 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokTyIdent _ happy_var_1 :: Ident
happy_var_1) ->
( Ident
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
singleton (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (Ident -> NodeInfo -> CTypeSpec
forall a. Ident -> a -> CTypeSpecifier a
CTypeDef Ident
happy_var_1 NodeInfo
at)))})
) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))
happyReduce_181 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_181 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_181 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_181
happyReduction_181 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_181 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut122 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
singleton (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CExpr -> NodeInfo -> CTypeSpec
forall a. CExpression a -> a -> CTypeSpecifier a
CTypeOfExpr CExpr
happy_var_3 NodeInfo
at)))}})
) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))
happyReduce_182 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_182 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_182 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_182
happyReduction_182 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_182 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CDecl
happyOut86 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDecl
happy_var_3 ->
( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
singleton (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CDecl -> NodeInfo -> CTypeSpec
forall a. CDeclaration a -> a -> CTypeSpecifier a
CTypeOfType CDecl
happy_var_3 NodeInfo
at)))}})
) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))
happyReduce_183 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_183 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_183 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_183
happyReduction_183 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_183 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { (CTokTyIdent _ happy_var_2 :: Ident
happy_var_2) ->
( Ident
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> (CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (Ident -> NodeInfo -> CTypeSpec
forall a. Ident -> a -> CTypeSpecifier a
CTypeDef Ident
happy_var_2 NodeInfo
at))}})
) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))
happyReduce_184 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_184 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_184 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_184
happyReduction_184 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_184 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 ->
case HappyAbsSyn -> CExpr
happyOut122 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CExpr
happy_var_4 ->
( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> (CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CExpr -> NodeInfo -> CTypeSpec
forall a. CExpression a -> a -> CTypeSpecifier a
CTypeOfExpr CExpr
happy_var_4 NodeInfo
at))}}})
) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))
happyReduce_185 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_185 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_185 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_185
happyReduction_185 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_185 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 ->
case HappyAbsSyn -> CDecl
happyOut86 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CDecl
happy_var_4 ->
( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> (CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CDecl -> NodeInfo -> CTypeSpec
forall a. CDeclaration a -> a -> CTypeSpecifier a
CTypeOfType CDecl
happy_var_4 NodeInfo
at))}}})
) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))
happyReduce_186 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_186 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_186 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_186
happyReduction_186 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_186 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CAttr]
happy_var_1 ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { (CTokTyIdent _ happy_var_2 :: Ident
happy_var_2) ->
( Ident
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. [a] -> Reversed [a]
reverseList ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (Ident -> NodeInfo -> CTypeSpec
forall a. Ident -> a -> CTypeSpecifier a
CTypeDef Ident
happy_var_2 NodeInfo
at)))}})
) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))
happyReduce_187 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_187 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_187 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_187
happyReduction_187 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_187 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CAttr]
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut122 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CExpr
happy_var_4 ->
( [CAttr]
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CAttr]
happy_var_1 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. [a] -> Reversed [a]
reverseList ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CExpr -> NodeInfo -> CTypeSpec
forall a. CExpression a -> a -> CTypeSpecifier a
CTypeOfExpr CExpr
happy_var_4 NodeInfo
at)))}})
) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))
happyReduce_188 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_188 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_188 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_188
happyReduction_188 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_188 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CAttr]
happy_var_1 ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 ->
case HappyAbsSyn -> CDecl
happyOut86 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CDecl
happy_var_4 ->
( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. [a] -> Reversed [a]
reverseList ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CDecl -> NodeInfo -> CTypeSpec
forall a. CDeclaration a -> a -> CTypeSpecifier a
CTypeOfType CDecl
happy_var_4 NodeInfo
at)))}}})
) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))
happyReduce_189 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_189 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_189 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_189
happyReduction_189 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_189 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_3 of { (CTokTyIdent _ happy_var_3 :: Ident
happy_var_3) ->
( Ident
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_3 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> (CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. Reversed [a] -> [a] -> Reversed [a]
`rappend` ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (Ident -> NodeInfo -> CTypeSpec
forall a. Ident -> a -> CTypeSpecifier a
CTypeDef Ident
happy_var_3 NodeInfo
at))}}})
) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))
happyReduce_190 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_190 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_190 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_190
happyReduction_190 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_190 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_3 of { happy_var_3 :: CToken
happy_var_3 ->
case HappyAbsSyn -> CExpr
happyOut122 HappyAbsSyn
happy_x_5 of { happy_var_5 :: CExpr
happy_var_5 ->
( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_3 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> (CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. Reversed [a] -> [a] -> Reversed [a]
`rappend` ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CExpr -> NodeInfo -> CTypeSpec
forall a. CExpression a -> a -> CTypeSpecifier a
CTypeOfExpr CExpr
happy_var_5 NodeInfo
at))}}}})
) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))
happyReduce_191 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_191 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_191 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_191
happyReduction_191 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_191 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_3 of { happy_var_3 :: CToken
happy_var_3 ->
case HappyAbsSyn -> CDecl
happyOut86 HappyAbsSyn
happy_x_5 of { happy_var_5 :: CDecl
happy_var_5 ->
( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_3 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> (CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. Reversed [a] -> [a] -> Reversed [a]
`rappend` ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CDecl -> NodeInfo -> CTypeSpec
forall a. CDeclaration a -> a -> CTypeSpecifier a
CTypeOfType CDecl
happy_var_5 NodeInfo
at))}}}})
) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))
happyReduce_192 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_192 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_192 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 44# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_192
happyReduction_192 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_192 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut51 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CTypeQual
happyOut64 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CTypeQual
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual CTypeQual
happy_var_2
)}}
happyReduce_193 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_193 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_193 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 44# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_193
happyReduction_193 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_193 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut51 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut134 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51
(Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs Reversed [CDeclSpec]
happy_var_1 [CAttr]
happy_var_2
)}}
happyReduce_194 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_194 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_194 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 45# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_194
happyReduction_194 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_194 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CStructUnion
happyOut53 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CStructUnion
happy_var_1 ->
( CStructUnion -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CStructUnion
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ CStructUnion -> NodeInfo -> CTypeSpec
forall a. CStructureUnion a -> a -> CTypeSpecifier a
CSUType CStructUnion
happy_var_1)})
) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn52 CTypeSpec
r))
happyReduce_195 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_195 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_195 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 45# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_195
happyReduction_195 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_195 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CEnum
happyOut61 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CEnum
happy_var_1 ->
( CEnum -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CEnum
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ CEnum -> NodeInfo -> CTypeSpec
forall a. CEnumeration a -> a -> CTypeSpecifier a
CEnumType CEnum
happy_var_1)})
) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn52 CTypeSpec
r))
happyReduce_196 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_196 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_196 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 46# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_196
happyReduction_196 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_196 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStructUnion -> (CStructUnion -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Located CStructTag
happyOut54 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Located CStructTag
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> Ident
happyOut131 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Ident
happy_var_3 ->
case HappyAbsSyn -> Reversed [CDecl]
happyOut55 HappyAbsSyn
happy_x_5 of { happy_var_5 :: Reversed [CDecl]
happy_var_5 ->
( Located CStructTag -> (NodeInfo -> CStructUnion) -> P CStructUnion
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Located CStructTag
happy_var_1 ((NodeInfo -> CStructUnion) -> P CStructUnion)
-> (NodeInfo -> CStructUnion) -> P CStructUnion
forall a b. (a -> b) -> a -> b
$ CStructTag
-> Maybe Ident
-> Maybe [CDecl]
-> [CAttr]
-> NodeInfo
-> CStructUnion
forall a.
CStructTag
-> Maybe Ident
-> Maybe [CDeclaration a]
-> [CAttribute a]
-> a
-> CStructureUnion a
CStruct (Located CStructTag -> CStructTag
forall a. Located a -> a
unL Located CStructTag
happy_var_1) (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_3) ([CDecl] -> Maybe [CDecl]
forall k1. k1 -> Maybe k1
Just([CDecl] -> Maybe [CDecl]) -> [CDecl] -> Maybe [CDecl]
forall a b. (a -> b) -> a -> b
$ Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_5) [CAttr]
happy_var_2)}}}})
) (\r :: CStructUnion
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStructUnion -> HappyAbsSyn
happyIn53 CStructUnion
r))
happyReduce_197 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_197 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_197 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 46# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_197
happyReduction_197 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_197 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStructUnion -> (CStructUnion -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Located CStructTag
happyOut54 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Located CStructTag
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> Reversed [CDecl]
happyOut55 HappyAbsSyn
happy_x_4 of { happy_var_4 :: Reversed [CDecl]
happy_var_4 ->
( Located CStructTag -> (NodeInfo -> CStructUnion) -> P CStructUnion
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Located CStructTag
happy_var_1 ((NodeInfo -> CStructUnion) -> P CStructUnion)
-> (NodeInfo -> CStructUnion) -> P CStructUnion
forall a b. (a -> b) -> a -> b
$ CStructTag
-> Maybe Ident
-> Maybe [CDecl]
-> [CAttr]
-> NodeInfo
-> CStructUnion
forall a.
CStructTag
-> Maybe Ident
-> Maybe [CDeclaration a]
-> [CAttribute a]
-> a
-> CStructureUnion a
CStruct (Located CStructTag -> CStructTag
forall a. Located a -> a
unL Located CStructTag
happy_var_1) Maybe Ident
forall k1. Maybe k1
Nothing ([CDecl] -> Maybe [CDecl]
forall k1. k1 -> Maybe k1
Just([CDecl] -> Maybe [CDecl]) -> [CDecl] -> Maybe [CDecl]
forall a b. (a -> b) -> a -> b
$ Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_4) [CAttr]
happy_var_2)}}})
) (\r :: CStructUnion
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStructUnion -> HappyAbsSyn
happyIn53 CStructUnion
r))
happyReduce_198 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_198 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_198 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 46# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_198
happyReduction_198 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_198 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStructUnion -> (CStructUnion -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Located CStructTag
happyOut54 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Located CStructTag
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> Ident
happyOut131 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Ident
happy_var_3 ->
( Located CStructTag -> (NodeInfo -> CStructUnion) -> P CStructUnion
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Located CStructTag
happy_var_1 ((NodeInfo -> CStructUnion) -> P CStructUnion)
-> (NodeInfo -> CStructUnion) -> P CStructUnion
forall a b. (a -> b) -> a -> b
$ CStructTag
-> Maybe Ident
-> Maybe [CDecl]
-> [CAttr]
-> NodeInfo
-> CStructUnion
forall a.
CStructTag
-> Maybe Ident
-> Maybe [CDeclaration a]
-> [CAttribute a]
-> a
-> CStructureUnion a
CStruct (Located CStructTag -> CStructTag
forall a. Located a -> a
unL Located CStructTag
happy_var_1) (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_3) Maybe [CDecl]
forall k1. Maybe k1
Nothing [CAttr]
happy_var_2)}}})
) (\r :: CStructUnion
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStructUnion -> HappyAbsSyn
happyIn53 CStructUnion
r))
happyReduce_199 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_199 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_199 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 47# HappyAbsSyn -> HappyAbsSyn
happyReduction_199
happyReduction_199 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_199 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
Located CStructTag -> HappyAbsSyn
happyIn54
(CStructTag -> Position -> Located CStructTag
forall a. a -> Position -> Located a
L CStructTag
CStructTag (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_200 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_200 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_200 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 47# HappyAbsSyn -> HappyAbsSyn
happyReduction_200
happyReduction_200 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_200 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
Located CStructTag -> HappyAbsSyn
happyIn54
(CStructTag -> Position -> Located CStructTag
forall a. a -> Position -> Located a
L CStructTag
CUnionTag (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_201 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_201 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_201 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 48# HappyAbsSyn
happyReduction_201
happyReduction_201 :: HappyAbsSyn
happyReduction_201 = Reversed [CDecl] -> HappyAbsSyn
happyIn55
(Reversed [CDecl]
forall a. Reversed [a]
empty
)
happyReduce_202 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_202 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_202 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 48# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_202
happyReduction_202 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_202 happy_x_2 :: p
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDecl]
happyOut55 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDecl]
happy_var_1 ->
Reversed [CDecl] -> HappyAbsSyn
happyIn55
(Reversed [CDecl]
happy_var_1
)}
happyReduce_203 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_203 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_203 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 48# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_203
happyReduction_203 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_203 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDecl]
happyOut55 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDecl]
happy_var_1 ->
case HappyAbsSyn -> CDecl
happyOut56 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDecl
happy_var_2 ->
Reversed [CDecl] -> HappyAbsSyn
happyIn55
(Reversed [CDecl]
happy_var_1 Reversed [CDecl] -> CDecl -> Reversed [CDecl]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDecl
happy_var_2
)}}
happyReduce_204 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_204 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_204 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 49# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_204
happyReduction_204 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_204 happy_x_2 :: p
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDecl
happyOut58 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDecl
happy_var_1 ->
CDecl -> HappyAbsSyn
happyIn56
(case CDecl
happy_var_1 of CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies at :: NodeInfo
at -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ([(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall a. [a] -> [a]
List.reverse [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) NodeInfo
at
)}
happyReduce_205 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_205 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_205 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 49# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_205
happyReduction_205 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_205 happy_x_2 :: p
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDecl
happyOut57 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDecl
happy_var_1 ->
CDecl -> HappyAbsSyn
happyIn56
(case CDecl
happy_var_1 of CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies at :: NodeInfo
at -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ([(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall a. [a] -> [a]
List.reverse [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) NodeInfo
at
)}
happyReduce_206 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_206 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_206 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 49# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_206
happyReduction_206 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_206 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: p
happy_x_1
= case HappyAbsSyn -> CDecl
happyOut56 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDecl
happy_var_2 ->
CDecl -> HappyAbsSyn
happyIn56
(CDecl
happy_var_2
)}
happyReduce_207 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_207 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_207 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 50# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_207
happyReduction_207 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_207 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> (Maybe CDeclr, Maybe CExpr)
happyOut60 HappyAbsSyn
happy_x_3 of { happy_var_3 :: (Maybe CDeclr, Maybe CExpr)
happy_var_3 ->
( Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ case (Maybe CDeclr, Maybe CExpr)
happy_var_3 of (d :: Maybe CDeclr
d,s :: Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 [CDeclSpec] -> [CDeclSpec] -> [CDeclSpec]
forall a. [a] -> [a] -> [a]
++ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) [(Maybe CDeclr
d,Maybe CInit
forall k1. Maybe k1
Nothing,Maybe CExpr
s)])}}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn57 CDecl
r))
happyReduce_208 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_208 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_208 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 50# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_208
happyReduction_208 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_208 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CAttr]
happy_var_1 ->
case HappyAbsSyn -> (Maybe CDeclr, Maybe CExpr)
happyOut60 HappyAbsSyn
happy_x_2 of { happy_var_2 :: (Maybe CDeclr, Maybe CExpr)
happy_var_2 ->
( [CAttr] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CAttr]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ case (Maybe CDeclr, Maybe CExpr)
happy_var_2 of (d :: Maybe CDeclr
d,s :: Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) [(Maybe CDeclr
d,Maybe CInit
forall k1. Maybe k1
Nothing,Maybe CExpr
s)])}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn57 CDecl
r))
happyReduce_209 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_209 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_209 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 50# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_209
happyReduction_209 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_209 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> CDecl
happyOut57 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDecl
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CAttr]
happy_var_3 ->
case HappyAbsSyn -> (Maybe CDeclr, Maybe CExpr)
happyOut60 HappyAbsSyn
happy_x_4 of { happy_var_4 :: (Maybe CDeclr, Maybe CExpr)
happy_var_4 ->
CDecl -> HappyAbsSyn
happyIn57
(case CDecl
happy_var_1 of
CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies at :: NodeInfo
at ->
case (Maybe CDeclr, Maybe CExpr)
happy_var_4 of
(Just d :: CDeclr
d,s :: Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ((CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclr -> Maybe CDeclr) -> CDeclr -> Maybe CDeclr
forall a b. (a -> b) -> a -> b
$ [CAttr] -> CDeclr -> CDeclr
appendObjAttrs [CAttr]
happy_var_3 CDeclr
d,Maybe CInit
forall k1. Maybe k1
Nothing,Maybe CExpr
s) (Maybe CDeclr, Maybe CInit, Maybe CExpr)
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall k1. k1 -> [k1] -> [k1]
: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) NodeInfo
at
(Nothing,s :: Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ((Maybe CDeclr
forall k1. Maybe k1
Nothing,Maybe CInit
forall k1. Maybe k1
Nothing,Maybe CExpr
s) (Maybe CDeclr, Maybe CInit, Maybe CExpr)
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall k1. k1 -> [k1] -> [k1]
: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) NodeInfo
at
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}
happyReduce_210 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_210 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_210 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 51# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_210
happyReduction_210 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_210 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CDeclSpec]
happyOut44 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> (Maybe CDeclr, Maybe CExpr)
happyOut59 HappyAbsSyn
happy_x_2 of { happy_var_2 :: (Maybe CDeclr, Maybe CExpr)
happy_var_2 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CAttr]
happy_var_3 ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ case (Maybe CDeclr, Maybe CExpr)
happy_var_2 of { (Just d :: CDeclr
d,s :: Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclr -> Maybe CDeclr) -> CDeclr -> Maybe CDeclr
forall a b. (a -> b) -> a -> b
$! [CAttr] -> CDeclr -> CDeclr
appendObjAttrs [CAttr]
happy_var_3 CDeclr
d,Maybe CInit
forall k1. Maybe k1
Nothing,Maybe CExpr
s)]
; (Nothing,s :: Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(Maybe CDeclr
forall k1. Maybe k1
Nothing,Maybe CInit
forall k1. Maybe k1
Nothing,Maybe CExpr
s)] })}}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn58 CDecl
r))
happyReduce_211 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_211 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_211 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 5# 51# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_211
happyReduction_211 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_211 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> CDecl
happyOut58 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDecl
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CAttr]
happy_var_3 ->
case HappyAbsSyn -> (Maybe CDeclr, Maybe CExpr)
happyOut59 HappyAbsSyn
happy_x_4 of { happy_var_4 :: (Maybe CDeclr, Maybe CExpr)
happy_var_4 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_5 of { happy_var_5 :: [CAttr]
happy_var_5 ->
CDecl -> HappyAbsSyn
happyIn58
(case CDecl
happy_var_1 of
CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies attr :: NodeInfo
attr ->
case (Maybe CDeclr, Maybe CExpr)
happy_var_4 of
(Just d :: CDeclr
d,s :: Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ((CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just(CDeclr -> Maybe CDeclr) -> CDeclr -> Maybe CDeclr
forall a b. (a -> b) -> a -> b
$ [CAttr] -> CDeclr -> CDeclr
appendObjAttrs ([CAttr]
happy_var_3[CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++[CAttr]
happy_var_5) CDeclr
d,Maybe CInit
forall k1. Maybe k1
Nothing,Maybe CExpr
s) (Maybe CDeclr, Maybe CInit, Maybe CExpr)
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall k1. k1 -> [k1] -> [k1]
: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) NodeInfo
attr
(Nothing,s :: Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ((Maybe CDeclr
forall k1. Maybe k1
Nothing,Maybe CInit
forall k1. Maybe k1
Nothing,Maybe CExpr
s) (Maybe CDeclr, Maybe CInit, Maybe CExpr)
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall k1. k1 -> [k1] -> [k1]
: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) NodeInfo
attr
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}}
happyReduce_212 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_212 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_212 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 51# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_212
happyReduction_212 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_212 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CDeclSpec]
happyOut44 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CDeclSpec]
happy_var_1 ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [])})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn58 CDecl
r))
happyReduce_213 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_213 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_213 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 52# HappyAbsSyn -> HappyAbsSyn
happyReduction_213
happyReduction_213 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_213 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut66 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR
happy_var_1 ->
(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn59
((CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_1), Maybe CExpr
forall k1. Maybe k1
Nothing)
)}
happyReduce_214 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_214 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_214 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 52# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_214
happyReduction_214 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_214 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: p
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut126 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CExpr
happy_var_2 ->
(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn59
((Maybe CDeclr
forall k1. Maybe k1
Nothing, CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_2)
)}
happyReduce_215 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_215 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_215 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 52# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_215
happyReduction_215 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_215 happy_x_3 :: HappyAbsSyn
happy_x_3
happy_x_2 :: p
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut66 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut126 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn59
((CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_1), CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_3)
)}}
happyReduce_216 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_216 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_216 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 53# HappyAbsSyn -> HappyAbsSyn
happyReduction_216
happyReduction_216 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_216 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut75 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR
happy_var_1 ->
(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn60
((CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_1), Maybe CExpr
forall k1. Maybe k1
Nothing)
)}
happyReduce_217 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_217 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_217 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 53# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_217
happyReduction_217 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_217 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: p
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut126 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CExpr
happy_var_2 ->
(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn60
((Maybe CDeclr
forall k1. Maybe k1
Nothing, CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_2)
)}
happyReduce_218 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_218 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_218 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 53# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_218
happyReduction_218 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_218 happy_x_3 :: HappyAbsSyn
happy_x_3
happy_x_2 :: p
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut75 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut126 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn60
((CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_1), CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_3)
)}}
happyReduce_219 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_219 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_219 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 53# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_219
happyReduction_219 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_219 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> (Maybe CDeclr, Maybe CExpr)
happyOut60 HappyAbsSyn
happy_x_1 of { happy_var_1 :: (Maybe CDeclr, Maybe CExpr)
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut134 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn60
(case (Maybe CDeclr, Maybe CExpr)
happy_var_1 of { (Nothing,expr :: Maybe CExpr
expr) -> (Maybe CDeclr
forall k1. Maybe k1
Nothing,Maybe CExpr
expr)
; (Just (CDeclr name :: Maybe Ident
name derived :: [CDerivedDeclarator NodeInfo]
derived asmname :: Maybe CStrLit
asmname attrs :: [CAttr]
attrs node :: NodeInfo
node), bsz :: Maybe CExpr
bsz) ->
(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (Maybe Ident
-> [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclr
forall a.
Maybe Ident
-> [CDerivedDeclarator a]
-> Maybe (CStringLiteral a)
-> [CAttribute a]
-> a
-> CDeclarator a
CDeclr Maybe Ident
name [CDerivedDeclarator NodeInfo]
derived Maybe CStrLit
asmname ([CAttr]
attrs[CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++[CAttr]
happy_var_2) NodeInfo
node),Maybe CExpr
bsz)
}
)}}
happyReduce_220 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_220 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_220 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 54# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_220
happyReduction_220 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_220 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CEnum -> (CEnum -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> Reversed [(Ident, Maybe CExpr)]
happyOut62 HappyAbsSyn
happy_x_4 of { happy_var_4 :: Reversed [(Ident, Maybe CExpr)]
happy_var_4 ->
( CToken -> (NodeInfo -> CEnum) -> P CEnum
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CEnum) -> P CEnum) -> (NodeInfo -> CEnum) -> P CEnum
forall a b. (a -> b) -> a -> b
$ Maybe Ident
-> Maybe [(Ident, Maybe CExpr)] -> [CAttr] -> NodeInfo -> CEnum
forall a.
Maybe Ident
-> Maybe [(Ident, Maybe (CExpression a))]
-> [CAttribute a]
-> a
-> CEnumeration a
CEnum Maybe Ident
forall k1. Maybe k1
Nothing ([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall k1. k1 -> Maybe k1
Just([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)])
-> [(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall a b. (a -> b) -> a -> b
$ Reversed [(Ident, Maybe CExpr)] -> [(Ident, Maybe CExpr)]
forall a. Reversed [a] -> [a]
reverse Reversed [(Ident, Maybe CExpr)]
happy_var_4) [CAttr]
happy_var_2)}}})
) (\r :: CEnum
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CEnum -> HappyAbsSyn
happyIn61 CEnum
r))
happyReduce_221 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_221 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_221 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 54# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_221
happyReduction_221 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_221 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CEnum -> (CEnum -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> Reversed [(Ident, Maybe CExpr)]
happyOut62 HappyAbsSyn
happy_x_4 of { happy_var_4 :: Reversed [(Ident, Maybe CExpr)]
happy_var_4 ->
( CToken -> (NodeInfo -> CEnum) -> P CEnum
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CEnum) -> P CEnum) -> (NodeInfo -> CEnum) -> P CEnum
forall a b. (a -> b) -> a -> b
$ Maybe Ident
-> Maybe [(Ident, Maybe CExpr)] -> [CAttr] -> NodeInfo -> CEnum
forall a.
Maybe Ident
-> Maybe [(Ident, Maybe (CExpression a))]
-> [CAttribute a]
-> a
-> CEnumeration a
CEnum Maybe Ident
forall k1. Maybe k1
Nothing ([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall k1. k1 -> Maybe k1
Just([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)])
-> [(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall a b. (a -> b) -> a -> b
$ Reversed [(Ident, Maybe CExpr)] -> [(Ident, Maybe CExpr)]
forall a. Reversed [a] -> [a]
reverse Reversed [(Ident, Maybe CExpr)]
happy_var_4) [CAttr]
happy_var_2)}}})
) (\r :: CEnum
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CEnum -> HappyAbsSyn
happyIn61 CEnum
r))
happyReduce_222 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_222 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_222 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 54# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_222
happyReduction_222 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_222 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CEnum -> (CEnum -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> Ident
happyOut131 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Ident
happy_var_3 ->
case HappyAbsSyn -> Reversed [(Ident, Maybe CExpr)]
happyOut62 HappyAbsSyn
happy_x_5 of { happy_var_5 :: Reversed [(Ident, Maybe CExpr)]
happy_var_5 ->
( CToken -> (NodeInfo -> CEnum) -> P CEnum
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CEnum) -> P CEnum) -> (NodeInfo -> CEnum) -> P CEnum
forall a b. (a -> b) -> a -> b
$ Maybe Ident
-> Maybe [(Ident, Maybe CExpr)] -> [CAttr] -> NodeInfo -> CEnum
forall a.
Maybe Ident
-> Maybe [(Ident, Maybe (CExpression a))]
-> [CAttribute a]
-> a
-> CEnumeration a
CEnum (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_3) ([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall k1. k1 -> Maybe k1
Just([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)])
-> [(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall a b. (a -> b) -> a -> b
$ Reversed [(Ident, Maybe CExpr)] -> [(Ident, Maybe CExpr)]
forall a. Reversed [a] -> [a]
reverse Reversed [(Ident, Maybe CExpr)]
happy_var_5) [CAttr]
happy_var_2)}}}})
) (\r :: CEnum
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CEnum -> HappyAbsSyn
happyIn61 CEnum
r))
happyReduce_223 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_223 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_223 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 7# 54# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_223
happyReduction_223 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_223 (happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CEnum -> (CEnum -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> Ident
happyOut131 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Ident
happy_var_3 ->
case HappyAbsSyn -> Reversed [(Ident, Maybe CExpr)]
happyOut62 HappyAbsSyn
happy_x_5 of { happy_var_5 :: Reversed [(Ident, Maybe CExpr)]
happy_var_5 ->
( CToken -> (NodeInfo -> CEnum) -> P CEnum
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CEnum) -> P CEnum) -> (NodeInfo -> CEnum) -> P CEnum
forall a b. (a -> b) -> a -> b
$ Maybe Ident
-> Maybe [(Ident, Maybe CExpr)] -> [CAttr] -> NodeInfo -> CEnum
forall a.
Maybe Ident
-> Maybe [(Ident, Maybe (CExpression a))]
-> [CAttribute a]
-> a
-> CEnumeration a
CEnum (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_3) ([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall k1. k1 -> Maybe k1
Just([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)])
-> [(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall a b. (a -> b) -> a -> b
$ Reversed [(Ident, Maybe CExpr)] -> [(Ident, Maybe CExpr)]
forall a. Reversed [a] -> [a]
reverse Reversed [(Ident, Maybe CExpr)]
happy_var_5) [CAttr]
happy_var_2)}}}})
) (\r :: CEnum
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CEnum -> HappyAbsSyn
happyIn61 CEnum
r))
happyReduce_224 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_224 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_224 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 54# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_224
happyReduction_224 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_224 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CEnum -> (CEnum -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> Ident
happyOut131 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Ident
happy_var_3 ->
( CToken -> (NodeInfo -> CEnum) -> P CEnum
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CEnum) -> P CEnum) -> (NodeInfo -> CEnum) -> P CEnum
forall a b. (a -> b) -> a -> b
$ Maybe Ident
-> Maybe [(Ident, Maybe CExpr)] -> [CAttr] -> NodeInfo -> CEnum
forall a.
Maybe Ident
-> Maybe [(Ident, Maybe (CExpression a))]
-> [CAttribute a]
-> a
-> CEnumeration a
CEnum (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_3) Maybe [(Ident, Maybe CExpr)]
forall k1. Maybe k1
Nothing [CAttr]
happy_var_2)}}})
) (\r :: CEnum
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CEnum -> HappyAbsSyn
happyIn61 CEnum
r))
happyReduce_225 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_225 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_225 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 55# HappyAbsSyn -> HappyAbsSyn
happyReduction_225
happyReduction_225 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_225 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> (Ident, Maybe CExpr)
happyOut63 HappyAbsSyn
happy_x_1 of { happy_var_1 :: (Ident, Maybe CExpr)
happy_var_1 ->
Reversed [(Ident, Maybe CExpr)] -> HappyAbsSyn
happyIn62
((Ident, Maybe CExpr) -> Reversed [(Ident, Maybe CExpr)]
forall a. a -> Reversed [a]
singleton (Ident, Maybe CExpr)
happy_var_1
)}
happyReduce_226 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_226 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_226 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 55# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_226
happyReduction_226 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_226 happy_x_3 :: HappyAbsSyn
happy_x_3
happy_x_2 :: p
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [(Ident, Maybe CExpr)]
happyOut62 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [(Ident, Maybe CExpr)]
happy_var_1 ->
case HappyAbsSyn -> (Ident, Maybe CExpr)
happyOut63 HappyAbsSyn
happy_x_3 of { happy_var_3 :: (Ident, Maybe CExpr)
happy_var_3 ->
Reversed [(Ident, Maybe CExpr)] -> HappyAbsSyn
happyIn62
(Reversed [(Ident, Maybe CExpr)]
happy_var_1 Reversed [(Ident, Maybe CExpr)]
-> (Ident, Maybe CExpr) -> Reversed [(Ident, Maybe CExpr)]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` (Ident, Maybe CExpr)
happy_var_3
)}}
happyReduce_227 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_227 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_227 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 56# HappyAbsSyn -> HappyAbsSyn
happyReduction_227
happyReduction_227 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_227 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Ident
happyOut131 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Ident
happy_var_1 ->
(Ident, Maybe CExpr) -> HappyAbsSyn
happyIn63
((Ident
happy_var_1, Maybe CExpr
forall k1. Maybe k1
Nothing)
)}
happyReduce_228 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_228 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_228 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 56# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_228
happyReduction_228 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_228 happy_x_2 :: p
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Ident
happyOut131 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Ident
happy_var_1 ->
(Ident, Maybe CExpr) -> HappyAbsSyn
happyIn63
((Ident
happy_var_1, Maybe CExpr
forall k1. Maybe k1
Nothing)
)}
happyReduce_229 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_229 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_229 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 56# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_229
happyReduction_229 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_229 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> Ident
happyOut131 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Ident
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut126 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CExpr
happy_var_4 ->
(Ident, Maybe CExpr) -> HappyAbsSyn
happyIn63
((Ident
happy_var_1, CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_4)
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_230 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_230 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_230 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 56# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_230
happyReduction_230 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_230 happy_x_3 :: HappyAbsSyn
happy_x_3
happy_x_2 :: p
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Ident
happyOut131 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Ident
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut126 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
(Ident, Maybe CExpr) -> HappyAbsSyn
happyIn63
((Ident
happy_var_1, CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_3)
)}}
happyReduce_231 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_231 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_231 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 57# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_231
happyReduction_231 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_231 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CConstQual)})
) (\r :: CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn64 CTypeQual
r))
happyReduce_232 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_232 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_232 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 57# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_232
happyReduction_232 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_232 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CVolatQual)})
) (\r :: CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn64 CTypeQual
r))
happyReduce_233 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_233 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_233 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 57# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_233
happyReduction_233 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_233 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CRestrQual)})
) (\r :: CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn64 CTypeQual
r))
happyReduce_234 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_234 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_234 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 57# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_234
happyReduction_234 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_234 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CNullableQual)})
) (\r :: CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn64 CTypeQual
r))
happyReduce_235 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_235 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_235 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 57# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_235
happyReduction_235 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_235 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CNonnullQual)})
) (\r :: CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn64 CTypeQual
r))
happyReduce_236 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_236 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_236 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 57# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_236
happyReduction_236 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_236 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CAtomicQual)})
) (\r :: CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn64 CTypeQual
r))
happyReduce_237 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_237 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_237 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 57# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_237
happyReduction_237 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_237 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CClRdOnlyQual)})
) (\r :: CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn64 CTypeQual
r))
happyReduce_238 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_238 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_238 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 57# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_238
happyReduction_238 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_238 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CClWrOnlyQual)})
) (\r :: CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn64 CTypeQual
r))
happyReduce_239 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_239 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_239 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 58# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_239
happyReduction_239 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_239 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CAttr]
happy_var_1 ->
case HappyAbsSyn -> CTypeQual
happyOut64 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CTypeQual
happy_var_2 ->
Reversed [CTypeQual] -> HappyAbsSyn
happyIn65
([CTypeQual] -> Reversed [CTypeQual]
forall a. [a] -> Reversed [a]
reverseList ((CAttr -> CTypeQual) -> [CAttr] -> [CTypeQual]
forall a b. (a -> b) -> [a] -> [b]
map CAttr -> CTypeQual
forall a. CAttribute a -> CTypeQualifier a
CAttrQual [CAttr]
happy_var_1) Reversed [CTypeQual] -> CTypeQual -> Reversed [CTypeQual]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeQual
happy_var_2
)}}
happyReduce_240 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_240 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_240 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 58# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_240
happyReduction_240 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_240 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> CTypeQual
happyOut64 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CTypeQual
happy_var_2 ->
Reversed [CTypeQual] -> HappyAbsSyn
happyIn65
(Reversed [CTypeQual]
happy_var_1 Reversed [CTypeQual] -> CTypeQual -> Reversed [CTypeQual]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeQual
happy_var_2
)}}
happyReduce_241 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_241 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_241 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 58# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_241
happyReduction_241 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_241 happy_x_3 :: HappyAbsSyn
happy_x_3
happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CTypeQual
happyOut64 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CTypeQual
happy_var_3 ->
Reversed [CTypeQual] -> HappyAbsSyn
happyIn65
((Reversed [CTypeQual]
happy_var_1 Reversed [CTypeQual] -> [CTypeQual] -> Reversed [CTypeQual]
forall a. Reversed [a] -> [a] -> Reversed [a]
`rappend` (CAttr -> CTypeQual) -> [CAttr] -> [CTypeQual]
forall a b. (a -> b) -> [a] -> [b]
map CAttr -> CTypeQual
forall a. CAttribute a -> CTypeQualifier a
CAttrQual [CAttr]
happy_var_2) Reversed [CTypeQual] -> CTypeQual -> Reversed [CTypeQual]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeQual
happy_var_3
)}}}
happyReduce_242 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_242 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_242 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 59# HappyAbsSyn -> HappyAbsSyn
happyReduction_242
happyReduction_242 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_242 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut75 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR
happy_var_1 ->
CDeclrR -> HappyAbsSyn
happyIn66
(CDeclrR
happy_var_1
)}
happyReduce_243 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_243 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_243 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 59# HappyAbsSyn -> HappyAbsSyn
happyReduction_243
happyReduction_243 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_243 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut68 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR
happy_var_1 ->
CDeclrR -> HappyAbsSyn
happyIn66
(CDeclrR
happy_var_1
)}
happyReduce_244 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_244 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_244 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 60# HappyAbsSyn
happyReduction_244
happyReduction_244 :: HappyAbsSyn
happyReduction_244 = Maybe CStrLit -> HappyAbsSyn
happyIn67
(Maybe CStrLit
forall k1. Maybe k1
Nothing
)
happyReduce_245 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_245 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_245 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 60# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_245
happyReduction_245 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_245 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> CStrLit
happyOut128 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CStrLit
happy_var_3 ->
Maybe CStrLit -> HappyAbsSyn
happyIn67
(CStrLit -> Maybe CStrLit
forall k1. k1 -> Maybe k1
Just CStrLit
happy_var_3
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}
happyReduce_246 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_246 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_246 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 61# HappyAbsSyn -> HappyAbsSyn
happyReduction_246
happyReduction_246 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_246 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut72 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR
happy_var_1 ->
CDeclrR -> HappyAbsSyn
happyIn68
(CDeclrR
happy_var_1
)}
happyReduce_247 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_247 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_247 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 61# HappyAbsSyn -> HappyAbsSyn
happyReduction_247
happyReduction_247 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_247 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut69 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR
happy_var_1 ->
CDeclrR -> HappyAbsSyn
happyIn68
(CDeclrR
happy_var_1
)}
happyReduce_248 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_248 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_248 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 62# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_248
happyReduction_248 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_248 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokTyIdent _ happy_var_1 :: Ident
happy_var_1) ->
( Ident -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ Ident -> NodeInfo -> CDeclrR
mkVarDeclr Ident
happy_var_1)})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn69 CDeclrR
r))
happyReduce_249 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_249 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_249 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 62# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_249
happyReduction_249 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_249 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokTyIdent _ happy_var_1 :: Ident
happy_var_1) ->
case HappyAbsSyn -> CDeclrR -> CDeclrR
happyOut88 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR -> CDeclrR
happy_var_2 ->
( Ident -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> CDeclrR -> CDeclrR
happy_var_2 (Ident -> NodeInfo -> CDeclrR
mkVarDeclr Ident
happy_var_1 NodeInfo
at))}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn69 CDeclrR
r))
happyReduce_250 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_250 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_250 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 62# HappyAbsSyn -> HappyAbsSyn
happyReduction_250
happyReduction_250 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_250 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut70 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR
happy_var_1 ->
CDeclrR -> HappyAbsSyn
happyIn69
(CDeclrR
happy_var_1
)}
happyReduce_251 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_251 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_251 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 63# HappyAbsSyn -> HappyAbsSyn
happyReduction_251
happyReduction_251 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_251 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut71 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR
happy_var_1 ->
CDeclrR -> HappyAbsSyn
happyIn70
(CDeclrR
happy_var_1
)}
happyReduce_252 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_252 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_252 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 63# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_252
happyReduction_252 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_252 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut69 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_2 [])}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn70 CDeclrR
r))
happyReduce_253 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_253 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_253 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 63# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_253
happyReduction_253 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_253 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CDeclrR
happyOut69 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclrR
happy_var_3 ->
( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_2 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 [])}}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn70 CDeclrR
r))
happyReduce_254 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_254 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_254 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 63# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_254
happyReduction_254 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_254 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Reversed [CTypeQual]
happy_var_2 ->
case HappyAbsSyn -> CDeclrR
happyOut69 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclrR
happy_var_3 ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2))}}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn70 CDeclrR
r))
happyReduce_255 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_255 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_255 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 63# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_255
happyReduction_255 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_255 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Reversed [CTypeQual]
happy_var_2 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CAttr]
happy_var_3 ->
case HappyAbsSyn -> CDeclrR
happyOut69 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CDeclrR
happy_var_4 ->
( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_4 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2))}}}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn70 CDeclrR
r))
happyReduce_256 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_256 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_256 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 64# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_256
happyReduction_256 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_256 happy_x_3 :: p
happy_x_3
happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: p
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut70 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
CDeclrR -> HappyAbsSyn
happyIn71
(CDeclrR
happy_var_2
)}
happyReduce_257 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_257 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_257 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 64# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_257
happyReduction_257 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_257 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> CDeclrR
happyOut70 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
case HappyAbsSyn -> CDeclrR -> CDeclrR
happyOut88 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CDeclrR -> CDeclrR
happy_var_4 ->
CDeclrR -> HappyAbsSyn
happyIn71
(CDeclrR -> CDeclrR
happy_var_4 CDeclrR
happy_var_2
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_258 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_258 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_258 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 64# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_258
happyReduction_258 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_258 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CDeclrR
happyOut70 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclrR
happy_var_3 ->
CDeclrR -> HappyAbsSyn
happyIn71
([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 CDeclrR
happy_var_3
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_259 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_259 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_259 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 5# 64# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_259
happyReduction_259 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_259 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CDeclrR
happyOut70 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclrR
happy_var_3 ->
case HappyAbsSyn -> CDeclrR -> CDeclrR
happyOut88 HappyAbsSyn
happy_x_5 of { happy_var_5 :: CDeclrR -> CDeclrR
happy_var_5 ->
CDeclrR -> HappyAbsSyn
happyIn71
([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 (CDeclrR -> CDeclrR
happy_var_5 CDeclrR
happy_var_3)
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}
happyReduce_260 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_260 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_260 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 65# HappyAbsSyn -> HappyAbsSyn
happyReduction_260
happyReduction_260 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_260 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut73 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR
happy_var_1 ->
CDeclrR -> HappyAbsSyn
happyIn72
(CDeclrR
happy_var_1
)}
happyReduce_261 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_261 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_261 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 65# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_261
happyReduction_261 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_261 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut74 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclrR
happy_var_3 ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 [])}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn72 CDeclrR
r))
happyReduce_262 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_262 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_262 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 65# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_262
happyReduction_262 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_262 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Reversed [CTypeQual]
happy_var_2 ->
case HappyAbsSyn -> CDeclrR
happyOut74 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CDeclrR
happy_var_4 ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_4 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2))}}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn72 CDeclrR
r))
happyReduce_263 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_263 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_263 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 65# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_263
happyReduction_263 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_263 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Reversed [CTypeQual]
happy_var_2 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CAttr]
happy_var_3 ->
case HappyAbsSyn -> CDeclrR
happyOut74 HappyAbsSyn
happy_x_5 of { happy_var_5 :: CDeclrR
happy_var_5 ->
( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_5 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2))}}}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn72 CDeclrR
r))
happyReduce_264 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_264 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_264 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 65# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_264
happyReduction_264 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_264 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut72 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_2 [])}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn72 CDeclrR
r))
happyReduce_265 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_265 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_265 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 65# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_265
happyReduction_265 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_265 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Reversed [CTypeQual]
happy_var_2 ->
case HappyAbsSyn -> CDeclrR
happyOut72 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclrR
happy_var_3 ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2))}}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn72 CDeclrR
r))
happyReduce_266 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_266 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_266 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 65# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_266
happyReduction_266 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_266 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Reversed [CTypeQual]
happy_var_2 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CAttr]
happy_var_3 ->
case HappyAbsSyn -> CDeclrR
happyOut72 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CDeclrR
happy_var_4 ->
( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_4 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2))}}}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn72 CDeclrR
r))
happyReduce_267 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_267 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_267 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 66# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_267
happyReduction_267 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_267 happy_x_3 :: p
happy_x_3
happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: p
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut72 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
CDeclrR -> HappyAbsSyn
happyIn73
(CDeclrR
happy_var_2
)}
happyReduce_268 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_268 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_268 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 66# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_268
happyReduction_268 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_268 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> CDeclrR
happyOut74 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
case HappyAbsSyn -> CDeclrR -> CDeclrR
happyOut88 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclrR -> CDeclrR
happy_var_3 ->
CDeclrR -> HappyAbsSyn
happyIn73
(CDeclrR -> CDeclrR
happy_var_3 CDeclrR
happy_var_2
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_269 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_269 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_269 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 66# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_269
happyReduction_269 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_269 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> CDeclrR
happyOut72 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
case HappyAbsSyn -> CDeclrR -> CDeclrR
happyOut88 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CDeclrR -> CDeclrR
happy_var_4 ->
CDeclrR -> HappyAbsSyn
happyIn73
(CDeclrR -> CDeclrR
happy_var_4 CDeclrR
happy_var_2
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_270 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_270 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_270 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 67# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_270
happyReduction_270 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_270 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokTyIdent _ happy_var_1 :: Ident
happy_var_1) ->
( Ident -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ Ident -> NodeInfo -> CDeclrR
mkVarDeclr Ident
happy_var_1)})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn74 CDeclrR
r))
happyReduce_271 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_271 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_271 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 67# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_271
happyReduction_271 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_271 happy_x_3 :: p
happy_x_3
happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: p
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut74 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
CDeclrR -> HappyAbsSyn
happyIn74
(CDeclrR
happy_var_2
)}
happyReduce_272 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_272 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_272 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 68# HappyAbsSyn -> HappyAbsSyn
happyReduction_272
happyReduction_272 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_272 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut76 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR
happy_var_1 ->
CDeclrR -> HappyAbsSyn
happyIn75
(CDeclrR
happy_var_1
)}
happyReduce_273 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_273 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_273 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 68# HappyAbsSyn -> HappyAbsSyn
happyReduction_273
happyReduction_273 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_273 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut78 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR
happy_var_1 ->
CDeclrR -> HappyAbsSyn
happyIn75
(CDeclrR
happy_var_1
)}
happyReduce_274 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_274 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_274 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 69# HappyAbsSyn -> HappyAbsSyn
happyReduction_274
happyReduction_274 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_274 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut77 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR
happy_var_1 ->
CDeclrR -> HappyAbsSyn
happyIn76
(CDeclrR
happy_var_1
)}
happyReduce_275 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_275 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_275 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 69# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_275
happyReduction_275 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_275 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut75 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_2 [])}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn76 CDeclrR
r))
happyReduce_276 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_276 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_276 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 69# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_276
happyReduction_276 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_276 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CDeclrR
happyOut75 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclrR
happy_var_3 ->
( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_2 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 [])}}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn76 CDeclrR
r))
happyReduce_277 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_277 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_277 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 69# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_277
happyReduction_277 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_277 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Reversed [CTypeQual]
happy_var_2 ->
case HappyAbsSyn -> CDeclrR
happyOut75 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclrR
happy_var_3 ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2))}}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn76 CDeclrR
r))
happyReduce_278 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_278 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_278 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 69# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_278
happyReduction_278 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_278 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Reversed [CTypeQual]
happy_var_2 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CAttr]
happy_var_3 ->
case HappyAbsSyn -> CDeclrR
happyOut75 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CDeclrR
happy_var_4 ->
( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_4 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2))}}}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn76 CDeclrR
r))
happyReduce_279 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_279 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_279 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 70# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_279
happyReduction_279 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_279 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut78 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR
happy_var_1 ->
case HappyAbsSyn -> CDeclrR -> CDeclrR
happyOut88 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR -> CDeclrR
happy_var_2 ->
CDeclrR -> HappyAbsSyn
happyIn77
(CDeclrR -> CDeclrR
happy_var_2 CDeclrR
happy_var_1
)}}
happyReduce_280 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_280 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_280 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 70# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_280
happyReduction_280 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_280 happy_x_3 :: p
happy_x_3
happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: p
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut76 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
CDeclrR -> HappyAbsSyn
happyIn77
(CDeclrR
happy_var_2
)}
happyReduce_281 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_281 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_281 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 70# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_281
happyReduction_281 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_281 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> CDeclrR
happyOut76 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
case HappyAbsSyn -> CDeclrR -> CDeclrR
happyOut88 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CDeclrR -> CDeclrR
happy_var_4 ->
CDeclrR -> HappyAbsSyn
happyIn77
(CDeclrR -> CDeclrR
happy_var_4 CDeclrR
happy_var_2
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_282 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_282 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_282 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 70# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_282
happyReduction_282 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_282 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CDeclrR
happyOut76 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclrR
happy_var_3 ->
CDeclrR -> HappyAbsSyn
happyIn77
([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 CDeclrR
happy_var_3
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_283 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_283 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_283 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 5# 70# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_283
happyReduction_283 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_283 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CDeclrR
happyOut76 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclrR
happy_var_3 ->
case HappyAbsSyn -> CDeclrR -> CDeclrR
happyOut88 HappyAbsSyn
happy_x_5 of { happy_var_5 :: CDeclrR -> CDeclrR
happy_var_5 ->
CDeclrR -> HappyAbsSyn
happyIn77
([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 (CDeclrR -> CDeclrR
happy_var_5 CDeclrR
happy_var_3)
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}
happyReduce_284 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_284 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_284 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 71# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_284
happyReduction_284 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_284 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent _ happy_var_1 :: Ident
happy_var_1) ->
( Ident -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ Ident -> NodeInfo -> CDeclrR
mkVarDeclr Ident
happy_var_1)})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn78 CDeclrR
r))
happyReduce_285 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_285 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_285 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 71# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_285
happyReduction_285 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_285 happy_x_3 :: p
happy_x_3
happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: p
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut78 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
CDeclrR -> HappyAbsSyn
happyIn78
(CDeclrR
happy_var_2
)}
happyReduce_286 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_286 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_286 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 71# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_286
happyReduction_286 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_286 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CDeclrR
happyOut78 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclrR
happy_var_3 ->
CDeclrR -> HappyAbsSyn
happyIn78
([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 CDeclrR
happy_var_3
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_287 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_287 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_287 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 72# HappyAbsSyn -> HappyAbsSyn
happyReduction_287
happyReduction_287 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_287 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut80 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR
happy_var_1 ->
CDeclr -> HappyAbsSyn
happyIn79
(CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_1
)}
happyReduce_288 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_288 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_288 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 73# HappyAbsSyn -> HappyAbsSyn
happyReduction_288
happyReduction_288 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_288 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut81 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR
happy_var_1 ->
CDeclrR -> HappyAbsSyn
happyIn80
(CDeclrR
happy_var_1
)}
happyReduce_289 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_289 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_289 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 73# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_289
happyReduction_289 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_289 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut80 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_2 [])}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn80 CDeclrR
r))
happyReduce_290 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_290 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_290 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 73# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_290
happyReduction_290 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_290 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Reversed [CTypeQual]
happy_var_2 ->
case HappyAbsSyn -> CDeclrR
happyOut80 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclrR
happy_var_3 ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2))}}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn80 CDeclrR
r))
happyReduce_291 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_291 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_291 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 74# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_291
happyReduction_291 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_291 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CDeclrR
happyOut78 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR
happy_var_1 ->
case HappyAbsSyn -> Reversed [Ident]
happyOut85 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Reversed [Ident]
happy_var_3 ->
( CDeclrR -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CDeclrR
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR
-> Either [Ident] ([CDecl], Bool) -> [CAttr] -> NodeInfo -> CDeclrR
funDeclr CDeclrR
happy_var_1 ([Ident] -> Either [Ident] ([CDecl], Bool)
forall a b. a -> Either a b
Left ([Ident] -> Either [Ident] ([CDecl], Bool))
-> [Ident] -> Either [Ident] ([CDecl], Bool)
forall a b. (a -> b) -> a -> b
$ Reversed [Ident] -> [Ident]
forall a. Reversed [a] -> [a]
reverse Reversed [Ident]
happy_var_3) [])}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn81 CDeclrR
r))
happyReduce_292 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_292 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_292 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 74# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_292
happyReduction_292 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_292 happy_x_3 :: p
happy_x_3
happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: p
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut80 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
CDeclrR -> HappyAbsSyn
happyIn81
(CDeclrR
happy_var_2
)}
happyReduce_293 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_293 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_293 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 74# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_293
happyReduction_293 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_293 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> CDeclrR
happyOut80 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
case HappyAbsSyn -> CDeclrR -> CDeclrR
happyOut88 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CDeclrR -> CDeclrR
happy_var_4 ->
CDeclrR -> HappyAbsSyn
happyIn81
(CDeclrR -> CDeclrR
happy_var_4 CDeclrR
happy_var_2
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_294 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_294 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_294 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 75# HappyAbsSyn
happyReduction_294
happyReduction_294 :: HappyAbsSyn
happyReduction_294 = ([CDecl], Bool) -> HappyAbsSyn
happyIn82
(([], Bool
False)
)
happyReduce_295 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_295 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_295 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 75# HappyAbsSyn -> HappyAbsSyn
happyReduction_295
happyReduction_295 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_295 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDecl]
happyOut83 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDecl]
happy_var_1 ->
([CDecl], Bool) -> HappyAbsSyn
happyIn82
((Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_1, Bool
False)
)}
happyReduce_296 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_296 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_296 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 75# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_296
happyReduction_296 :: p -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_296 happy_x_3 :: p
happy_x_3
happy_x_2 :: p
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDecl]
happyOut83 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDecl]
happy_var_1 ->
([CDecl], Bool) -> HappyAbsSyn
happyIn82
((Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_1, Bool
True)
)}
happyReduce_297 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_297 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_297 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 76# HappyAbsSyn -> HappyAbsSyn
happyReduction_297
happyReduction_297 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_297 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDecl
happyOut84 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDecl
happy_var_1 ->
Reversed [CDecl] -> HappyAbsSyn
happyIn83
(CDecl -> Reversed [CDecl]
forall a. a -> Reversed [a]
singleton CDecl
happy_var_1
)}
happyReduce_298 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_298 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_298 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 76# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_298
happyReduction_298 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_298 happy_x_3 :: HappyAbsSyn
happy_x_3
happy_x_2 :: p
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDecl]
happyOut83 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDecl]
happy_var_1 ->
case HappyAbsSyn -> CDecl
happyOut84 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDecl
happy_var_3 ->
Reversed [CDecl] -> HappyAbsSyn
happyIn83
(Reversed [CDecl]
happy_var_1 Reversed [CDecl] -> CDecl -> Reversed [CDecl]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDecl
happy_var_3
)}}
happyReduce_299 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_299 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_299 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_299
happyReduction_299 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_299 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CDeclSpec]
happyOut37 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CDeclSpec]
happy_var_1 ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [])})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))
happyReduce_300 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_300 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_300 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_300
happyReduction_300 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_300 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CDeclSpec]
happyOut37 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut87 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))
happyReduce_301 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_301 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_301 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_301
happyReduction_301 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_301 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CDeclSpec]
happyOut37 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut75 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CAttr]
happy_var_3 ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr (CDeclrR -> CDeclr) -> CDeclrR -> CDeclr
forall a b. (a -> b) -> a -> b
$! [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_3 CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))
happyReduce_302 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_302 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_302 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_302
happyReduction_302 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_302 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CDeclSpec]
happyOut37 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut69 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CAttr]
happy_var_3 ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr (CDeclrR -> CDeclr) -> CDeclrR -> CDeclr
forall a b. (a -> b) -> a -> b
$! [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_3 CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))
happyReduce_303 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_303 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_303 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_303
happyReduction_303 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_303 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut38 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
( Reversed [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) [])})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))
happyReduce_304 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_304 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_304 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_304
happyReduction_304 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_304 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut38 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut87 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
( Reversed [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))
happyReduce_305 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_305 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_305 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_305
happyReduction_305 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_305 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CDeclSpec]
happyOut38 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut75 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CAttr]
happy_var_3 ->
( Reversed [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr (CDeclrR -> CDeclr) -> CDeclrR -> CDeclr
forall a b. (a -> b) -> a -> b
$! [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_3 CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))
happyReduce_306 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_306 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_306 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_306
happyReduction_306 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_306 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CDeclSpec]
happyOut44 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CDeclSpec]
happy_var_1 ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [])})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))
happyReduce_307 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_307 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_307 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_307
happyReduction_307 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_307 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CDeclSpec]
happyOut44 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut87 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))
happyReduce_308 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_308 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_308 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_308
happyReduction_308 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_308 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CDeclSpec]
happyOut44 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut75 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CAttr]
happy_var_3 ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr (CDeclrR -> CDeclr) -> CDeclrR -> CDeclr
forall a b. (a -> b) -> a -> b
$! [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_3 CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))
happyReduce_309 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_309 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_309 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_309
happyReduction_309 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_309 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CDeclSpec]
happyOut44 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut69 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CAttr]
happy_var_3 ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr (CDeclrR -> CDeclr) -> CDeclrR -> CDeclr
forall a b. (a -> b) -> a -> b
$! [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_3 CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))
happyReduce_310 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_310 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_310 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_310
happyReduction_310 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_310 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
( Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) [])})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))
happyReduce_311 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_311 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_311 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_311
happyReduction_311 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_311 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut134 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
( Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 [CDeclSpec] -> [CDeclSpec] -> [CDeclSpec]
forall a. [a] -> [a] -> [a]
++ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) [])}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))
happyReduce_312 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_312 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_312 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_312
happyReduction_312 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_312 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut87 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
( Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))
happyReduce_313 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_313 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_313 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_313
happyReduction_313 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_313 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut75 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CAttr]
happy_var_3 ->
( Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr(CDeclrR -> CDeclr) -> CDeclrR -> CDeclr
forall a b. (a -> b) -> a -> b
$ [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_3 CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))
happyReduce_314 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_314 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_314 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 78# HappyAbsSyn -> HappyAbsSyn
happyReduction_314
happyReduction_314 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_314 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent _ happy_var_1 :: Ident
happy_var_1) ->
Reversed [Ident] -> HappyAbsSyn
happyIn85
(Ident -> Reversed [Ident]
forall a. a -> Reversed [a]
singleton Ident
happy_var_1
)}
happyReduce_315 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_315 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_315 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 78# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_315
happyReduction_315 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_315 happy_x_3 :: HappyAbsSyn
happy_x_3
happy_x_2 :: p
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [Ident]
happyOut85 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [Ident]
happy_var_1 ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_3 of { (CTokIdent _ happy_var_3 :: Ident
happy_var_3) ->
Reversed [Ident] -> HappyAbsSyn
happyIn85
(Reversed [Ident]
happy_var_1 Reversed [Ident] -> Ident -> Reversed [Ident]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` Ident
happy_var_3
)}}
happyReduce_316 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_316 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_316 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 79# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_316
happyReduction_316 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_316 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CDeclSpec]
happyOut44 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CDeclSpec]
happy_var_1 ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [])})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn86 CDecl
r))
happyReduce_317 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_317 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_317 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 79# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_317
happyReduction_317 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_317 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> [CDeclSpec]
happyOut44 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CDeclSpec]
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut87 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn86 CDecl
r))
happyReduce_318 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_318 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_318 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 79# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_318
happyReduction_318 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_318 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut134 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
( Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 [CDeclSpec] -> [CDeclSpec] -> [CDeclSpec]
forall a. [a] -> [a] -> [a]
++ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) [])}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn86 CDecl
r))
happyReduce_319 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_319 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_319 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 79# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_319
happyReduction_319 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_319 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CTypeQual]
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut87 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
( Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn86 CDecl
r))
happyReduce_320 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_320 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_320 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 80# HappyAbsSyn -> HappyAbsSyn
happyReduction_320
happyReduction_320 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_320 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut91 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR
happy_var_1 ->
CDeclrR -> HappyAbsSyn
happyIn87
(CDeclrR
happy_var_1
)}
happyReduce_321 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_321 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_321 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 80# HappyAbsSyn -> HappyAbsSyn
happyReduction_321
happyReduction_321 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_321 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut92 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR
happy_var_1 ->
CDeclrR -> HappyAbsSyn
happyIn87
(CDeclrR
happy_var_1
)}
happyReduce_322 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_322 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_322 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 80# HappyAbsSyn -> HappyAbsSyn
happyReduction_322
happyReduction_322 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_322 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR -> CDeclrR
happyOut88 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR -> CDeclrR
happy_var_1 ->
CDeclrR -> HappyAbsSyn
happyIn87
(CDeclrR -> CDeclrR
happy_var_1 CDeclrR
emptyDeclr
)}
happyReduce_323 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_323 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_323 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 81# HappyAbsSyn -> HappyAbsSyn
happyReduction_323
happyReduction_323 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_323 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR -> CDeclrR
happyOut89 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR -> CDeclrR
happy_var_1 ->
(CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn88
(CDeclrR -> CDeclrR
happy_var_1
)}
happyReduce_324 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_324 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_324 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 81# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_324
happyReduction_324 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_324 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> ([CDecl], Bool)
happyOut82 HappyAbsSyn
happy_x_2 of { happy_var_2 :: ([CDecl], Bool)
happy_var_2 ->
( CToken
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> case ([CDecl], Bool)
happy_var_2 of
(params :: [CDecl]
params, variadic :: Bool
variadic) -> CDeclrR
-> Either [Ident] ([CDecl], Bool) -> [CAttr] -> NodeInfo -> CDeclrR
funDeclr CDeclrR
declr (([CDecl], Bool) -> Either [Ident] ([CDecl], Bool)
forall a b. b -> Either a b
Right ([CDecl]
params,Bool
variadic)) [] NodeInfo
at)}})
) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn88 CDeclrR -> CDeclrR
r))
happyReduce_325 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_325 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_325 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 82# HappyAbsSyn -> HappyAbsSyn
happyReduction_325
happyReduction_325 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_325 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR -> CDeclrR
happyOut90 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR -> CDeclrR
happy_var_1 ->
(CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn89
(CDeclrR -> CDeclrR
happy_var_1
)}
happyReduce_326 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_326 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_326 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 82# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_326
happyReduction_326 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_326 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR -> CDeclrR
happyOut89 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR -> CDeclrR
happy_var_1 ->
case HappyAbsSyn -> CDeclrR -> CDeclrR
happyOut90 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR -> CDeclrR
happy_var_2 ->
(CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn89
(\decl :: CDeclrR
decl -> CDeclrR -> CDeclrR
happy_var_2 (CDeclrR -> CDeclrR
happy_var_1 CDeclrR
decl)
)}}
happyReduce_327 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_327 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_327 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 83# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_327
happyReduction_327 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_327 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Maybe CExpr
happyOut125 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Maybe CExpr
happy_var_2 ->
( CToken
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr [] Bool
False Bool
False Maybe CExpr
happy_var_2 NodeInfo
at)}})
) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
r))
happyReduce_328 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_328 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_328 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 83# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_328
happyReduction_328 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_328 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> Maybe CExpr
happyOut125 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Maybe CExpr
happy_var_3 ->
( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 [CAttr]
happy_var_2 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr [] Bool
False Bool
False Maybe CExpr
happy_var_3 NodeInfo
at)}}})
) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
r))
happyReduce_329 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_329 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_329 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 83# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_329
happyReduction_329 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_329 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Reversed [CTypeQual]
happy_var_2 ->
case HappyAbsSyn -> Maybe CExpr
happyOut125 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Maybe CExpr
happy_var_3 ->
( CToken
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2) Bool
False Bool
False Maybe CExpr
happy_var_3 NodeInfo
at)}}})
) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
r))
happyReduce_330 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_330 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_330 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 83# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_330
happyReduction_330 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_330 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Reversed [CTypeQual]
happy_var_2 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CAttr]
happy_var_3 ->
case HappyAbsSyn -> Maybe CExpr
happyOut125 HappyAbsSyn
happy_x_4 of { happy_var_4 :: Maybe CExpr
happy_var_4 ->
( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2) Bool
False Bool
False Maybe CExpr
happy_var_4 NodeInfo
at)}}}})
) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
r))
happyReduce_331 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_331 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_331 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 83# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_331
happyReduction_331 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_331 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CAttr]
happy_var_3 ->
case HappyAbsSyn -> CExpr
happyOut120 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CExpr
happy_var_4 ->
( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr [] Bool
False Bool
True (CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_4) NodeInfo
at)}}})
) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
r))
happyReduce_332 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_332 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_332 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 83# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_332
happyReduction_332 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_332 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Reversed [CTypeQual]
happy_var_3 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_4 of { happy_var_4 :: [CAttr]
happy_var_4 ->
case HappyAbsSyn -> CExpr
happyOut120 HappyAbsSyn
happy_x_5 of { happy_var_5 :: CExpr
happy_var_5 ->
( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 [CAttr]
happy_var_4 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_3) Bool
False Bool
True (CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_5) NodeInfo
at)}}}})
) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
r))
happyReduce_333 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_333 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_333 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 7# 83# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_333
happyReduction_333 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_333 (happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Reversed [CTypeQual]
happy_var_2 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CAttr]
happy_var_3 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_5 of { happy_var_5 :: [CAttr]
happy_var_5 ->
case HappyAbsSyn -> CExpr
happyOut120 HappyAbsSyn
happy_x_6 of { happy_var_6 :: CExpr
happy_var_6 ->
( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 ([CAttr]
happy_var_3 [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
happy_var_5) ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2) Bool
False Bool
True (CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_6) NodeInfo
at)}}}}})
) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
r))
happyReduce_334 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_334 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_334 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 83# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_334
happyReduction_334 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_334 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CAttr]
happy_var_3 ->
( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr [] Bool
True Bool
False Maybe CExpr
forall k1. Maybe k1
Nothing NodeInfo
at)}})
) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
r))
happyReduce_335 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_335 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_335 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 83# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_335
happyReduction_335 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_335 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_4 of { happy_var_4 :: [CAttr]
happy_var_4 ->
( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 ([CAttr]
happy_var_2 [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
happy_var_4) ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr [] Bool
True Bool
False Maybe CExpr
forall k1. Maybe k1
Nothing NodeInfo
at)}}})
) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
r))
happyReduce_336 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_336 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_336 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 83# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_336
happyReduction_336 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_336 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Reversed [CTypeQual]
happy_var_2 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_4 of { happy_var_4 :: [CAttr]
happy_var_4 ->
( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 [CAttr]
happy_var_4 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2) Bool
True Bool
False Maybe CExpr
forall k1. Maybe k1
Nothing NodeInfo
at)}}})
) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
r))
happyReduce_337 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_337 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_337 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 83# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_337
happyReduction_337 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_337 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Reversed [CTypeQual]
happy_var_2 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CAttr]
happy_var_3 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_5 of { happy_var_5 :: [CAttr]
happy_var_5 ->
( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 ([CAttr]
happy_var_3 [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
happy_var_5) ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2) Bool
True Bool
False Maybe CExpr
forall k1. Maybe k1
Nothing NodeInfo
at)}}}})
) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
r))
happyReduce_338 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_338 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_338 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_338
happyReduction_338 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_338 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
emptyDeclr [])})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn91 CDeclrR
r))
happyReduce_339 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_339 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_339 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_339
happyReduction_339 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_339 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Reversed [CTypeQual]
happy_var_2 ->
case HappyAbsSyn -> [CAttr]
happyOut132 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CAttr]
happy_var_3 ->
( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
emptyDeclr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2))}}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn91 CDeclrR
r))
happyReduce_340 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_340 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_340 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_340
happyReduction_340 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_340 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CDeclrR
happyOut87 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_2 [])}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn91 CDeclrR
r))
happyReduce_341 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_341 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_341 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_341
happyReduction_341 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_341 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Reversed [CTypeQual]
happyOut65 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Reversed [CTypeQual]
happy_var_2 ->
case HappyAbsSyn -> CDeclrR
happyOut87 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclrR
happy_var_3 ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2))}}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn91 CDeclrR
r))
happyReduce_342 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_342 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_342 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_342
happyReduction_342 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_342 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_2 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
emptyDeclr [])}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn91 CDeclrR
r))
happyReduce_343 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_343 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_343 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_343
happyReduction_343 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_343 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CDeclrR
happyOut87 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclrR
happy_var_3 ->
( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_2 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 [])}}})
) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn91 CDeclrR
r))
happyReduce_344 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_344 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_344 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 85# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_344
happyReduction_344 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_344 happy_x_3 :: p
happy_x_3
happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: p
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut91 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
CDeclrR -> HappyAbsSyn
happyIn92
(CDeclrR
happy_var_2
)}
happyReduce_345 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_345 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_345 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 85# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_345
happyReduction_345 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_345 happy_x_3 :: p
happy_x_3
happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: p
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut92 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
CDeclrR -> HappyAbsSyn
happyIn92
(CDeclrR
happy_var_2
)}
happyReduce_346 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_346 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_346 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 85# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_346
happyReduction_346 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_346 happy_x_3 :: p
happy_x_3
happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: p
happy_x_1
= case HappyAbsSyn -> CDeclrR -> CDeclrR
happyOut88 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR -> CDeclrR
happy_var_2 ->
CDeclrR -> HappyAbsSyn
happyIn92
(CDeclrR -> CDeclrR
happy_var_2 CDeclrR
emptyDeclr
)}
happyReduce_347 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_347 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_347 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 85# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_347
happyReduction_347 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_347 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> CDeclrR
happyOut91 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDeclrR
happy_var_2 ->
case HappyAbsSyn -> CDeclrR -> CDeclrR
happyOut88 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CDeclrR -> CDeclrR
happy_var_4 ->
CDeclrR -> HappyAbsSyn
happyIn92
(CDeclrR -> CDeclrR
happy_var_4 CDeclrR
happy_var_2
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_348 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_348 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_348 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 85# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_348
happyReduction_348 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_348 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CDeclrR
happyOut91 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclrR
happy_var_3 ->
CDeclrR -> HappyAbsSyn
happyIn92
([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 CDeclrR
happy_var_3
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_349 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_349 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_349 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 85# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_349
happyReduction_349 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_349 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CDeclrR
happyOut92 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclrR
happy_var_3 ->
CDeclrR -> HappyAbsSyn
happyIn92
([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 CDeclrR
happy_var_3
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_350 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_350 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_350 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 85# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_350
happyReduction_350 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_350 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CDeclrR -> CDeclrR
happyOut88 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclrR -> CDeclrR
happy_var_3 ->
CDeclrR -> HappyAbsSyn
happyIn92
([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 (CDeclrR -> CDeclrR
happy_var_3 CDeclrR
emptyDeclr)
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_351 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_351 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_351 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 5# 85# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_351
happyReduction_351 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_351 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
case HappyAbsSyn -> CDeclrR
happyOut91 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDeclrR
happy_var_3 ->
case HappyAbsSyn -> CDeclrR -> CDeclrR
happyOut88 HappyAbsSyn
happy_x_5 of { happy_var_5 :: CDeclrR -> CDeclrR
happy_var_5 ->
CDeclrR -> HappyAbsSyn
happyIn92
([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 (CDeclrR -> CDeclrR
happy_var_5 CDeclrR
happy_var_3)
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}
happyReduce_352 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_352 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_352 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 85# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_352
happyReduction_352 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_352 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDeclrR
happyOut92 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDeclrR
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut134 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
CDeclrR -> HappyAbsSyn
happyIn92
([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 CDeclrR
happy_var_1
)}}
happyReduce_353 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_353 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_353 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 86# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_353
happyReduction_353 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_353 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CInit -> (CInit -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut120 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
( CExpr -> (NodeInfo -> CInit) -> P CInit
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CInit) -> P CInit) -> (NodeInfo -> CInit) -> P CInit
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CInit
forall a. CExpression a -> a -> CInitializer a
CInitExpr CExpr
happy_var_1)})
) (\r :: CInit
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CInit -> HappyAbsSyn
happyIn93 CInit
r))
happyReduce_354 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_354 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_354 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 86# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_354
happyReduction_354 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_354 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CInit -> (CInit -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Reversed CInitList
happyOut95 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Reversed CInitList
happy_var_2 ->
( CToken -> (NodeInfo -> CInit) -> P CInit
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CInit) -> P CInit) -> (NodeInfo -> CInit) -> P CInit
forall a b. (a -> b) -> a -> b
$ CInitList -> NodeInfo -> CInit
forall a. CInitializerList a -> a -> CInitializer a
CInitList (Reversed CInitList -> CInitList
forall a. Reversed [a] -> [a]
reverse Reversed CInitList
happy_var_2))}})
) (\r :: CInit
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CInit -> HappyAbsSyn
happyIn93 CInit
r))
happyReduce_355 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_355 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_355 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 86# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_355
happyReduction_355 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_355 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CInit -> (CInit -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Reversed CInitList
happyOut95 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Reversed CInitList
happy_var_2 ->
( CToken -> (NodeInfo -> CInit) -> P CInit
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CInit) -> P CInit) -> (NodeInfo -> CInit) -> P CInit
forall a b. (a -> b) -> a -> b
$ CInitList -> NodeInfo -> CInit
forall a. CInitializerList a -> a -> CInitializer a
CInitList (Reversed CInitList -> CInitList
forall a. Reversed [a] -> [a]
reverse Reversed CInitList
happy_var_2))}})
) (\r :: CInit
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CInit -> HappyAbsSyn
happyIn93 CInit
r))
happyReduce_356 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_356 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_356 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 87# HappyAbsSyn
happyReduction_356
happyReduction_356 :: HappyAbsSyn
happyReduction_356 = Maybe CInit -> HappyAbsSyn
happyIn94
(Maybe CInit
forall k1. Maybe k1
Nothing
)
happyReduce_357 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_357 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_357 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 87# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_357
happyReduction_357 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_357 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: p
happy_x_1
= case HappyAbsSyn -> CInit
happyOut93 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CInit
happy_var_2 ->
Maybe CInit -> HappyAbsSyn
happyIn94
(CInit -> Maybe CInit
forall k1. k1 -> Maybe k1
Just CInit
happy_var_2
)}
happyReduce_358 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_358 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_358 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 88# HappyAbsSyn
happyReduction_358
happyReduction_358 :: HappyAbsSyn
happyReduction_358 = Reversed CInitList -> HappyAbsSyn
happyIn95
(Reversed CInitList
forall a. Reversed [a]
empty
)
happyReduce_359 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_359 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_359 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 88# HappyAbsSyn -> HappyAbsSyn
happyReduction_359
happyReduction_359 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_359 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CInit
happyOut93 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CInit
happy_var_1 ->
Reversed CInitList -> HappyAbsSyn
happyIn95
(([CDesignator], CInit) -> Reversed CInitList
forall a. a -> Reversed [a]
singleton ([],CInit
happy_var_1)
)}
happyReduce_360 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_360 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_360 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 88# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_360
happyReduction_360 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_360 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> [CDesignator]
happyOut96 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CDesignator]
happy_var_1 ->
case HappyAbsSyn -> CInit
happyOut93 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CInit
happy_var_2 ->
Reversed CInitList -> HappyAbsSyn
happyIn95
(([CDesignator], CInit) -> Reversed CInitList
forall a. a -> Reversed [a]
singleton ([CDesignator]
happy_var_1,CInit
happy_var_2)
)}}
happyReduce_361 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_361 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_361 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 88# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_361
happyReduction_361 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_361 happy_x_3 :: HappyAbsSyn
happy_x_3
happy_x_2 :: p
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed CInitList
happyOut95 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed CInitList
happy_var_1 ->
case HappyAbsSyn -> CInit
happyOut93 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CInit
happy_var_3 ->
Reversed CInitList -> HappyAbsSyn
happyIn95
(Reversed CInitList
happy_var_1 Reversed CInitList -> ([CDesignator], CInit) -> Reversed CInitList
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` ([],CInit
happy_var_3)
)}}
happyReduce_362 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_362 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_362 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 88# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_362
happyReduction_362 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_362 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> Reversed CInitList
happyOut95 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed CInitList
happy_var_1 ->
case HappyAbsSyn -> [CDesignator]
happyOut96 HappyAbsSyn
happy_x_3 of { happy_var_3 :: [CDesignator]
happy_var_3 ->
case HappyAbsSyn -> CInit
happyOut93 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CInit
happy_var_4 ->
Reversed CInitList -> HappyAbsSyn
happyIn95
(Reversed CInitList
happy_var_1 Reversed CInitList -> ([CDesignator], CInit) -> Reversed CInitList
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` ([CDesignator]
happy_var_3,CInit
happy_var_4)
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}
happyReduce_363 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_363 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_363 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 89# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_363
happyReduction_363 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_363 happy_x_2 :: p
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDesignator]
happyOut97 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDesignator]
happy_var_1 ->
[CDesignator] -> HappyAbsSyn
happyIn96
(Reversed [CDesignator] -> [CDesignator]
forall a. Reversed [a] -> [a]
reverse Reversed [CDesignator]
happy_var_1
)}
happyReduce_364 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_364 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_364 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 89# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_364
happyReduction_364 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_364 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P [CDesignator]
-> ([CDesignator] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Ident
happyOut131 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Ident
happy_var_1 ->
( Ident -> (NodeInfo -> [CDesignator]) -> P [CDesignator]
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> [CDesignator]) -> P [CDesignator])
-> (NodeInfo -> [CDesignator]) -> P [CDesignator]
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> [Ident -> NodeInfo -> CDesignator
forall a. Ident -> a -> CPartDesignator a
CMemberDesig Ident
happy_var_1 NodeInfo
at])})
) (\r :: [CDesignator]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ([CDesignator] -> HappyAbsSyn
happyIn96 [CDesignator]
r))
happyReduce_365 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_365 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_365 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 89# HappyAbsSyn -> HappyAbsSyn
happyReduction_365
happyReduction_365 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_365 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDesignator
happyOut99 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDesignator
happy_var_1 ->
[CDesignator] -> HappyAbsSyn
happyIn96
([CDesignator
happy_var_1]
)}
happyReduce_366 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_366 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_366 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 90# HappyAbsSyn -> HappyAbsSyn
happyReduction_366
happyReduction_366 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_366 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDesignator
happyOut98 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDesignator
happy_var_1 ->
Reversed [CDesignator] -> HappyAbsSyn
happyIn97
(CDesignator -> Reversed [CDesignator]
forall a. a -> Reversed [a]
singleton CDesignator
happy_var_1
)}
happyReduce_367 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_367 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_367 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 90# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_367
happyReduction_367 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_367 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CDesignator]
happyOut97 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDesignator]
happy_var_1 ->
case HappyAbsSyn -> CDesignator
happyOut98 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDesignator
happy_var_2 ->
Reversed [CDesignator] -> HappyAbsSyn
happyIn97
(Reversed [CDesignator]
happy_var_1 Reversed [CDesignator] -> CDesignator -> Reversed [CDesignator]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDesignator
happy_var_2
)}}
happyReduce_368 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_368 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_368 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 91# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_368
happyReduction_368 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_368 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDesignator -> (CDesignator -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut126 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CExpr
happy_var_2 ->
( CToken -> (NodeInfo -> CDesignator) -> P CDesignator
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDesignator) -> P CDesignator)
-> (NodeInfo -> CDesignator) -> P CDesignator
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CDesignator
forall a. CExpression a -> a -> CPartDesignator a
CArrDesig CExpr
happy_var_2)}})
) (\r :: CDesignator
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDesignator -> HappyAbsSyn
happyIn98 CDesignator
r))
happyReduce_369 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_369 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_369 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 91# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_369
happyReduction_369 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_369 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDesignator -> (CDesignator -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Ident
happyOut131 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Ident
happy_var_2 ->
( CToken -> (NodeInfo -> CDesignator) -> P CDesignator
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDesignator) -> P CDesignator)
-> (NodeInfo -> CDesignator) -> P CDesignator
forall a b. (a -> b) -> a -> b
$ Ident -> NodeInfo -> CDesignator
forall a. Ident -> a -> CPartDesignator a
CMemberDesig Ident
happy_var_2)}})
) (\r :: CDesignator
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDesignator -> HappyAbsSyn
happyIn98 CDesignator
r))
happyReduce_370 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_370 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_370 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 91# HappyAbsSyn -> HappyAbsSyn
happyReduction_370
happyReduction_370 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_370 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDesignator
happyOut99 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDesignator
happy_var_1 ->
CDesignator -> HappyAbsSyn
happyIn98
(CDesignator
happy_var_1
)}
happyReduce_371 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_371 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_371 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 92# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_371
happyReduction_371 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_371 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CDesignator -> (CDesignator -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut126 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CExpr
happy_var_2 ->
case HappyAbsSyn -> CExpr
happyOut126 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CExpr
happy_var_4 ->
( CToken -> (NodeInfo -> CDesignator) -> P CDesignator
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDesignator) -> P CDesignator)
-> (NodeInfo -> CDesignator) -> P CDesignator
forall a b. (a -> b) -> a -> b
$ CExpr -> CExpr -> NodeInfo -> CDesignator
forall a. CExpression a -> CExpression a -> a -> CPartDesignator a
CRangeDesig CExpr
happy_var_2 CExpr
happy_var_4)}}})
) (\r :: CDesignator
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDesignator -> HappyAbsSyn
happyIn99 CDesignator
r))
happyReduce_372 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_372 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_372 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 93# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_372
happyReduction_372 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_372 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent _ happy_var_1 :: Ident
happy_var_1) ->
( Ident -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ Ident -> NodeInfo -> CExpr
forall a. Ident -> a -> CExpression a
CVar Ident
happy_var_1)})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn100 CExpr
r))
happyReduce_373 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_373 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_373 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 93# HappyAbsSyn -> HappyAbsSyn
happyReduction_373
happyReduction_373 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_373 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CConst
happyOut127 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CConst
happy_var_1 ->
CExpr -> HappyAbsSyn
happyIn100
(CConst -> CExpr
forall a. CConstant a -> CExpression a
CConst CConst
happy_var_1
)}
happyReduce_374 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_374 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_374 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 93# HappyAbsSyn -> HappyAbsSyn
happyReduction_374
happyReduction_374 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_374 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CStrLit
happyOut128 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CStrLit
happy_var_1 ->
CExpr -> HappyAbsSyn
happyIn100
(CConst -> CExpr
forall a. CConstant a -> CExpression a
CConst (CStrLit -> CConst
forall a. CStringLiteral a -> CConstant a
liftStrLit CStrLit
happy_var_1)
)}
happyReduce_375 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_375 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_375 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 93# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_375
happyReduction_375 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_375 happy_x_3 :: p
happy_x_3
happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: p
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut122 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CExpr
happy_var_2 ->
CExpr -> HappyAbsSyn
happyIn100
(CExpr
happy_var_2
)}
happyReduce_376 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_376 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_376 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 93# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_376
happyReduction_376 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_376 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut120 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
case HappyAbsSyn -> Reversed [(Maybe CDecl, CExpr)]
happyOut101 HappyAbsSyn
happy_x_5 of { happy_var_5 :: Reversed [(Maybe CDecl, CExpr)]
happy_var_5 ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> [(Maybe CDecl, CExpr)] -> NodeInfo -> CExpr
forall a.
CExpression a
-> [(Maybe (CDeclaration a), CExpression a)] -> a -> CExpression a
CGenericSelection CExpr
happy_var_3 (Reversed [(Maybe CDecl, CExpr)] -> [(Maybe CDecl, CExpr)]
forall a. Reversed [a] -> [a]
reverse Reversed [(Maybe CDecl, CExpr)]
happy_var_5))}}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn100 CExpr
r))
happyReduce_377 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_377 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_377 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 93# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_377
happyReduction_377 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_377 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CStat
happyOut14 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CStat
happy_var_2 ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CStat -> NodeInfo -> CExpr
forall a. CStatement a -> a -> CExpression a
CStatExpr CStat
happy_var_2)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn100 CExpr
r))
happyReduce_378 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_378 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_378 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 93# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_378
happyReduction_378 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_378 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut120 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
case HappyAbsSyn -> CDecl
happyOut86 HappyAbsSyn
happy_x_5 of { happy_var_5 :: CDecl
happy_var_5 ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBuiltinThing NodeInfo -> CExpr
forall a. CBuiltinThing a -> CExpression a
CBuiltinExpr (CBuiltinThing NodeInfo -> CExpr)
-> (NodeInfo -> CBuiltinThing NodeInfo) -> NodeInfo -> CExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CExpr -> CDecl -> NodeInfo -> CBuiltinThing NodeInfo
forall a. CExpression a -> CDeclaration a -> a -> CBuiltinThing a
CBuiltinVaArg CExpr
happy_var_3 CDecl
happy_var_5)}}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn100 CExpr
r))
happyReduce_379 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_379 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_379 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 93# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_379
happyReduction_379 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_379 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CDecl
happyOut86 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDecl
happy_var_3 ->
case HappyAbsSyn -> Reversed [CDesignator]
happyOut103 HappyAbsSyn
happy_x_5 of { happy_var_5 :: Reversed [CDesignator]
happy_var_5 ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBuiltinThing NodeInfo -> CExpr
forall a. CBuiltinThing a -> CExpression a
CBuiltinExpr (CBuiltinThing NodeInfo -> CExpr)
-> (NodeInfo -> CBuiltinThing NodeInfo) -> NodeInfo -> CExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CDecl -> [CDesignator] -> NodeInfo -> CBuiltinThing NodeInfo
forall a.
CDeclaration a -> [CPartDesignator a] -> a -> CBuiltinThing a
CBuiltinOffsetOf CDecl
happy_var_3 (Reversed [CDesignator] -> [CDesignator]
forall a. Reversed [a] -> [a]
reverse Reversed [CDesignator]
happy_var_5))}}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn100 CExpr
r))
happyReduce_380 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_380 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_380 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 93# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_380
happyReduction_380 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_380 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CDecl
happyOut86 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDecl
happy_var_3 ->
case HappyAbsSyn -> CDecl
happyOut86 HappyAbsSyn
happy_x_5 of { happy_var_5 :: CDecl
happy_var_5 ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBuiltinThing NodeInfo -> CExpr
forall a. CBuiltinThing a -> CExpression a
CBuiltinExpr (CBuiltinThing NodeInfo -> CExpr)
-> (NodeInfo -> CBuiltinThing NodeInfo) -> NodeInfo -> CExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CDecl -> CDecl -> NodeInfo -> CBuiltinThing NodeInfo
forall a. CDeclaration a -> CDeclaration a -> a -> CBuiltinThing a
CBuiltinTypesCompatible CDecl
happy_var_3 CDecl
happy_var_5)}}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn100 CExpr
r))
happyReduce_381 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_381 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_381 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 93# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_381
happyReduction_381 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_381 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut120 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
case HappyAbsSyn -> CDecl
happyOut86 HappyAbsSyn
happy_x_5 of { happy_var_5 :: CDecl
happy_var_5 ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBuiltinThing NodeInfo -> CExpr
forall a. CBuiltinThing a -> CExpression a
CBuiltinExpr (CBuiltinThing NodeInfo -> CExpr)
-> (NodeInfo -> CBuiltinThing NodeInfo) -> NodeInfo -> CExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CExpr -> CDecl -> NodeInfo -> CBuiltinThing NodeInfo
forall a. CExpression a -> CDeclaration a -> a -> CBuiltinThing a
CBuiltinConvertVector CExpr
happy_var_3 CDecl
happy_var_5)}}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn100 CExpr
r))
happyReduce_382 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_382 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_382 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 94# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_382
happyReduction_382 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_382 happy_x_3 :: HappyAbsSyn
happy_x_3
happy_x_2 :: p
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [(Maybe CDecl, CExpr)]
happyOut101 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [(Maybe CDecl, CExpr)]
happy_var_1 ->
case HappyAbsSyn -> (Maybe CDecl, CExpr)
happyOut102 HappyAbsSyn
happy_x_3 of { happy_var_3 :: (Maybe CDecl, CExpr)
happy_var_3 ->
Reversed [(Maybe CDecl, CExpr)] -> HappyAbsSyn
happyIn101
(Reversed [(Maybe CDecl, CExpr)]
happy_var_1 Reversed [(Maybe CDecl, CExpr)]
-> (Maybe CDecl, CExpr) -> Reversed [(Maybe CDecl, CExpr)]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` (Maybe CDecl, CExpr)
happy_var_3
)}}
happyReduce_383 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_383 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_383 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 94# HappyAbsSyn -> HappyAbsSyn
happyReduction_383
happyReduction_383 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_383 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> (Maybe CDecl, CExpr)
happyOut102 HappyAbsSyn
happy_x_1 of { happy_var_1 :: (Maybe CDecl, CExpr)
happy_var_1 ->
Reversed [(Maybe CDecl, CExpr)] -> HappyAbsSyn
happyIn101
((Maybe CDecl, CExpr) -> Reversed [(Maybe CDecl, CExpr)]
forall a. a -> Reversed [a]
singleton (Maybe CDecl, CExpr)
happy_var_1
)}
happyReduce_384 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_384 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_384 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 95# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_384
happyReduction_384 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_384 happy_x_3 :: HappyAbsSyn
happy_x_3
happy_x_2 :: p
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CDecl
happyOut86 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CDecl
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut120 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
(Maybe CDecl, CExpr) -> HappyAbsSyn
happyIn102
((CDecl -> Maybe CDecl
forall k1. k1 -> Maybe k1
Just CDecl
happy_var_1, CExpr
happy_var_3)
)}}
happyReduce_385 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_385 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_385 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 95# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. HappyAbsSyn -> p -> p -> HappyAbsSyn
happyReduction_385
happyReduction_385 :: HappyAbsSyn -> p -> p -> HappyAbsSyn
happyReduction_385 happy_x_3 :: HappyAbsSyn
happy_x_3
happy_x_2 :: p
happy_x_2
happy_x_1 :: p
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut120 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
(Maybe CDecl, CExpr) -> HappyAbsSyn
happyIn102
((Maybe CDecl
forall k1. Maybe k1
Nothing, CExpr
happy_var_3)
)}
happyReduce_386 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_386 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_386 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 96# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_386
happyReduction_386 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_386 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (Reversed [CDesignator])
-> (Reversed [CDesignator] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Ident
happyOut131 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Ident
happy_var_1 ->
( Ident
-> (NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator]))
-> (NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator])
forall a b. (a -> b) -> a -> b
$ CDesignator -> Reversed [CDesignator]
forall a. a -> Reversed [a]
singleton (CDesignator -> Reversed [CDesignator])
-> (NodeInfo -> CDesignator) -> NodeInfo -> Reversed [CDesignator]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ident -> NodeInfo -> CDesignator
forall a. Ident -> a -> CPartDesignator a
CMemberDesig Ident
happy_var_1)})
) (\r :: Reversed [CDesignator]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDesignator] -> HappyAbsSyn
happyIn103 Reversed [CDesignator]
r))
happyReduce_387 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_387 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_387 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 96# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_387
happyReduction_387 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_387 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (Reversed [CDesignator])
-> (Reversed [CDesignator] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CDesignator]
happyOut103 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDesignator]
happy_var_1 ->
case HappyAbsSyn -> Ident
happyOut131 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Ident
happy_var_3 ->
( Ident
-> (NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_3 ((NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator]))
-> (NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator])
forall a b. (a -> b) -> a -> b
$ (Reversed [CDesignator]
happy_var_1 Reversed [CDesignator] -> CDesignator -> Reversed [CDesignator]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc`) (CDesignator -> Reversed [CDesignator])
-> (NodeInfo -> CDesignator) -> NodeInfo -> Reversed [CDesignator]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ident -> NodeInfo -> CDesignator
forall a. Ident -> a -> CPartDesignator a
CMemberDesig Ident
happy_var_3)}})
) (\r :: Reversed [CDesignator]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDesignator] -> HappyAbsSyn
happyIn103 Reversed [CDesignator]
r))
happyReduce_388 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_388 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_388 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 96# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_388
happyReduction_388 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_388 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (Reversed [CDesignator])
-> (Reversed [CDesignator] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Reversed [CDesignator]
happyOut103 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CDesignator]
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut122 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CExpr
-> (NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_3 ((NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator]))
-> (NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator])
forall a b. (a -> b) -> a -> b
$ (Reversed [CDesignator]
happy_var_1 Reversed [CDesignator] -> CDesignator -> Reversed [CDesignator]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc`) (CDesignator -> Reversed [CDesignator])
-> (NodeInfo -> CDesignator) -> NodeInfo -> Reversed [CDesignator]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CExpr -> NodeInfo -> CDesignator
forall a. CExpression a -> a -> CPartDesignator a
CArrDesig CExpr
happy_var_3)}})
) (\r :: Reversed [CDesignator]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDesignator] -> HappyAbsSyn
happyIn103 Reversed [CDesignator]
r))
happyReduce_389 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_389 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_389 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 97# HappyAbsSyn -> HappyAbsSyn
happyReduction_389
happyReduction_389 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_389 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut100 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
CExpr -> HappyAbsSyn
happyIn104
(CExpr
happy_var_1
)}
happyReduce_390 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_390 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_390 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_390
happyReduction_390 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_390 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut104 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut122 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> CExpr -> NodeInfo -> CExpr
forall a. CExpression a -> CExpression a -> a -> CExpression a
CIndex CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn104 CExpr
r))
happyReduce_391 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_391 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_391 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_391
happyReduction_391 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_391 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut104 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> [CExpr] -> NodeInfo -> CExpr
forall a. CExpression a -> [CExpression a] -> a -> CExpression a
CCall CExpr
happy_var_1 [])})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn104 CExpr
r))
happyReduce_392 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_392 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_392 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_392
happyReduction_392 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_392 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut104 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> Reversed [CExpr]
happyOut105 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Reversed [CExpr]
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> [CExpr] -> NodeInfo -> CExpr
forall a. CExpression a -> [CExpression a] -> a -> CExpression a
CCall CExpr
happy_var_1 (Reversed [CExpr] -> [CExpr]
forall a. Reversed [a] -> [a]
reverse Reversed [CExpr]
happy_var_3))}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn104 CExpr
r))
happyReduce_393 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_393 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_393 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_393
happyReduction_393 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_393 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut104 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> Ident
happyOut131 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Ident
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> Ident -> Bool -> NodeInfo -> CExpr
forall a. CExpression a -> Ident -> Bool -> a -> CExpression a
CMember CExpr
happy_var_1 Ident
happy_var_3 Bool
False)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn104 CExpr
r))
happyReduce_394 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_394 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_394 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_394
happyReduction_394 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_394 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut104 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> Ident
happyOut131 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Ident
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> Ident -> Bool -> NodeInfo -> CExpr
forall a. CExpression a -> Ident -> Bool -> a -> CExpression a
CMember CExpr
happy_var_1 Ident
happy_var_3 Bool
True)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn104 CExpr
r))
happyReduce_395 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_395 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_395 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_395
happyReduction_395 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_395 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut104 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CUnaryOp -> CExpr -> NodeInfo -> CExpr
forall a. CUnaryOp -> CExpression a -> a -> CExpression a
CUnary CUnaryOp
CPostIncOp CExpr
happy_var_1)})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn104 CExpr
r))
happyReduce_396 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_396 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_396 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_396
happyReduction_396 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_396 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut104 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CUnaryOp -> CExpr -> NodeInfo -> CExpr
forall a. CUnaryOp -> CExpression a -> a -> CExpression a
CUnary CUnaryOp
CPostDecOp CExpr
happy_var_1)})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn104 CExpr
r))
happyReduce_397 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_397 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_397 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_397
happyReduction_397 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_397 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CDecl
happyOut86 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDecl
happy_var_2 ->
case HappyAbsSyn -> Reversed CInitList
happyOut95 HappyAbsSyn
happy_x_5 of { happy_var_5 :: Reversed CInitList
happy_var_5 ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CDecl -> CInitList -> NodeInfo -> CExpr
forall a.
CDeclaration a -> CInitializerList a -> a -> CExpression a
CCompoundLit CDecl
happy_var_2 (Reversed CInitList -> CInitList
forall a. Reversed [a] -> [a]
reverse Reversed CInitList
happy_var_5))}}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn104 CExpr
r))
happyReduce_398 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_398 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_398 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 7# 97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_398
happyReduction_398 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_398 (happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CDecl
happyOut86 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDecl
happy_var_2 ->
case HappyAbsSyn -> Reversed CInitList
happyOut95 HappyAbsSyn
happy_x_5 of { happy_var_5 :: Reversed CInitList
happy_var_5 ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CDecl -> CInitList -> NodeInfo -> CExpr
forall a.
CDeclaration a -> CInitializerList a -> a -> CExpression a
CCompoundLit CDecl
happy_var_2 (Reversed CInitList -> CInitList
forall a. Reversed [a] -> [a]
reverse Reversed CInitList
happy_var_5))}}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn104 CExpr
r))
happyReduce_399 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_399 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_399 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 98# HappyAbsSyn -> HappyAbsSyn
happyReduction_399
happyReduction_399 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_399 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut120 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
Reversed [CExpr] -> HappyAbsSyn
happyIn105
(CExpr -> Reversed [CExpr]
forall a. a -> Reversed [a]
singleton CExpr
happy_var_1
)}
happyReduce_400 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_400 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_400 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 98# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_400
happyReduction_400 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_400 happy_x_3 :: HappyAbsSyn
happy_x_3
happy_x_2 :: p
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CExpr]
happyOut105 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CExpr]
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut120 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
Reversed [CExpr] -> HappyAbsSyn
happyIn105
(Reversed [CExpr]
happy_var_1 Reversed [CExpr] -> CExpr -> Reversed [CExpr]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CExpr
happy_var_3
)}}
happyReduce_401 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_401 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_401 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 99# HappyAbsSyn -> HappyAbsSyn
happyReduction_401
happyReduction_401 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_401 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut104 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
CExpr -> HappyAbsSyn
happyIn106
(CExpr
happy_var_1
)}
happyReduce_402 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_402 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_402 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 99# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_402
happyReduction_402 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_402 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut106 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CExpr
happy_var_2 ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CUnaryOp -> CExpr -> NodeInfo -> CExpr
forall a. CUnaryOp -> CExpression a -> a -> CExpression a
CUnary CUnaryOp
CPreIncOp CExpr
happy_var_2)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn106 CExpr
r))
happyReduce_403 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_403 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_403 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 99# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_403
happyReduction_403 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_403 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut106 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CExpr
happy_var_2 ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CUnaryOp -> CExpr -> NodeInfo -> CExpr
forall a. CUnaryOp -> CExpression a -> a -> CExpression a
CUnary CUnaryOp
CPreDecOp CExpr
happy_var_2)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn106 CExpr
r))
happyReduce_404 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_404 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_404 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 99# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_404
happyReduction_404 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_404 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: p
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut108 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CExpr
happy_var_2 ->
CExpr -> HappyAbsSyn
happyIn106
(CExpr
happy_var_2
)}
happyReduce_405 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_405 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_405 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 99# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_405
happyReduction_405 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_405 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Located CUnaryOp
happyOut107 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Located CUnaryOp
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut108 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CExpr
happy_var_2 ->
( Located CUnaryOp -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Located CUnaryOp
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CUnaryOp -> CExpr -> NodeInfo -> CExpr
forall a. CUnaryOp -> CExpression a -> a -> CExpression a
CUnary (Located CUnaryOp -> CUnaryOp
forall a. Located a -> a
unL Located CUnaryOp
happy_var_1) CExpr
happy_var_2)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn106 CExpr
r))
happyReduce_406 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_406 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_406 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 99# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_406
happyReduction_406 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_406 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut106 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CExpr
happy_var_2 ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CExpr
forall a. CExpression a -> a -> CExpression a
CSizeofExpr CExpr
happy_var_2)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn106 CExpr
r))
happyReduce_407 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_407 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_407 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 99# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_407
happyReduction_407 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_407 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CDecl
happyOut86 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDecl
happy_var_3 ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CDecl -> NodeInfo -> CExpr
forall a. CDeclaration a -> a -> CExpression a
CSizeofType CDecl
happy_var_3)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn106 CExpr
r))
happyReduce_408 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_408 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_408 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 99# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_408
happyReduction_408 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_408 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut106 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CExpr
happy_var_2 ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CExpr
forall a. CExpression a -> a -> CExpression a
CAlignofExpr CExpr
happy_var_2)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn106 CExpr
r))
happyReduce_409 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_409 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_409 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 99# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_409
happyReduction_409 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_409 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CDecl
happyOut86 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CDecl
happy_var_3 ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CDecl -> NodeInfo -> CExpr
forall a. CDeclaration a -> a -> CExpression a
CAlignofType CDecl
happy_var_3)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn106 CExpr
r))
happyReduce_410 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_410 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_410 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 99# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_410
happyReduction_410 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_410 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut106 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CExpr
happy_var_2 ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CExpr
forall a. CExpression a -> a -> CExpression a
CComplexReal CExpr
happy_var_2)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn106 CExpr
r))
happyReduce_411 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_411 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_411 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 99# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_411
happyReduction_411 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_411 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut106 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CExpr
happy_var_2 ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CExpr
forall a. CExpression a -> a -> CExpression a
CComplexImag CExpr
happy_var_2)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn106 CExpr
r))
happyReduce_412 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_412 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_412 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 99# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_412
happyReduction_412 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_412 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Ident
happyOut131 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Ident
happy_var_2 ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ Ident -> NodeInfo -> CExpr
forall a. Ident -> a -> CExpression a
CLabAddrExpr Ident
happy_var_2)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn106 CExpr
r))
happyReduce_413 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_413 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_413 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 100# HappyAbsSyn -> HappyAbsSyn
happyReduction_413
happyReduction_413 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_413 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
Located CUnaryOp -> HappyAbsSyn
happyIn107
(CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CAdrOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_414 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_414 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_414 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 100# HappyAbsSyn -> HappyAbsSyn
happyReduction_414
happyReduction_414 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_414 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
Located CUnaryOp -> HappyAbsSyn
happyIn107
(CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CIndOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_415 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_415 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_415 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 100# HappyAbsSyn -> HappyAbsSyn
happyReduction_415
happyReduction_415 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_415 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
Located CUnaryOp -> HappyAbsSyn
happyIn107
(CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CPlusOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_416 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_416 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_416 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 100# HappyAbsSyn -> HappyAbsSyn
happyReduction_416
happyReduction_416 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_416 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
Located CUnaryOp -> HappyAbsSyn
happyIn107
(CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CMinOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_417 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_417 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_417 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 100# HappyAbsSyn -> HappyAbsSyn
happyReduction_417
happyReduction_417 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_417 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
Located CUnaryOp -> HappyAbsSyn
happyIn107
(CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CCompOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_418 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_418 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_418 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 100# HappyAbsSyn -> HappyAbsSyn
happyReduction_418
happyReduction_418 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_418 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
Located CUnaryOp -> HappyAbsSyn
happyIn107
(CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CNegOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_419 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_419 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_419 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 101# HappyAbsSyn -> HappyAbsSyn
happyReduction_419
happyReduction_419 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_419 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut106 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
CExpr -> HappyAbsSyn
happyIn108
(CExpr
happy_var_1
)}
happyReduce_420 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_420 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_420 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 101# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_420
happyReduction_420 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_420 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> CDecl
happyOut86 HappyAbsSyn
happy_x_2 of { happy_var_2 :: CDecl
happy_var_2 ->
case HappyAbsSyn -> CExpr
happyOut108 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CExpr
happy_var_4 ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CDecl -> CExpr -> NodeInfo -> CExpr
forall a. CDeclaration a -> CExpression a -> a -> CExpression a
CCast CDecl
happy_var_2 CExpr
happy_var_4)}}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn108 CExpr
r))
happyReduce_421 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_421 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_421 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 102# HappyAbsSyn -> HappyAbsSyn
happyReduction_421
happyReduction_421 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_421 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut108 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
CExpr -> HappyAbsSyn
happyIn109
(CExpr
happy_var_1
)}
happyReduce_422 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_422 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_422 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 102# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_422
happyReduction_422 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_422 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut109 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut108 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CMulOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn109 CExpr
r))
happyReduce_423 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_423 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_423 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 102# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_423
happyReduction_423 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_423 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut109 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut108 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CDivOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn109 CExpr
r))
happyReduce_424 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_424 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_424 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 102# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_424
happyReduction_424 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_424 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut109 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut108 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CRmdOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn109 CExpr
r))
happyReduce_425 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_425 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_425 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 103# HappyAbsSyn -> HappyAbsSyn
happyReduction_425
happyReduction_425 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_425 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut109 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
CExpr -> HappyAbsSyn
happyIn110
(CExpr
happy_var_1
)}
happyReduce_426 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_426 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_426 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 103# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_426
happyReduction_426 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_426 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut110 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut109 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CAddOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn110 CExpr
r))
happyReduce_427 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_427 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_427 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 103# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_427
happyReduction_427 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_427 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut110 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut109 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CSubOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn110 CExpr
r))
happyReduce_428 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_428 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_428 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 104# HappyAbsSyn -> HappyAbsSyn
happyReduction_428
happyReduction_428 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_428 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut110 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
CExpr -> HappyAbsSyn
happyIn111
(CExpr
happy_var_1
)}
happyReduce_429 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_429 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_429 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 104# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_429
happyReduction_429 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_429 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut111 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut110 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CShlOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn111 CExpr
r))
happyReduce_430 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_430 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_430 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 104# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_430
happyReduction_430 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_430 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut111 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut110 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CShrOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn111 CExpr
r))
happyReduce_431 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_431 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_431 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 105# HappyAbsSyn -> HappyAbsSyn
happyReduction_431
happyReduction_431 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_431 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut111 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
CExpr -> HappyAbsSyn
happyIn112
(CExpr
happy_var_1
)}
happyReduce_432 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_432 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_432 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 105# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_432
happyReduction_432 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_432 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut112 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut111 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CLeOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn112 CExpr
r))
happyReduce_433 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_433 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_433 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 105# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_433
happyReduction_433 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_433 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut112 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut111 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CGrOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn112 CExpr
r))
happyReduce_434 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_434 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_434 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 105# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_434
happyReduction_434 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_434 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut112 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut111 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CLeqOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn112 CExpr
r))
happyReduce_435 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_435 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_435 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 105# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_435
happyReduction_435 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_435 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut112 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut111 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CGeqOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn112 CExpr
r))
happyReduce_436 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_436 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_436 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 106# HappyAbsSyn -> HappyAbsSyn
happyReduction_436
happyReduction_436 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_436 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut112 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
CExpr -> HappyAbsSyn
happyIn113
(CExpr
happy_var_1
)}
happyReduce_437 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_437 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_437 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 106# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_437
happyReduction_437 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_437 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut113 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut112 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CEqOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn113 CExpr
r))
happyReduce_438 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_438 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_438 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 106# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_438
happyReduction_438 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_438 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut113 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut112 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CNeqOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn113 CExpr
r))
happyReduce_439 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_439 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_439 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 107# HappyAbsSyn -> HappyAbsSyn
happyReduction_439
happyReduction_439 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_439 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut113 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
CExpr -> HappyAbsSyn
happyIn114
(CExpr
happy_var_1
)}
happyReduce_440 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_440 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_440 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 107# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_440
happyReduction_440 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_440 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut114 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut113 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CAndOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn114 CExpr
r))
happyReduce_441 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_441 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_441 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 108# HappyAbsSyn -> HappyAbsSyn
happyReduction_441
happyReduction_441 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_441 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut114 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
CExpr -> HappyAbsSyn
happyIn115
(CExpr
happy_var_1
)}
happyReduce_442 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_442 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_442 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 108# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_442
happyReduction_442 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_442 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut115 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut114 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CXorOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn115 CExpr
r))
happyReduce_443 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_443 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_443 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 109# HappyAbsSyn -> HappyAbsSyn
happyReduction_443
happyReduction_443 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_443 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut115 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
CExpr -> HappyAbsSyn
happyIn116
(CExpr
happy_var_1
)}
happyReduce_444 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_444 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_444 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 109# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_444
happyReduction_444 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_444 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut116 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut115 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
COrOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn116 CExpr
r))
happyReduce_445 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_445 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_445 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 110# HappyAbsSyn -> HappyAbsSyn
happyReduction_445
happyReduction_445 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_445 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut116 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
CExpr -> HappyAbsSyn
happyIn117
(CExpr
happy_var_1
)}
happyReduce_446 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_446 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_446 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 110# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_446
happyReduction_446 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_446 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut117 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut116 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CLndOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn117 CExpr
r))
happyReduce_447 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_447 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_447 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 111# HappyAbsSyn -> HappyAbsSyn
happyReduction_447
happyReduction_447 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_447 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut117 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
CExpr -> HappyAbsSyn
happyIn118
(CExpr
happy_var_1
)}
happyReduce_448 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_448 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_448 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 111# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_448
happyReduction_448 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_448 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut118 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut117 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CLorOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn118 CExpr
r))
happyReduce_449 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_449 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_449 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 112# HappyAbsSyn -> HappyAbsSyn
happyReduction_449
happyReduction_449 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_449 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut118 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
CExpr -> HappyAbsSyn
happyIn119
(CExpr
happy_var_1
)}
happyReduce_450 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_450 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_450 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 112# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_450
happyReduction_450 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_450 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut118 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut122 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
case HappyAbsSyn -> CExpr
happyOut119 HappyAbsSyn
happy_x_5 of { happy_var_5 :: CExpr
happy_var_5 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> Maybe CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CExpression a
-> Maybe (CExpression a) -> CExpression a -> a -> CExpression a
CCond CExpr
happy_var_1 (CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_3) CExpr
happy_var_5)}}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn119 CExpr
r))
happyReduce_451 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_451 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_451 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 112# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_451
happyReduction_451 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_451 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut118 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut119 HappyAbsSyn
happy_x_4 of { happy_var_4 :: CExpr
happy_var_4 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> Maybe CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CExpression a
-> Maybe (CExpression a) -> CExpression a -> a -> CExpression a
CCond CExpr
happy_var_1 Maybe CExpr
forall k1. Maybe k1
Nothing CExpr
happy_var_4)}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn119 CExpr
r))
happyReduce_452 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_452 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_452 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 113# HappyAbsSyn -> HappyAbsSyn
happyReduction_452
happyReduction_452 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_452 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut119 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
CExpr -> HappyAbsSyn
happyIn120
(CExpr
happy_var_1
)}
happyReduce_453 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_453 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_453 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 113# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_453
happyReduction_453 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_453 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut106 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> Located CAssignOp
happyOut121 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Located CAssignOp
happy_var_2 ->
case HappyAbsSyn -> CExpr
happyOut120 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CAssignOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CAssignOp -> CExpression a -> CExpression a -> a -> CExpression a
CAssign (Located CAssignOp -> CAssignOp
forall a. Located a -> a
unL Located CAssignOp
happy_var_2) CExpr
happy_var_1 CExpr
happy_var_3)}}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn120 CExpr
r))
happyReduce_454 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_454 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_454 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 114# HappyAbsSyn -> HappyAbsSyn
happyReduction_454
happyReduction_454 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_454 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
Located CAssignOp -> HappyAbsSyn
happyIn121
(CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CAssignOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_455 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_455 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_455 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 114# HappyAbsSyn -> HappyAbsSyn
happyReduction_455
happyReduction_455 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_455 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
Located CAssignOp -> HappyAbsSyn
happyIn121
(CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CMulAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_456 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_456 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_456 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 114# HappyAbsSyn -> HappyAbsSyn
happyReduction_456
happyReduction_456 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_456 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
Located CAssignOp -> HappyAbsSyn
happyIn121
(CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CDivAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_457 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_457 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_457 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 114# HappyAbsSyn -> HappyAbsSyn
happyReduction_457
happyReduction_457 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_457 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
Located CAssignOp -> HappyAbsSyn
happyIn121
(CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CRmdAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_458 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_458 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_458 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 114# HappyAbsSyn -> HappyAbsSyn
happyReduction_458
happyReduction_458 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_458 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
Located CAssignOp -> HappyAbsSyn
happyIn121
(CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CAddAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_459 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_459 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_459 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 114# HappyAbsSyn -> HappyAbsSyn
happyReduction_459
happyReduction_459 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_459 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
Located CAssignOp -> HappyAbsSyn
happyIn121
(CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CSubAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_460 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_460 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_460 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 114# HappyAbsSyn -> HappyAbsSyn
happyReduction_460
happyReduction_460 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_460 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
Located CAssignOp -> HappyAbsSyn
happyIn121
(CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CShlAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_461 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_461 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_461 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 114# HappyAbsSyn -> HappyAbsSyn
happyReduction_461
happyReduction_461 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_461 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
Located CAssignOp -> HappyAbsSyn
happyIn121
(CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CShrAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_462 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_462 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_462 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 114# HappyAbsSyn -> HappyAbsSyn
happyReduction_462
happyReduction_462 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_462 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
Located CAssignOp -> HappyAbsSyn
happyIn121
(CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CAndAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_463 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_463 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_463 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 114# HappyAbsSyn -> HappyAbsSyn
happyReduction_463
happyReduction_463 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_463 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
Located CAssignOp -> HappyAbsSyn
happyIn121
(CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CXorAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_464 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_464 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_464 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 114# HappyAbsSyn -> HappyAbsSyn
happyReduction_464
happyReduction_464 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_464 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
Located CAssignOp -> HappyAbsSyn
happyIn121
(CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
COrAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_465 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_465 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_465 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 115# HappyAbsSyn -> HappyAbsSyn
happyReduction_465
happyReduction_465 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_465 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut120 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
CExpr -> HappyAbsSyn
happyIn122
(CExpr
happy_var_1
)}
happyReduce_466 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_466 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_466 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 115# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_466
happyReduction_466 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_466 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CExpr
happyOut120 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
case HappyAbsSyn -> Reversed [CExpr]
happyOut123 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Reversed [CExpr]
happy_var_3 ->
( let es :: [CExpr]
es = Reversed [CExpr] -> [CExpr]
forall a. Reversed [a] -> [a]
reverse Reversed [CExpr]
happy_var_3 in [CExpr] -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CExpr]
es ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ [CExpr] -> NodeInfo -> CExpr
forall a. [CExpression a] -> a -> CExpression a
CComma (CExpr
happy_var_1CExpr -> [CExpr] -> [CExpr]
forall k1. k1 -> [k1] -> [k1]
:[CExpr]
es))}})
) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn122 CExpr
r))
happyReduce_467 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_467 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_467 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 116# HappyAbsSyn -> HappyAbsSyn
happyReduction_467
happyReduction_467 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_467 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut120 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
Reversed [CExpr] -> HappyAbsSyn
happyIn123
(CExpr -> Reversed [CExpr]
forall a. a -> Reversed [a]
singleton CExpr
happy_var_1
)}
happyReduce_468 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_468 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_468 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 116# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_468
happyReduction_468 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_468 happy_x_3 :: HappyAbsSyn
happy_x_3
happy_x_2 :: p
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CExpr]
happyOut123 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CExpr]
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut120 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
Reversed [CExpr] -> HappyAbsSyn
happyIn123
(Reversed [CExpr]
happy_var_1 Reversed [CExpr] -> CExpr -> Reversed [CExpr]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CExpr
happy_var_3
)}}
happyReduce_469 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_469 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_469 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 117# HappyAbsSyn
happyReduction_469
happyReduction_469 :: HappyAbsSyn
happyReduction_469 = Maybe CExpr -> HappyAbsSyn
happyIn124
(Maybe CExpr
forall k1. Maybe k1
Nothing
)
happyReduce_470 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_470 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_470 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 117# HappyAbsSyn -> HappyAbsSyn
happyReduction_470
happyReduction_470 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_470 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut122 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
Maybe CExpr -> HappyAbsSyn
happyIn124
(CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_1
)}
happyReduce_471 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_471 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_471 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 118# HappyAbsSyn
happyReduction_471
happyReduction_471 :: HappyAbsSyn
happyReduction_471 = Maybe CExpr -> HappyAbsSyn
happyIn125
(Maybe CExpr
forall k1. Maybe k1
Nothing
)
happyReduce_472 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_472 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_472 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 118# HappyAbsSyn -> HappyAbsSyn
happyReduction_472
happyReduction_472 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_472 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut120 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
Maybe CExpr -> HappyAbsSyn
happyIn125
(CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_1
)}
happyReduce_473 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_473 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_473 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 119# HappyAbsSyn -> HappyAbsSyn
happyReduction_473
happyReduction_473 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_473 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut119 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
CExpr -> HappyAbsSyn
happyIn126
(CExpr
happy_var_1
)}
happyReduce_474 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_474 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_474 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 120# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_474
happyReduction_474 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_474 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CConst -> (CConst -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CConst) -> P CConst
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CConst) -> P CConst)
-> (NodeInfo -> CConst) -> P CConst
forall a b. (a -> b) -> a -> b
$ case CToken
happy_var_1 of CTokILit _ i :: CInteger
i -> CInteger -> NodeInfo -> CConst
forall a. CInteger -> a -> CConstant a
CIntConst CInteger
i)})
) (\r :: CConst
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CConst -> HappyAbsSyn
happyIn127 CConst
r))
happyReduce_475 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_475 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_475 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 120# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_475
happyReduction_475 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_475 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CConst -> (CConst -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CConst) -> P CConst
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CConst) -> P CConst)
-> (NodeInfo -> CConst) -> P CConst
forall a b. (a -> b) -> a -> b
$ case CToken
happy_var_1 of CTokCLit _ c :: CChar
c -> CChar -> NodeInfo -> CConst
forall a. CChar -> a -> CConstant a
CCharConst CChar
c)})
) (\r :: CConst
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CConst -> HappyAbsSyn
happyIn127 CConst
r))
happyReduce_476 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_476 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_476 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 120# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_476
happyReduction_476 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_476 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CConst -> (CConst -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CConst) -> P CConst
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CConst) -> P CConst)
-> (NodeInfo -> CConst) -> P CConst
forall a b. (a -> b) -> a -> b
$ case CToken
happy_var_1 of CTokFLit _ f :: CFloat
f -> CFloat -> NodeInfo -> CConst
forall a. CFloat -> a -> CConstant a
CFloatConst CFloat
f)})
) (\r :: CConst
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CConst -> HappyAbsSyn
happyIn127 CConst
r))
happyReduce_477 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_477 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_477 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 121# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_477
happyReduction_477 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_477 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStrLit -> (CStrLit -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStrLit) -> P CStrLit
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStrLit) -> P CStrLit)
-> (NodeInfo -> CStrLit) -> P CStrLit
forall a b. (a -> b) -> a -> b
$ case CToken
happy_var_1 of CTokSLit _ s :: CString
s -> CString -> NodeInfo -> CStrLit
forall a. CString -> a -> CStringLiteral a
CStrLit CString
s)})
) (\r :: CStrLit
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStrLit -> HappyAbsSyn
happyIn128 CStrLit
r))
happyReduce_478 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_478 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_478 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 121# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_478
happyReduction_478 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_478 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P CStrLit -> (CStrLit -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
case HappyAbsSyn -> Reversed [CString]
happyOut129 HappyAbsSyn
happy_x_2 of { happy_var_2 :: Reversed [CString]
happy_var_2 ->
( CToken -> (NodeInfo -> CStrLit) -> P CStrLit
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStrLit) -> P CStrLit)
-> (NodeInfo -> CStrLit) -> P CStrLit
forall a b. (a -> b) -> a -> b
$ case CToken
happy_var_1 of CTokSLit _ s :: CString
s -> CString -> NodeInfo -> CStrLit
forall a. CString -> a -> CStringLiteral a
CStrLit ([CString] -> CString
concatCStrings (CString
s CString -> [CString] -> [CString]
forall k1. k1 -> [k1] -> [k1]
: Reversed [CString] -> [CString]
forall a. Reversed [a] -> [a]
reverse Reversed [CString]
happy_var_2)))}})
) (\r :: CStrLit
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStrLit -> HappyAbsSyn
happyIn128 CStrLit
r))
happyReduce_479 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_479 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_479 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 122# HappyAbsSyn -> HappyAbsSyn
happyReduction_479
happyReduction_479 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_479 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
Reversed [CString] -> HappyAbsSyn
happyIn129
(case CToken
happy_var_1 of CTokSLit _ s :: CString
s -> CString -> Reversed [CString]
forall a. a -> Reversed [a]
singleton CString
s
)}
happyReduce_480 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_480 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_480 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 122# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_480
happyReduction_480 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_480 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CString]
happyOut129 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CString]
happy_var_1 ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 ->
Reversed [CString] -> HappyAbsSyn
happyIn129
(case CToken
happy_var_2 of CTokSLit _ s :: CString
s -> Reversed [CString]
happy_var_1 Reversed [CString] -> CString -> Reversed [CString]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CString
s
)}}
happyReduce_481 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_481 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_481 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 123# HappyAbsSyn -> HappyAbsSyn
happyReduction_481
happyReduction_481 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_481 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokClangC _ (ClangCVersionTok happy_var_1 :: ClangCVersion
happy_var_1)) ->
ClangCVersion -> HappyAbsSyn
happyIn130
(ClangCVersion
happy_var_1
)}
happyReduce_482 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_482 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_482 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 124# HappyAbsSyn -> HappyAbsSyn
happyReduction_482
happyReduction_482 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_482 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent _ happy_var_1 :: Ident
happy_var_1) ->
Ident -> HappyAbsSyn
happyIn131
(Ident
happy_var_1
)}
happyReduce_483 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_483 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_483 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 124# HappyAbsSyn -> HappyAbsSyn
happyReduction_483
happyReduction_483 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_483 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokTyIdent _ happy_var_1 :: Ident
happy_var_1) ->
Ident -> HappyAbsSyn
happyIn131
(Ident
happy_var_1
)}
happyReduce_484 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_484 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_484 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 125# HappyAbsSyn
happyReduction_484
happyReduction_484 :: HappyAbsSyn
happyReduction_484 = [CAttr] -> HappyAbsSyn
happyIn132
([]
)
happyReduce_485 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_485 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_485 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 125# HappyAbsSyn -> HappyAbsSyn
happyReduction_485
happyReduction_485 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_485 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CAttr]
happy_var_1 ->
[CAttr] -> HappyAbsSyn
happyIn132
([CAttr]
happy_var_1
)}
happyReduce_486 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_486 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_486 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 126# HappyAbsSyn -> HappyAbsSyn
happyReduction_486
happyReduction_486 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_486 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> [CAttr]
happyOut134 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CAttr]
happy_var_1 ->
[CAttr] -> HappyAbsSyn
happyIn133
([CAttr]
happy_var_1
)}
happyReduce_487 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_487 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_487 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 126# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_487
happyReduction_487 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_487 happy_x_2 :: HappyAbsSyn
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> [CAttr]
happyOut133 HappyAbsSyn
happy_x_1 of { happy_var_1 :: [CAttr]
happy_var_1 ->
case HappyAbsSyn -> [CAttr]
happyOut134 HappyAbsSyn
happy_x_2 of { happy_var_2 :: [CAttr]
happy_var_2 ->
[CAttr] -> HappyAbsSyn
happyIn133
([CAttr]
happy_var_1 [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
happy_var_2
)}}
happyReduce_488 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_488 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_488 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 6# 127# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_488
happyReduction_488 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_488 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> Reversed [CAttr]
happyOut135 HappyAbsSyn
happy_x_4 of { happy_var_4 :: Reversed [CAttr]
happy_var_4 ->
[CAttr] -> HappyAbsSyn
happyIn134
(Reversed [CAttr] -> [CAttr]
forall a. Reversed [a] -> [a]
reverse Reversed [CAttr]
happy_var_4
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}
happyReduce_489 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_489 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_489 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 128# HappyAbsSyn -> HappyAbsSyn
happyReduction_489
happyReduction_489 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_489 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Maybe CAttr
happyOut136 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Maybe CAttr
happy_var_1 ->
Reversed [CAttr] -> HappyAbsSyn
happyIn135
(case Maybe CAttr
happy_var_1 of Nothing -> Reversed [CAttr]
forall a. Reversed [a]
empty; Just attr :: CAttr
attr -> CAttr -> Reversed [CAttr]
forall a. a -> Reversed [a]
singleton CAttr
attr
)}
happyReduce_490 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_490 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_490 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 128# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_490
happyReduction_490 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_490 happy_x_3 :: HappyAbsSyn
happy_x_3
happy_x_2 :: p
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CAttr]
happyOut135 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CAttr]
happy_var_1 ->
case HappyAbsSyn -> Maybe CAttr
happyOut136 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Maybe CAttr
happy_var_3 ->
Reversed [CAttr] -> HappyAbsSyn
happyIn135
(((Reversed [CAttr] -> Reversed [CAttr])
-> (CAttr -> Reversed [CAttr] -> Reversed [CAttr])
-> Maybe CAttr
-> Reversed [CAttr]
-> Reversed [CAttr]
forall b a. b -> (a -> b) -> Maybe a -> b
maybe Reversed [CAttr] -> Reversed [CAttr]
forall a. a -> a
id ((Reversed [CAttr] -> CAttr -> Reversed [CAttr])
-> CAttr -> Reversed [CAttr] -> Reversed [CAttr]
forall a b c. (a -> b -> c) -> b -> a -> c
flip Reversed [CAttr] -> CAttr -> Reversed [CAttr]
forall a. Reversed [a] -> a -> Reversed [a]
snoc) Maybe CAttr
happy_var_3) Reversed [CAttr]
happy_var_1
)}}
happyReduce_491 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_491 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_491 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 129# HappyAbsSyn
happyReduction_491
happyReduction_491 :: HappyAbsSyn
happyReduction_491 = Maybe CAttr -> HappyAbsSyn
happyIn136
(Maybe CAttr
forall k1. Maybe k1
Nothing
)
happyReduce_492 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_492 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_492 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 129# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_492
happyReduction_492 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_492 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (Maybe CAttr) -> (Maybe CAttr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent _ happy_var_1 :: Ident
happy_var_1) ->
( Ident -> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> Maybe CAttr) -> P (Maybe CAttr))
-> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall a b. (a -> b) -> a -> b
$ CAttr -> Maybe CAttr
forall k1. k1 -> Maybe k1
Just (CAttr -> Maybe CAttr)
-> (NodeInfo -> CAttr) -> NodeInfo -> Maybe CAttr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ident -> [CExpr] -> NodeInfo -> CAttr
forall a. Ident -> [CExpression a] -> a -> CAttribute a
CAttr Ident
happy_var_1 [])})
) (\r :: Maybe CAttr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Maybe CAttr -> HappyAbsSyn
happyIn136 Maybe CAttr
r))
happyReduce_493 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_493 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_493 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 129# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_493
happyReduction_493 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_493 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (Maybe CAttr) -> (Maybe CAttr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 ->
( CToken -> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> Maybe CAttr) -> P (Maybe CAttr))
-> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall a b. (a -> b) -> a -> b
$ CAttr -> Maybe CAttr
forall k1. k1 -> Maybe k1
Just (CAttr -> Maybe CAttr)
-> (NodeInfo -> CAttr) -> NodeInfo -> Maybe CAttr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ident -> [CExpr] -> NodeInfo -> CAttr
forall a. Ident -> [CExpression a] -> a -> CAttribute a
CAttr ([Char] -> Ident
internalIdent "const") [])})
) (\r :: Maybe CAttr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Maybe CAttr -> HappyAbsSyn
happyIn136 Maybe CAttr
r))
happyReduce_494 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_494 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_494 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 129# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_494
happyReduction_494 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_494 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (Maybe CAttr) -> (Maybe CAttr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent _ happy_var_1 :: Ident
happy_var_1) ->
case HappyAbsSyn -> Reversed [CExpr]
happyOut137 HappyAbsSyn
happy_x_3 of { happy_var_3 :: Reversed [CExpr]
happy_var_3 ->
( Ident -> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> Maybe CAttr) -> P (Maybe CAttr))
-> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall a b. (a -> b) -> a -> b
$ CAttr -> Maybe CAttr
forall k1. k1 -> Maybe k1
Just (CAttr -> Maybe CAttr)
-> (NodeInfo -> CAttr) -> NodeInfo -> Maybe CAttr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ident -> [CExpr] -> NodeInfo -> CAttr
forall a. Ident -> [CExpression a] -> a -> CAttribute a
CAttr Ident
happy_var_1 (Reversed [CExpr] -> [CExpr]
forall a. Reversed [a] -> [a]
reverse Reversed [CExpr]
happy_var_3))}})
) (\r :: Maybe CAttr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Maybe CAttr -> HappyAbsSyn
happyIn136 Maybe CAttr
r))
happyReduce_495 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_495 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_495 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 129# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_495
happyReduction_495 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_495 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
= P (Maybe CAttr) -> (Maybe CAttr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent _ happy_var_1 :: Ident
happy_var_1) ->
( Ident -> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> Maybe CAttr) -> P (Maybe CAttr))
-> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall a b. (a -> b) -> a -> b
$ CAttr -> Maybe CAttr
forall k1. k1 -> Maybe k1
Just (CAttr -> Maybe CAttr)
-> (NodeInfo -> CAttr) -> NodeInfo -> Maybe CAttr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ident -> [CExpr] -> NodeInfo -> CAttr
forall a. Ident -> [CExpression a] -> a -> CAttribute a
CAttr Ident
happy_var_1 [])})
) (\r :: Maybe CAttr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Maybe CAttr -> HappyAbsSyn
happyIn136 Maybe CAttr
r))
happyReduce_496 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_496 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_496 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 130# HappyAbsSyn -> HappyAbsSyn
happyReduction_496
happyReduction_496 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_496 happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CExpr
happyOut126 HappyAbsSyn
happy_x_1 of { happy_var_1 :: CExpr
happy_var_1 ->
Reversed [CExpr] -> HappyAbsSyn
happyIn137
(CExpr -> Reversed [CExpr]
forall a. a -> Reversed [a]
singleton CExpr
happy_var_1
)}
happyReduce_497 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_497 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_497 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 130# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p p. p -> p -> p -> HappyAbsSyn
happyReduction_497
happyReduction_497 :: p -> p -> p -> HappyAbsSyn
happyReduction_497 happy_x_3 :: p
happy_x_3
happy_x_2 :: p
happy_x_2
happy_x_1 :: p
happy_x_1
= Reversed [CExpr] -> HappyAbsSyn
happyIn137
([CExpr] -> Reversed [CExpr]
forall a. a -> Reversed a
Reversed []
)
happyReduce_498 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_498 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_498 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 130# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p p. p -> p -> p -> HappyAbsSyn
happyReduction_498
happyReduction_498 :: p -> p -> p -> HappyAbsSyn
happyReduction_498 happy_x_3 :: p
happy_x_3
happy_x_2 :: p
happy_x_2
happy_x_1 :: p
happy_x_1
= Reversed [CExpr] -> HappyAbsSyn
happyIn137
([CExpr] -> Reversed [CExpr]
forall a. a -> Reversed a
Reversed []
)
happyReduce_499 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_499 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_499 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 130# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_499
happyReduction_499 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_499 happy_x_3 :: HappyAbsSyn
happy_x_3
happy_x_2 :: p
happy_x_2
happy_x_1 :: HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Reversed [CExpr]
happyOut137 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CExpr]
happy_var_1 ->
case HappyAbsSyn -> CExpr
happyOut126 HappyAbsSyn
happy_x_3 of { happy_var_3 :: CExpr
happy_var_3 ->
Reversed [CExpr] -> HappyAbsSyn
happyIn137
(Reversed [CExpr]
happy_var_1 Reversed [CExpr] -> CExpr -> Reversed [CExpr]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CExpr
happy_var_3
)}}
happyReduce_500 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_500 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_500 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 5# 130# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_500
happyReduction_500 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_500 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> Reversed [CExpr]
happyOut137 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CExpr]
happy_var_1 ->
Reversed [CExpr] -> HappyAbsSyn
happyIn137
(Reversed [CExpr]
happy_var_1
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}
happyReduce_501 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_501 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_501 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 5# 130# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_501
happyReduction_501 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_501 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
happyRest :: HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> Reversed [CExpr]
happyOut137 HappyAbsSyn
happy_x_1 of { happy_var_1 :: Reversed [CExpr]
happy_var_1 ->
Reversed [CExpr] -> HappyAbsSyn
happyIn137
(Reversed [CExpr]
happy_var_1
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}
happyNewToken :: Int# -> Happy_IntList -> HappyStk HappyAbsSyn -> P HappyAbsSyn
happyNewToken action :: Int#
action sts :: Happy_IntList
sts stk :: HappyStk HappyAbsSyn
stk
= (CToken -> P HappyAbsSyn) -> P HappyAbsSyn
forall a. (CToken -> P a) -> P a
lexC(\tk :: CToken
tk ->
let cont :: Int# -> P HappyAbsSyn
cont i :: Int#
i = Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyDoAction Int#
i CToken
tk Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk in
case CToken
tk of {
CTokEof -> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyDoAction 123# CToken
tk Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk;
CTokLParen _ -> Int# -> P HappyAbsSyn
cont 1#;
CTokRParen _ -> Int# -> P HappyAbsSyn
cont 2#;
CTokLBracket _ -> Int# -> P HappyAbsSyn
cont 3#;
CTokRBracket _ -> Int# -> P HappyAbsSyn
cont 4#;
CTokArrow _ -> Int# -> P HappyAbsSyn
cont 5#;
CTokDot _ -> Int# -> P HappyAbsSyn
cont 6#;
CTokExclam _ -> Int# -> P HappyAbsSyn
cont 7#;
CTokTilde _ -> Int# -> P HappyAbsSyn
cont 8#;
CTokInc _ -> Int# -> P HappyAbsSyn
cont 9#;
CTokDec _ -> Int# -> P HappyAbsSyn
cont 10#;
CTokPlus _ -> Int# -> P HappyAbsSyn
cont 11#;
CTokMinus _ -> Int# -> P HappyAbsSyn
cont 12#;
CTokStar _ -> Int# -> P HappyAbsSyn
cont 13#;
CTokSlash _ -> Int# -> P HappyAbsSyn
cont 14#;
CTokPercent _ -> Int# -> P HappyAbsSyn
cont 15#;
CTokAmper _ -> Int# -> P HappyAbsSyn
cont 16#;
CTokShiftL _ -> Int# -> P HappyAbsSyn
cont 17#;
CTokShiftR _ -> Int# -> P HappyAbsSyn
cont 18#;
CTokLess _ -> Int# -> P HappyAbsSyn
cont 19#;
CTokLessEq _ -> Int# -> P HappyAbsSyn
cont 20#;
CTokHigh _ -> Int# -> P HappyAbsSyn
cont 21#;
CTokHighEq _ -> Int# -> P HappyAbsSyn
cont 22#;
CTokEqual _ -> Int# -> P HappyAbsSyn
cont 23#;
CTokUnequal _ -> Int# -> P HappyAbsSyn
cont 24#;
CTokHat _ -> Int# -> P HappyAbsSyn
cont 25#;
CTokBar _ -> Int# -> P HappyAbsSyn
cont 26#;
CTokAnd _ -> Int# -> P HappyAbsSyn
cont 27#;
CTokOr _ -> Int# -> P HappyAbsSyn
cont 28#;
CTokQuest _ -> Int# -> P HappyAbsSyn
cont 29#;
CTokColon _ -> Int# -> P HappyAbsSyn
cont 30#;
CTokAssign _ -> Int# -> P HappyAbsSyn
cont 31#;
CTokPlusAss _ -> Int# -> P HappyAbsSyn
cont 32#;
CTokMinusAss _ -> Int# -> P HappyAbsSyn
cont 33#;
CTokStarAss _ -> Int# -> P HappyAbsSyn
cont 34#;
CTokSlashAss _ -> Int# -> P HappyAbsSyn
cont 35#;
CTokPercAss _ -> Int# -> P HappyAbsSyn
cont 36#;
CTokAmpAss _ -> Int# -> P HappyAbsSyn
cont 37#;
CTokHatAss _ -> Int# -> P HappyAbsSyn
cont 38#;
CTokBarAss _ -> Int# -> P HappyAbsSyn
cont 39#;
CTokSLAss _ -> Int# -> P HappyAbsSyn
cont 40#;
CTokSRAss _ -> Int# -> P HappyAbsSyn
cont 41#;
CTokComma _ -> Int# -> P HappyAbsSyn
cont 42#;
CTokSemic _ -> Int# -> P HappyAbsSyn
cont 43#;
CTokLBrace _ -> Int# -> P HappyAbsSyn
cont 44#;
CTokRBrace _ -> Int# -> P HappyAbsSyn
cont 45#;
CTokEllipsis _ -> Int# -> P HappyAbsSyn
cont 46#;
CTokAlignof _ -> Int# -> P HappyAbsSyn
cont 47#;
CTokAlignas _ -> Int# -> P HappyAbsSyn
cont 48#;
CTokAtomic _ -> Int# -> P HappyAbsSyn
cont 49#;
CTokAsm _ -> Int# -> P HappyAbsSyn
cont 50#;
CTokAuto _ -> Int# -> P HappyAbsSyn
cont 51#;
CTokBreak _ -> Int# -> P HappyAbsSyn
cont 52#;
CTokBool _ -> Int# -> P HappyAbsSyn
cont 53#;
CTokCase _ -> Int# -> P HappyAbsSyn
cont 54#;
CTokChar _ -> Int# -> P HappyAbsSyn
cont 55#;
CTokConst _ -> Int# -> P HappyAbsSyn
cont 56#;
CTokContinue _ -> Int# -> P HappyAbsSyn
cont 57#;
CTokComplex _ -> Int# -> P HappyAbsSyn
cont 58#;
CTokDefault _ -> Int# -> P HappyAbsSyn
cont 59#;
CTokDo _ -> Int# -> P HappyAbsSyn
cont 60#;
CTokDouble _ -> Int# -> P HappyAbsSyn
cont 61#;
CTokElse _ -> Int# -> P HappyAbsSyn
cont 62#;
CTokEnum _ -> Int# -> P HappyAbsSyn
cont 63#;
CTokExtern _ -> Int# -> P HappyAbsSyn
cont 64#;
CTokFloat _ -> Int# -> P HappyAbsSyn
cont 65#;
CTokFloatN 32 False _ -> Int# -> P HappyAbsSyn
cont 66#;
CTokFloatN 32 True _ -> Int# -> P HappyAbsSyn
cont 67#;
CTokFloatN 64 False _ -> Int# -> P HappyAbsSyn
cont 68#;
CTokFloatN 64 True _ -> Int# -> P HappyAbsSyn
cont 69#;
CTokFloatN 128 False _ -> Int# -> P HappyAbsSyn
cont 70#;
CTokFloatN 128 True _ -> Int# -> P HappyAbsSyn
cont 71#;
CTokFloatN 128 False _ -> Int# -> P HappyAbsSyn
cont 72#;
CTokFor _ -> Int# -> P HappyAbsSyn
cont 73#;
CTokGeneric _ -> Int# -> P HappyAbsSyn
cont 74#;
CTokGoto _ -> Int# -> P HappyAbsSyn
cont 75#;
CTokIf _ -> Int# -> P HappyAbsSyn
cont 76#;
CTokInline _ -> Int# -> P HappyAbsSyn
cont 77#;
CTokInt _ -> Int# -> P HappyAbsSyn
cont 78#;
CTokInt128 _ -> Int# -> P HappyAbsSyn
cont 79#;
CTokLong _ -> Int# -> P HappyAbsSyn
cont 80#;
CTokLabel _ -> Int# -> P HappyAbsSyn
cont 81#;
CTokNoreturn _ -> Int# -> P HappyAbsSyn
cont 82#;
CTokNullable _ -> Int# -> P HappyAbsSyn
cont 83#;
CTokNonnull _ -> Int# -> P HappyAbsSyn
cont 84#;
CTokRegister _ -> Int# -> P HappyAbsSyn
cont 85#;
CTokRestrict _ -> Int# -> P HappyAbsSyn
cont 86#;
CTokReturn _ -> Int# -> P HappyAbsSyn
cont 87#;
CTokShort _ -> Int# -> P HappyAbsSyn
cont 88#;
CTokSigned _ -> Int# -> P HappyAbsSyn
cont 89#;
CTokSizeof _ -> Int# -> P HappyAbsSyn
cont 90#;
CTokStatic _ -> Int# -> P HappyAbsSyn
cont 91#;
CTokStaticAssert _ -> Int# -> P HappyAbsSyn
cont 92#;
CTokStruct _ -> Int# -> P HappyAbsSyn
cont 93#;
CTokSwitch _ -> Int# -> P HappyAbsSyn
cont 94#;
CTokTypedef _ -> Int# -> P HappyAbsSyn
cont 95#;
CTokTypeof _ -> Int# -> P HappyAbsSyn
cont 96#;
CTokThread _ -> Int# -> P HappyAbsSyn
cont 97#;
CTokUnion _ -> Int# -> P HappyAbsSyn
cont 98#;
CTokUnsigned _ -> Int# -> P HappyAbsSyn
cont 99#;
CTokVoid _ -> Int# -> P HappyAbsSyn
cont 100#;
CTokVolatile _ -> Int# -> P HappyAbsSyn
cont 101#;
CTokWhile _ -> Int# -> P HappyAbsSyn
cont 102#;
CTokCLit _ _ -> Int# -> P HappyAbsSyn
cont 103#;
CTokILit _ _ -> Int# -> P HappyAbsSyn
cont 104#;
CTokFLit _ _ -> Int# -> P HappyAbsSyn
cont 105#;
CTokSLit _ _ -> Int# -> P HappyAbsSyn
cont 106#;
CTokIdent _ happy_dollar_dollar :: Ident
happy_dollar_dollar -> Int# -> P HappyAbsSyn
cont 107#;
CTokTyIdent _ happy_dollar_dollar :: Ident
happy_dollar_dollar -> Int# -> P HappyAbsSyn
cont 108#;
CTokGnuC GnuCAttrTok _ -> Int# -> P HappyAbsSyn
cont 109#;
CTokGnuC GnuCExtTok _ -> Int# -> P HappyAbsSyn
cont 110#;
CTokGnuC GnuCComplexReal _ -> Int# -> P HappyAbsSyn
cont 111#;
CTokGnuC GnuCComplexImag _ -> Int# -> P HappyAbsSyn
cont 112#;
CTokGnuC GnuCVaArg _ -> Int# -> P HappyAbsSyn
cont 113#;
CTokGnuC GnuCOffsetof _ -> Int# -> P HappyAbsSyn
cont 114#;
CTokGnuC GnuCTyCompat _ -> Int# -> P HappyAbsSyn
cont 115#;
CTokClangC _ ClangBuiltinConvertVector -> Int# -> P HappyAbsSyn
cont 116#;
CTokClangC _ (ClangCVersionTok happy_dollar_dollar :: ClangCVersion
happy_dollar_dollar) -> Int# -> P HappyAbsSyn
cont 117#;
CTokClKernel _ -> Int# -> P HappyAbsSyn
cont 118#;
CTokClRdOnly _ -> Int# -> P HappyAbsSyn
cont 119#;
CTokClWrOnly _ -> Int# -> P HappyAbsSyn
cont 120#;
CTokClGlobal _ -> Int# -> P HappyAbsSyn
cont 121#;
CTokClLocal _ -> Int# -> P HappyAbsSyn
cont 122#;
_ -> (CToken, [[Char]]) -> P HappyAbsSyn
forall a. (CToken, [[Char]]) -> P a
happyError' (CToken
tk, [])
})
happyError_ :: [[Char]] -> Int# -> CToken -> P a
happyError_ explist :: [[Char]]
explist 123# tk :: CToken
tk = (CToken, [[Char]]) -> P a
forall a. (CToken, [[Char]]) -> P a
happyError' (CToken
tk, [[Char]]
explist)
happyError_ explist :: [[Char]]
explist _ tk :: CToken
tk = (CToken, [[Char]]) -> P a
forall a. (CToken, [[Char]]) -> P a
happyError' (CToken
tk, [[Char]]
explist)
happyThen :: () => P a -> (a -> P b) -> P b
happyThen :: P a -> (a -> P b) -> P b
happyThen = P a -> (a -> P b) -> P b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
happyReturn :: () => a -> P a
happyReturn :: a -> P a
happyReturn = (a -> P a
forall (m :: * -> *) a. Monad m => a -> m a
return)
happyParse :: () => Happy_GHC_Exts.Int# -> P (HappyAbsSyn )
happyNewToken :: () => Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyDoAction :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduceArr :: () => Happy_Data_Array.Array Int (Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ))
happyThen1 :: () => P a -> (a -> P b) -> P b
happyThen1 :: P a -> (a -> P b) -> P b
happyThen1 = P a -> (a -> P b) -> P b
forall a b. P a -> (a -> P b) -> P b
happyThen
happyReturn1 :: () => a -> P a
happyReturn1 :: a -> P a
happyReturn1 = a -> P a
forall a. a -> P a
happyReturn
happyError' :: () => ((CToken), [String]) -> P a
happyError' :: (CToken, [[Char]]) -> P a
happyError' tk :: (CToken, [[Char]])
tk = (\(tokens :: CToken
tokens, explist :: [[Char]]
explist) -> P a
forall a. P a
happyError) (CToken, [[Char]])
tk
translation_unit :: P CTranslUnit
translation_unit = P CTranslUnit
happySomeParser where
happySomeParser :: P CTranslUnit
happySomeParser = P HappyAbsSyn -> (HappyAbsSyn -> P CTranslUnit) -> P CTranslUnit
forall a b. P a -> (a -> P b) -> P b
happyThen (Int# -> P HappyAbsSyn
happyParse 0#) (\x :: HappyAbsSyn
x -> CTranslUnit -> P CTranslUnit
forall a. a -> P a
happyReturn (HappyAbsSyn -> CTranslUnit
happyOut7 HappyAbsSyn
x))
external_declaration :: P CExtDecl
external_declaration = P CExtDecl
happySomeParser where
happySomeParser :: P CExtDecl
happySomeParser = P HappyAbsSyn -> (HappyAbsSyn -> P CExtDecl) -> P CExtDecl
forall a b. P a -> (a -> P b) -> P b
happyThen (Int# -> P HappyAbsSyn
happyParse 1#) (\x :: HappyAbsSyn
x -> CExtDecl -> P CExtDecl
forall a. a -> P a
happyReturn (HappyAbsSyn -> CExtDecl
happyOut9 HappyAbsSyn
x))
statement :: P CStat
statement = P CStat
happySomeParser where
happySomeParser :: P CStat
happySomeParser = P HappyAbsSyn -> (HappyAbsSyn -> P CStat) -> P CStat
forall a b. P a -> (a -> P b) -> P b
happyThen (Int# -> P HappyAbsSyn
happyParse 2#) (\x :: HappyAbsSyn
x -> CStat -> P CStat
forall a. a -> P a
happyReturn (HappyAbsSyn -> CStat
happyOut12 HappyAbsSyn
x))
expression :: P CExpr
expression = P CExpr
happySomeParser where
happySomeParser :: P CExpr
happySomeParser = P HappyAbsSyn -> (HappyAbsSyn -> P CExpr) -> P CExpr
forall a b. P a -> (a -> P b) -> P b
happyThen (Int# -> P HappyAbsSyn
happyParse 3#) (\x :: HappyAbsSyn
x -> CExpr -> P CExpr
forall a. a -> P a
happyReturn (HappyAbsSyn -> CExpr
happyOut122 HappyAbsSyn
x))
happySeq :: a -> b -> b
happySeq = a -> b -> b
forall a b. a -> b -> b
happyDontSeq
reverseList :: [a] -> Reversed [a]
reverseList :: [a] -> Reversed [a]
reverseList = [a] -> Reversed [a]
forall a. a -> Reversed a
Reversed ([a] -> Reversed [a]) -> ([a] -> [a]) -> [a] -> Reversed [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [a] -> [a]
forall a. [a] -> [a]
List.reverse
data Located a = L !a !Position
unL :: Located a -> a
unL :: Located a -> a
unL (L a :: a
a pos :: Position
pos) = a
a
instance Pos (Located a) where
posOf :: Located a -> Position
posOf (L _ pos :: Position
pos) = Position
pos
{-# INLINE withNodeInfo #-}
withNodeInfo :: Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo :: node -> (NodeInfo -> a) -> P a
withNodeInfo node :: node
node mkAttrNode :: NodeInfo -> a
mkAttrNode = do
Name
name <- P Name
getNewName
CToken
lastTok <- P CToken
getSavedToken
let firstPos :: Position
firstPos = node -> Position
forall a. Pos a => a -> Position
posOf node
node
let attrs :: NodeInfo
attrs = Position -> PosLength -> Name -> NodeInfo
mkNodeInfo' Position
firstPos (CToken -> PosLength
posLenOfTok (CToken -> PosLength) -> CToken -> PosLength
forall a b. (a -> b) -> a -> b
$! CToken
lastTok) Name
name
NodeInfo
attrs NodeInfo -> P a -> P a
forall a b. a -> b -> b
`seq` a -> P a
forall (m :: * -> *) a. Monad m => a -> m a
return (NodeInfo -> a
mkAttrNode NodeInfo
attrs)
{-# INLINE withLength #-}
withLength :: NodeInfo -> (NodeInfo -> a) -> P a
withLength :: NodeInfo -> (NodeInfo -> a) -> P a
withLength nodeinfo :: NodeInfo
nodeinfo mkAttrNode :: NodeInfo -> a
mkAttrNode = do
CToken
lastTok <- P CToken
getSavedToken
let firstPos :: Position
firstPos = NodeInfo -> Position
posOfNode NodeInfo
nodeinfo
let attrs :: NodeInfo
attrs = Position -> PosLength -> Name -> NodeInfo
mkNodeInfo' Position
firstPos (CToken -> PosLength
posLenOfTok (CToken -> PosLength) -> CToken -> PosLength
forall a b. (a -> b) -> a -> b
$! CToken
lastTok)
(Name -> (Name -> Name) -> Maybe Name -> Name
forall b a. b -> (a -> b) -> Maybe a -> b
maybe ([Char] -> Name
forall a. HasCallStack => [Char] -> a
error "nameOfNode") Name -> Name
forall a. a -> a
id (NodeInfo -> Maybe Name
nameOfNode NodeInfo
nodeinfo))
NodeInfo
attrs NodeInfo -> P a -> P a
forall a b. a -> b -> b
`seq` a -> P a
forall (m :: * -> *) a. Monad m => a -> m a
return (NodeInfo -> a
mkAttrNode NodeInfo
attrs)
data CDeclrR = CDeclrR (Maybe Ident) (Reversed [CDerivedDeclr]) (Maybe CStrLit) [CAttr] NodeInfo
reverseDeclr :: CDeclrR -> CDeclr
reverseDeclr :: CDeclrR -> CDeclr
reverseDeclr (CDeclrR ide :: Maybe Ident
ide reversedDDs :: Reversed [CDerivedDeclarator NodeInfo]
reversedDDs asmname :: Maybe CStrLit
asmname cattrs :: [CAttr]
cattrs at :: NodeInfo
at)
= Maybe Ident
-> [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclr
forall a.
Maybe Ident
-> [CDerivedDeclarator a]
-> Maybe (CStringLiteral a)
-> [CAttribute a]
-> a
-> CDeclarator a
CDeclr Maybe Ident
ide (Reversed [CDerivedDeclarator NodeInfo]
-> [CDerivedDeclarator NodeInfo]
forall a. Reversed [a] -> [a]
reverse Reversed [CDerivedDeclarator NodeInfo]
reversedDDs) Maybe CStrLit
asmname [CAttr]
cattrs NodeInfo
at
instance CNode (CDeclrR) where
nodeInfo :: CDeclrR -> NodeInfo
nodeInfo (CDeclrR _ _ _ _ n :: NodeInfo
n) = NodeInfo
n
instance Pos (CDeclrR) where
posOf :: CDeclrR -> Position
posOf (CDeclrR _ _ _ _ n :: NodeInfo
n) = NodeInfo -> Position
forall a. Pos a => a -> Position
posOf NodeInfo
n
{-# INLINE withAttribute #-}
withAttribute :: Pos node => node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute :: node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute node :: node
node cattrs :: [CAttr]
cattrs mkDeclrNode :: NodeInfo -> CDeclrR
mkDeclrNode = do
Name
name <- P Name
getNewName
let attrs :: NodeInfo
attrs = Position -> Name -> NodeInfo
mkNodeInfo (node -> Position
forall a. Pos a => a -> Position
posOf node
node) Name
name
let newDeclr :: CDeclrR
newDeclr = [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
cattrs (CDeclrR -> CDeclrR) -> CDeclrR -> CDeclrR
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CDeclrR
mkDeclrNode NodeInfo
attrs
NodeInfo
attrs NodeInfo -> P CDeclrR -> P CDeclrR
forall a b. a -> b -> b
`seq` CDeclrR
newDeclr CDeclrR -> P CDeclrR -> P CDeclrR
forall a b. a -> b -> b
`seq` CDeclrR -> P CDeclrR
forall (m :: * -> *) a. Monad m => a -> m a
return CDeclrR
newDeclr
{-# INLINE withAttributePF #-}
withAttributePF :: Pos node => node -> [CAttr] -> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
withAttributePF :: node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF node :: node
node cattrs :: [CAttr]
cattrs mkDeclrCtor :: NodeInfo -> CDeclrR -> CDeclrR
mkDeclrCtor = do
Name
name <- P Name
getNewName
let attrs :: NodeInfo
attrs = Position -> Name -> NodeInfo
mkNodeInfo (node -> Position
forall a. Pos a => a -> Position
posOf node
node) Name
name
let newDeclr :: CDeclrR -> CDeclrR
newDeclr = [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
cattrs (CDeclrR -> CDeclrR) -> (CDeclrR -> CDeclrR) -> CDeclrR -> CDeclrR
forall b c a. (b -> c) -> (a -> b) -> a -> c
. NodeInfo -> CDeclrR -> CDeclrR
mkDeclrCtor NodeInfo
attrs
NodeInfo
attrs NodeInfo -> P (CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. a -> b -> b
`seq` CDeclrR -> CDeclrR
newDeclr (CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. a -> b -> b
`seq` (CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall (m :: * -> *) a. Monad m => a -> m a
return CDeclrR -> CDeclrR
newDeclr
appendObjAttrs :: [CAttr] -> CDeclr -> CDeclr
appendObjAttrs :: [CAttr] -> CDeclr -> CDeclr
appendObjAttrs newAttrs :: [CAttr]
newAttrs (CDeclr ident :: Maybe Ident
ident indirections :: [CDerivedDeclarator NodeInfo]
indirections asmname :: Maybe CStrLit
asmname cAttrs :: [CAttr]
cAttrs at :: NodeInfo
at)
= Maybe Ident
-> [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclr
forall a.
Maybe Ident
-> [CDerivedDeclarator a]
-> Maybe (CStringLiteral a)
-> [CAttribute a]
-> a
-> CDeclarator a
CDeclr Maybe Ident
ident [CDerivedDeclarator NodeInfo]
indirections Maybe CStrLit
asmname ([CAttr]
cAttrs [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
newAttrs) NodeInfo
at
appendObjAttrsR :: [CAttr] -> CDeclrR -> CDeclrR
appendObjAttrsR :: [CAttr] -> CDeclrR -> CDeclrR
appendObjAttrsR newAttrs :: [CAttr]
newAttrs (CDeclrR ident :: Maybe Ident
ident indirections :: Reversed [CDerivedDeclarator NodeInfo]
indirections asmname :: Maybe CStrLit
asmname cAttrs :: [CAttr]
cAttrs at :: NodeInfo
at)
= Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
ident Reversed [CDerivedDeclarator NodeInfo]
indirections Maybe CStrLit
asmname ([CAttr]
cAttrs [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
newAttrs) NodeInfo
at
setAsmName :: Maybe CStrLit -> CDeclrR -> P CDeclrR
setAsmName :: Maybe CStrLit -> CDeclrR -> P CDeclrR
setAsmName mAsmName :: Maybe CStrLit
mAsmName (CDeclrR ident :: Maybe Ident
ident indirections :: Reversed [CDerivedDeclarator NodeInfo]
indirections oldName :: Maybe CStrLit
oldName cattrs :: [CAttr]
cattrs at :: NodeInfo
at) =
case Maybe CStrLit
-> Maybe CStrLit -> Either (CStrLit, CStrLit) (Maybe CStrLit)
forall b. Maybe b -> Maybe b -> Either (b, b) (Maybe b)
combineName Maybe CStrLit
mAsmName Maybe CStrLit
oldName of
Left (n1 :: CStrLit
n1,n2 :: CStrLit
n2) -> Position -> [[Char]] -> P CDeclrR
forall a. Position -> [[Char]] -> P a
failP (CStrLit -> Position
forall a. Pos a => a -> Position
posOf CStrLit
n2) ["Duplicate assembler name: ",CStrLit -> [Char]
forall a. CStringLiteral a -> [Char]
showName CStrLit
n1,CStrLit -> [Char]
forall a. CStringLiteral a -> [Char]
showName CStrLit
n2]
Right newName :: Maybe CStrLit
newName -> CDeclrR -> P CDeclrR
forall (m :: * -> *) a. Monad m => a -> m a
return (CDeclrR -> P CDeclrR) -> CDeclrR -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
ident Reversed [CDerivedDeclarator NodeInfo]
indirections Maybe CStrLit
newName [CAttr]
cattrs NodeInfo
at
where
combineName :: Maybe b -> Maybe b -> Either (b, b) (Maybe b)
combineName Nothing Nothing = Maybe b -> Either (b, b) (Maybe b)
forall a b. b -> Either a b
Right Maybe b
forall k1. Maybe k1
Nothing
combineName Nothing oldname :: Maybe b
oldname@(Just _) = Maybe b -> Either (b, b) (Maybe b)
forall a b. b -> Either a b
Right Maybe b
oldname
combineName newname :: Maybe b
newname@(Just _) Nothing = Maybe b -> Either (b, b) (Maybe b)
forall a b. b -> Either a b
Right Maybe b
newname
combineName (Just n1 :: b
n1) (Just n2 :: b
n2) = (b, b) -> Either (b, b) (Maybe b)
forall a b. a -> Either a b
Left (b
n1,b
n2)
showName :: CStringLiteral a -> [Char]
showName (CStrLit cstr :: CString
cstr _) = CString -> [Char]
forall a. Show a => a -> [Char]
show CString
cstr
withAsmNameAttrs :: (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs :: (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs (mAsmName :: Maybe CStrLit
mAsmName, newAttrs :: [CAttr]
newAttrs) declr :: CDeclrR
declr = Maybe CStrLit -> CDeclrR -> P CDeclrR
setAsmName Maybe CStrLit
mAsmName ([CAttr] -> CDeclrR -> CDeclrR
appendObjAttrsR [CAttr]
newAttrs CDeclrR
declr)
appendDeclrAttrs :: [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs :: [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs newAttrs :: [CAttr]
newAttrs (CDeclrR ident :: Maybe Ident
ident (Reversed []) asmname :: Maybe CStrLit
asmname cattrs :: [CAttr]
cattrs at :: NodeInfo
at)
= Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
ident Reversed [CDerivedDeclarator NodeInfo]
forall a. Reversed [a]
empty Maybe CStrLit
asmname ([CAttr]
cattrs [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
newAttrs) NodeInfo
at
appendDeclrAttrs newAttrs :: [CAttr]
newAttrs (CDeclrR ident :: Maybe Ident
ident (Reversed (x :: CDerivedDeclarator NodeInfo
x:xs :: [CDerivedDeclarator NodeInfo]
xs)) asmname :: Maybe CStrLit
asmname cattrs :: [CAttr]
cattrs at :: NodeInfo
at)
= Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
ident ([CDerivedDeclarator NodeInfo]
-> Reversed [CDerivedDeclarator NodeInfo]
forall a. a -> Reversed a
Reversed (CDerivedDeclarator NodeInfo -> CDerivedDeclarator NodeInfo
appendAttrs CDerivedDeclarator NodeInfo
x CDerivedDeclarator NodeInfo
-> [CDerivedDeclarator NodeInfo] -> [CDerivedDeclarator NodeInfo]
forall k1. k1 -> [k1] -> [k1]
: [CDerivedDeclarator NodeInfo]
xs)) Maybe CStrLit
asmname [CAttr]
cattrs NodeInfo
at where
appendAttrs :: CDerivedDeclarator NodeInfo -> CDerivedDeclarator NodeInfo
appendAttrs (CPtrDeclr typeQuals :: [CTypeQual]
typeQuals at :: NodeInfo
at) = [CTypeQual] -> NodeInfo -> CDerivedDeclarator NodeInfo
forall a. [CTypeQualifier a] -> a -> CDerivedDeclarator a
CPtrDeclr ([CTypeQual]
typeQuals [CTypeQual] -> [CTypeQual] -> [CTypeQual]
forall a. [a] -> [a] -> [a]
++ (CAttr -> CTypeQual) -> [CAttr] -> [CTypeQual]
forall a b. (a -> b) -> [a] -> [b]
map CAttr -> CTypeQual
forall a. CAttribute a -> CTypeQualifier a
CAttrQual [CAttr]
newAttrs) NodeInfo
at
appendAttrs (CArrDeclr typeQuals :: [CTypeQual]
typeQuals arraySize :: CArraySize NodeInfo
arraySize at :: NodeInfo
at) = [CTypeQual]
-> CArraySize NodeInfo -> NodeInfo -> CDerivedDeclarator NodeInfo
forall a.
[CTypeQualifier a] -> CArraySize a -> a -> CDerivedDeclarator a
CArrDeclr ([CTypeQual]
typeQuals [CTypeQual] -> [CTypeQual] -> [CTypeQual]
forall a. [a] -> [a] -> [a]
++ (CAttr -> CTypeQual) -> [CAttr] -> [CTypeQual]
forall a b. (a -> b) -> [a] -> [b]
map CAttr -> CTypeQual
forall a. CAttribute a -> CTypeQualifier a
CAttrQual [CAttr]
newAttrs) CArraySize NodeInfo
arraySize NodeInfo
at
appendAttrs (CFunDeclr parameters :: Either [Ident] ([CDecl], Bool)
parameters cattrs :: [CAttr]
cattrs at :: NodeInfo
at) = Either [Ident] ([CDecl], Bool)
-> [CAttr] -> NodeInfo -> CDerivedDeclarator NodeInfo
forall a.
Either [Ident] ([CDeclaration a], Bool)
-> [CAttribute a] -> a -> CDerivedDeclarator a
CFunDeclr Either [Ident] ([CDecl], Bool)
parameters ([CAttr]
cattrs [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
newAttrs) NodeInfo
at
ptrDeclr :: CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr :: CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr (CDeclrR ident :: Maybe Ident
ident derivedDeclrs :: Reversed [CDerivedDeclarator NodeInfo]
derivedDeclrs asmname :: Maybe CStrLit
asmname cattrs :: [CAttr]
cattrs dat :: NodeInfo
dat) tyquals :: [CTypeQual]
tyquals at :: NodeInfo
at
= Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
ident (Reversed [CDerivedDeclarator NodeInfo]
derivedDeclrs Reversed [CDerivedDeclarator NodeInfo]
-> CDerivedDeclarator NodeInfo
-> Reversed [CDerivedDeclarator NodeInfo]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` [CTypeQual] -> NodeInfo -> CDerivedDeclarator NodeInfo
forall a. [CTypeQualifier a] -> a -> CDerivedDeclarator a
CPtrDeclr [CTypeQual]
tyquals NodeInfo
at) Maybe CStrLit
asmname [CAttr]
cattrs NodeInfo
dat
funDeclr :: CDeclrR -> (Either [Ident] ([CDecl],Bool)) -> [CAttr] -> NodeInfo -> CDeclrR
funDeclr :: CDeclrR
-> Either [Ident] ([CDecl], Bool) -> [CAttr] -> NodeInfo -> CDeclrR
funDeclr (CDeclrR ident :: Maybe Ident
ident derivedDeclrs :: Reversed [CDerivedDeclarator NodeInfo]
derivedDeclrs asmname :: Maybe CStrLit
asmname dcattrs :: [CAttr]
dcattrs dat :: NodeInfo
dat) params :: Either [Ident] ([CDecl], Bool)
params cattrs :: [CAttr]
cattrs at :: NodeInfo
at
= Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
ident (Reversed [CDerivedDeclarator NodeInfo]
derivedDeclrs Reversed [CDerivedDeclarator NodeInfo]
-> CDerivedDeclarator NodeInfo
-> Reversed [CDerivedDeclarator NodeInfo]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` Either [Ident] ([CDecl], Bool)
-> [CAttr] -> NodeInfo -> CDerivedDeclarator NodeInfo
forall a.
Either [Ident] ([CDeclaration a], Bool)
-> [CAttribute a] -> a -> CDerivedDeclarator a
CFunDeclr Either [Ident] ([CDecl], Bool)
params [CAttr]
cattrs NodeInfo
at) Maybe CStrLit
asmname [CAttr]
dcattrs NodeInfo
dat
arrDeclr :: CDeclrR -> [CTypeQual] -> Bool -> Bool -> Maybe CExpr -> NodeInfo -> CDeclrR
arrDeclr :: CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr (CDeclrR ident :: Maybe Ident
ident derivedDeclrs :: Reversed [CDerivedDeclarator NodeInfo]
derivedDeclrs asmname :: Maybe CStrLit
asmname cattrs :: [CAttr]
cattrs dat :: NodeInfo
dat) tyquals :: [CTypeQual]
tyquals var_sized :: Bool
var_sized static_size :: Bool
static_size size_expr_opt :: Maybe CExpr
size_expr_opt at :: NodeInfo
at
= CArraySize NodeInfo
arr_sz CArraySize NodeInfo -> CDeclrR -> CDeclrR
forall a b. a -> b -> b
`seq` ( Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
ident (Reversed [CDerivedDeclarator NodeInfo]
derivedDeclrs Reversed [CDerivedDeclarator NodeInfo]
-> CDerivedDeclarator NodeInfo
-> Reversed [CDerivedDeclarator NodeInfo]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` [CTypeQual]
-> CArraySize NodeInfo -> NodeInfo -> CDerivedDeclarator NodeInfo
forall a.
[CTypeQualifier a] -> CArraySize a -> a -> CDerivedDeclarator a
CArrDeclr [CTypeQual]
tyquals CArraySize NodeInfo
arr_sz NodeInfo
at) Maybe CStrLit
asmname [CAttr]
cattrs NodeInfo
dat )
where
arr_sz :: CArraySize NodeInfo
arr_sz = case Maybe CExpr
size_expr_opt of
Just e :: CExpr
e -> Bool -> CExpr -> CArraySize NodeInfo
forall a. Bool -> CExpression a -> CArraySize a
CArrSize Bool
static_size CExpr
e
Nothing -> Bool -> CArraySize NodeInfo
forall a. Bool -> CArraySize a
CNoArrSize Bool
var_sized
liftTypeQuals :: Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals :: Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals = (CTypeQual -> CDeclSpec) -> [CTypeQual] -> [CDeclSpec]
forall a b. (a -> b) -> [a] -> [b]
map CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual ([CTypeQual] -> [CDeclSpec])
-> (Reversed [CTypeQual] -> [CTypeQual])
-> Reversed [CTypeQual]
-> [CDeclSpec]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse
liftCAttrs :: [CAttr] -> [CDeclSpec]
liftCAttrs :: [CAttr] -> [CDeclSpec]
liftCAttrs = (CAttr -> CDeclSpec) -> [CAttr] -> [CDeclSpec]
forall a b. (a -> b) -> [a] -> [b]
map (CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual (CTypeQual -> CDeclSpec)
-> (CAttr -> CTypeQual) -> CAttr -> CDeclSpec
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CAttr -> CTypeQual
forall a. CAttribute a -> CTypeQualifier a
CAttrQual)
addTrailingAttrs :: Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs :: Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs declspecs :: Reversed [CDeclSpec]
declspecs new_attrs :: [CAttr]
new_attrs =
case Reversed [CDeclSpec] -> (Reversed [CDeclSpec], CDeclSpec)
forall a. Reversed [a] -> (Reversed [a], a)
viewr Reversed [CDeclSpec]
declspecs of
(specs_init :: Reversed [CDeclSpec]
specs_init, CTypeSpec (CSUType (CStruct tag :: CStructTag
tag name :: Maybe Ident
name (Just def :: [CDecl]
def) def_attrs :: [CAttr]
def_attrs su_node :: NodeInfo
su_node) node :: NodeInfo
node))
-> (Reversed [CDeclSpec]
specs_init Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CStructUnion -> NodeInfo -> CTypeSpec
forall a. CStructureUnion a -> a -> CTypeSpecifier a
CSUType (CStructTag
-> Maybe Ident
-> Maybe [CDecl]
-> [CAttr]
-> NodeInfo
-> CStructUnion
forall a.
CStructTag
-> Maybe Ident
-> Maybe [CDeclaration a]
-> [CAttribute a]
-> a
-> CStructureUnion a
CStruct CStructTag
tag Maybe Ident
name ([CDecl] -> Maybe [CDecl]
forall k1. k1 -> Maybe k1
Just [CDecl]
def) ([CAttr]
def_attrs [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
new_attrs) NodeInfo
su_node) NodeInfo
node))
(specs_init :: Reversed [CDeclSpec]
specs_init, CTypeSpec (CEnumType (CEnum name :: Maybe Ident
name (Just def :: [(Ident, Maybe CExpr)]
def) def_attrs :: [CAttr]
def_attrs e_node :: NodeInfo
e_node) node :: NodeInfo
node))
-> (Reversed [CDeclSpec]
specs_init Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CEnum -> NodeInfo -> CTypeSpec
forall a. CEnumeration a -> a -> CTypeSpecifier a
CEnumType (Maybe Ident
-> Maybe [(Ident, Maybe CExpr)] -> [CAttr] -> NodeInfo -> CEnum
forall a.
Maybe Ident
-> Maybe [(Ident, Maybe (CExpression a))]
-> [CAttribute a]
-> a
-> CEnumeration a
CEnum Maybe Ident
name ([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall k1. k1 -> Maybe k1
Just [(Ident, Maybe CExpr)]
def) ([CAttr]
def_attrs [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
new_attrs) NodeInfo
e_node) NodeInfo
node))
_ -> Reversed [CDeclSpec]
declspecs Reversed [CDeclSpec] -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. Reversed [a] -> [a] -> Reversed [a]
`rappend` ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
new_attrs)
instance Pos a => Pos [a] where
posOf :: [a] -> Position
posOf (x :: a
x:_) = a -> Position
forall a. Pos a => a -> Position
posOf a
x
instance Pos a => Pos (Reversed a) where
posOf :: Reversed a -> Position
posOf (Reversed x :: a
x) = a -> Position
forall a. Pos a => a -> Position
posOf a
x
emptyDeclr :: CDeclrR
emptyDeclr :: CDeclrR
emptyDeclr = Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
forall k1. Maybe k1
Nothing Reversed [CDerivedDeclarator NodeInfo]
forall a. Reversed [a]
empty Maybe CStrLit
forall k1. Maybe k1
Nothing [] NodeInfo
undefNode
mkVarDeclr :: Ident -> NodeInfo -> CDeclrR
mkVarDeclr :: Ident -> NodeInfo -> CDeclrR
mkVarDeclr ident :: Ident
ident = Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
ident) Reversed [CDerivedDeclarator NodeInfo]
forall a. Reversed [a]
empty Maybe CStrLit
forall k1. Maybe k1
Nothing []
doDeclIdent :: [CDeclSpec] -> CDeclrR -> P ()
doDeclIdent :: [CDeclSpec] -> CDeclrR -> P ()
doDeclIdent declspecs :: [CDeclSpec]
declspecs (CDeclrR mIdent :: Maybe Ident
mIdent _ _ _ _) =
case Maybe Ident
mIdent of
Nothing -> () -> P ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
Just ident :: Ident
ident | (CDeclSpec -> Bool) -> [CDeclSpec] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any CDeclSpec -> Bool
forall a. CDeclarationSpecifier a -> Bool
iypedef [CDeclSpec]
declspecs -> Ident -> P ()
addTypedef Ident
ident
| Bool
otherwise -> Ident -> P ()
shadowTypedef Ident
ident
where iypedef :: CDeclarationSpecifier a -> Bool
iypedef (CStorageSpec (CTypedef _)) = Bool
True
iypedef _ = Bool
False
doFuncParamDeclIdent :: CDeclr -> P ()
doFuncParamDeclIdent :: CDeclr -> P ()
doFuncParamDeclIdent (CDeclr _ (CFunDeclr params :: Either [Ident] ([CDecl], Bool)
params _ _ : _) _ _ _) =
[P ()] -> P ()
forall (t :: * -> *) (m :: * -> *) a.
(Foldable t, Monad m) =>
t (m a) -> m ()
sequence_
[ case CDeclr -> Maybe Ident
getCDeclrIdent CDeclr
declr of
Nothing -> () -> P ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
Just ident :: Ident
ident -> Ident -> P ()
shadowTypedef Ident
ident
| CDecl _ dle :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dle _ <- ([Ident] -> [CDecl])
-> (([CDecl], Bool) -> [CDecl])
-> Either [Ident] ([CDecl], Bool)
-> [CDecl]
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either ([CDecl] -> [Ident] -> [CDecl]
forall a b. a -> b -> a
const []) ([CDecl], Bool) -> [CDecl]
forall a b. (a, b) -> a
fst Either [Ident] ([CDecl], Bool)
params
, (Just declr :: CDeclr
declr, _, _) <- [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dle ]
doFuncParamDeclIdent _ = () -> P ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
getCDeclrIdent :: CDeclr -> Maybe Ident
getCDeclrIdent :: CDeclr -> Maybe Ident
getCDeclrIdent (CDeclr mIdent :: Maybe Ident
mIdent _ _ _ _) = Maybe Ident
mIdent
happyError :: P a
happyError :: P a
happyError = P a
forall a. P a
parseError
parseC :: InputStream -> Position -> Either ParseError CTranslUnit
parseC :: InputStream -> Position -> Either ParseError CTranslUnit
parseC input :: InputStream
input initialPosition :: Position
initialPosition =
((CTranslUnit, [Name]) -> CTranslUnit)
-> Either ParseError (CTranslUnit, [Name])
-> Either ParseError CTranslUnit
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (CTranslUnit, [Name]) -> CTranslUnit
forall a b. (a, b) -> a
fst (Either ParseError (CTranslUnit, [Name])
-> Either ParseError CTranslUnit)
-> Either ParseError (CTranslUnit, [Name])
-> Either ParseError CTranslUnit
forall a b. (a -> b) -> a -> b
$ P CTranslUnit
-> InputStream
-> Position
-> [Ident]
-> [Name]
-> Either ParseError (CTranslUnit, [Name])
forall a.
P a
-> InputStream
-> Position
-> [Ident]
-> [Name]
-> Either ParseError (a, [Name])
execParser P CTranslUnit
translUnitP InputStream
input Position
initialPosition [Ident]
builtinTypeNames (Int -> [Name]
namesStartingFrom 0)
translUnitP :: P CTranslUnit
translUnitP :: P CTranslUnit
translUnitP = P CTranslUnit
translation_unit
extDeclP :: P CExtDecl
extDeclP :: P CExtDecl
extDeclP = P CExtDecl
external_declaration
statementP :: P CStat
statementP :: P CStat
statementP = P CStat
statement
expressionP :: P CExpr
expressionP :: P CExpr
expressionP = P CExpr
expression
{-# LINE 1 "templates/GenericTemplate.hs" #-}
{-# LINE 1 "templates/GenericTemplate.hs" #-}
{-# LINE 1 "<built-in>" #-}
{-# LINE 1 "<command-line>" #-}
{-# LINE 11 "<command-line>" #-}
# 1 "/usr/include/stdc-predef.h" 1 3 4
# 17 "/usr/include/stdc-predef.h" 3 4
{-# LINE 11 "<command-line>" #-}
{-# LINE 1 "/usr/lib/ghc/include/ghcversion.h" #-}
{-# LINE 11 "<command-line>" #-}
{-# LINE 1 "templates/GenericTemplate.hs" #-}
#if __GLASGOW_HASKELL__ > 706
#define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Bool)
#define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Bool)
#define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Bool)
#else
#define LT(n,m) (n Happy_GHC_Exts.<# m)
#define GTE(n,m) (n Happy_GHC_Exts.>=# m)
#define EQ(n,m) (n Happy_GHC_Exts.==# m)
#endif
{-# LINE 43 "templates/GenericTemplate.hs" #-}
data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList
{-# LINE 65 "templates/GenericTemplate.hs" #-}
{-# LINE 75 "templates/GenericTemplate.hs" #-}
{-# LINE 84 "templates/GenericTemplate.hs" #-}
infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)
happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) =
(happyTcHack j (happyTcHack st)) (happyReturn1 ans)
happyDoAction i tk st
=
case action of
0# ->
happyFail (happyExpListPerState ((Happy_GHC_Exts.I# (st)) :: Int)) i tk st
-1# ->
happyAccept i tk st
n | LT(n,(0# :: Happy_GHC_Exts.Int#)) ->
(happyReduceArr Happy_Data_Array.! rule) i tk st
where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#))))))
n ->
happyShift new_state i tk st
where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#))
where off = happyAdjustOffset (indexShortOffAddr happyActOffsets st)
off_i = (off Happy_GHC_Exts.+# i)
check = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#))
then EQ(indexShortOffAddr happyCheck off_i, i)
else False
action
| check = indexShortOffAddr happyTable off_i
| otherwise = indexShortOffAddr happyDefActions st
indexShortOffAddr (HappyA# arr) off =
Happy_GHC_Exts.narrow16Int# i
where
i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low)
high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#)))
low = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off'))
off' = off Happy_GHC_Exts.*# 2#
{-# INLINE happyLt #-}
happyLt x y = LT(x,y)
readArrayBit arr bit =
Bits.testBit (Happy_GHC_Exts.I# (indexShortOffAddr arr ((unbox_int bit) `Happy_GHC_Exts.iShiftRA#` 4#))) (bit `mod` 16)
where unbox_int (Happy_GHC_Exts.I# x) = x
data HappyAddr = HappyA# Happy_GHC_Exts.Addr#
{-# LINE 180 "templates/GenericTemplate.hs" #-}
happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)
happyShift new_state i tk st sts stk =
happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk)
happySpecReduce_0 i fn 0# tk st sts stk
= happyFail [] 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
= happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)
happySpecReduce_1 i fn 0# tk st sts stk
= happyFail [] 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
= let r = fn v1 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happySpecReduce_2 i fn 0# tk st sts stk
= happyFail [] 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
= let r = fn v1 v2 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happySpecReduce_3 i fn 0# tk st sts stk
= happyFail [] 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
= let r = fn v1 v2 v3 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happyReduce k i fn 0# tk st sts stk
= happyFail [] 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
= case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of
sts1@((HappyCons (st1@(action)) (_))) ->
let r = fn stk in
happyDoSeq r (happyGoto nt j tk st1 sts1 r)
happyMonadReduce k nt fn 0# tk st sts stk
= happyFail [] 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
case happyDrop k (HappyCons (st) (sts)) of
sts1@((HappyCons (st1@(action)) (_))) ->
let drop_stk = happyDropStk k stk in
happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))
happyMonad2Reduce k nt fn 0# tk st sts stk
= happyFail [] 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
case happyDrop k (HappyCons (st) (sts)) of
sts1@((HappyCons (st1@(action)) (_))) ->
let drop_stk = happyDropStk k stk
off = happyAdjustOffset (indexShortOffAddr happyGotoOffsets st1)
off_i = (off Happy_GHC_Exts.+# nt)
new_state = indexShortOffAddr happyTable off_i
in
happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))
happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t
happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs
happyGoto nt j tk st =
happyDoAction j tk new_state
where off = happyAdjustOffset (indexShortOffAddr happyGotoOffsets st)
off_i = (off Happy_GHC_Exts.+# nt)
new_state = indexShortOffAddr happyTable off_i
happyFail explist 0# tk old_st _ stk@(x `HappyStk` _) =
let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
happyError_ explist i tk
happyFail explist i tk (action) sts stk =
happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk)
notHappyAtAll :: a
notHappyAtAll = error "Internal Happy error\n"
happyTcHack :: Happy_GHC_Exts.Int# -> a -> a
happyTcHack x y = y
{-# INLINE happyTcHack #-}
happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq a b = a `seq` b
happyDontSeq a b = b
{-# NOINLINE happyDoAction #-}
{-# NOINLINE happyTable #-}
{-# NOINLINE happyCheck #-}
{-# NOINLINE happyActOffsets #-}
{-# NOINLINE happyGotoOffsets #-}
{-# NOINLINE happyDefActions #-}
{-# NOINLINE happyShift #-}
{-# NOINLINE happySpecReduce_0 #-}
{-# NOINLINE happySpecReduce_1 #-}
{-# NOINLINE happySpecReduce_2 #-}
{-# NOINLINE happySpecReduce_3 #-}
{-# NOINLINE happyReduce #-}
{-# NOINLINE happyMonadReduce #-}
{-# NOINLINE happyGoto #-}
{-# NOINLINE happyFail #-}