
MPI For Python Documentation
Release 0.6.0

Lisandro Dalcin, Rodrigo Paz, Mario Storti

September 16, 2008

ii

CONTENTS

1 Contents 3
1.1 Introduction . 3
1.2 Design and Interface Overview . 5
1.3 Downloads . 7
1.4 Installation . 8
1.5 Tutorial (dated) . 10

2 Indices and tables 15

i

ii

MPI For Python Documentation, Release 0.6.0

Authors Lisandro Dalcín, Rodrigo Paz, Mario Storti

Organization CIMEC

Address PTLC, (3000) Santa Fe, Argentina

Contact dalcinl@gmail.com

Web Site http://mpi4py.scipy.org

Date September 16, 2008

Revision 0.6.0

Copyright This document has been placed in the public domain.

Abstract This document describes MPI for Python package. It provides bindings of the Message Passing
Interface (MPI) standard for the Python programming language, allowing any Python program to
exploit multiple processors.
This package is constructed on top of the MPI-1 specification and provides an object oriented in-
terface which closely follows MPI-2 C++ bindings. It supports point-to-point (sends, receives) and
collective (broadcasts, scatters, gathers) communications of any picklable Python object.

Contents 1

http://www.cimec.org.ar/
mailto:dalcinl@gmail.com
http://mpi4py.scipy.org

2

CHAPTER

ONE

Contents

1.1 Introduction

Over the last years, high performance computing has become an affordable resource to many more researchers in the
scientific community than ever before. The conjunction of quality open source software and commodity hardware
strongly influenced the now widespread popularity of Beowulf class clusters and cluster of workstations.

Among many parallel computational models, message-passing has proven to be an effective one. This paradigm is
specially suited for (but not limited to) distributed memory architectures and is used in today’s most demanding sci-
entific and engineering application related to modeling, simulation, design, and signal processing. However, portable
message-passing parallel programming used to be a nightmare in the past because of the many incompatible options
developers were faced to. Fortunately, this situation definitely changed after the MPI Forum released its standard
specification.

High performance computing is traditionally associated with software development using compiled languages. How-
ever, in typical applications programs, only a small part of the code is time-critical enough to require the efficiency of
compiled languages. The rest of the code is generally related to memory management, error handling, input/output,
and user interaction, and those are usually the most error prone and time-consuming lines of code to write and debug
in the whole development process. Interpreted high-level languages can be really advantageous for this kind of tasks.

For implementing general numerical computations, MATLAB 1 is the dominant interpreted programming language; in
the open source side, Octave and Scilab are well known, freely distributed software packages providing compatibility
with MATLAB language. In this work, we present MPI for Python, a new package enabling general applications to
exploit multiple processors using standard MPI “look and feel” in Python scripts.

1.1.1 What is MPI?

MPI, [mpi.using] [mpi.ref] the Message Passing Interface, is a standardized and portable message-passing system
designed to function on a wide variety of parallel computers. The standard defines the syntax and semantics of library
routines and allows users to write portable programs in the main scientific programming languages (Fortran, C, or
C++).

Since its release, the MPI specification [mpi.std1] [mpi.std2] has become the leading standard for message-passing
libraries for parallel computers. Implementations are available from vendors of high-performance computers and from
well known open source projects like MPICH [mpi.mpich], Open MPI [mpi.openmpi] or LAM [mpi.lam].

1.1.2 What is Python?

Python is a modern, easy to learn, powerful programming language. It has efficient high-level data structures and a

1MATLAB is a registered trademark of The MathWorks, Inc.

3

http://www.beowulf.org/
http://www.mpi-forum.org/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.open-mpi.org/
http://www.lam-mpi.org/
http://www.python.org/

MPI For Python Documentation, Release 0.6.0

simple but effective approach to object-oriented programming with dynamic typing and dynamic binding. It supports
modules and packages, which encourages program modularity and code reuse. Python’s elegant syntax, together with
its interpreted nature, make it an ideal language for scripting and rapid application development in many areas on most
platforms.

The Python interpreter and the extensive standard library are available in source or binary form without charge for all
major platforms, and can be freely distributed. It is easily extended with new functions and data types implemented in
C or C++. Python is also suitable as an extension language for customizable applications.

Python is an ideal candidate for writing the higher-level parts of large-scale scientific applications [SPaSM] [Hinsen97]
and driving simulations in parallel architectures [Beazley97] like clusters of PC’s or SMP’s. Python codes are quickly
developed, easily maintained, and can achieve a high degree of integration with other libraries written in compiled
languages.

1.1.3 Related Projects

As this work started and evolved, some ideas were borrowed from well known MPI and Python related open source
projects from the Internet.

• OOMPI

– It has not relation with Python, but is an excellent object oriented approach to MPI.

– It is a C++ class library specification layered on top of the C bindings that encapsulates MPI into a func-
tional class hierarchy.

– It provides a flexible and intuitive interface by adding some abstractions, like Ports and Messages, which
enrich and simplify the syntax.

• Pypar

– Its interface is rather minimal. There is no support for communicators or process topologies.

– It does not require the Python interpreter to be modified or recompiled, but does not permit interactive
parallel runs.

– General (picklable) Python objects of any type can be communicated. There is good support for numeric
arrays, practically full MPI bandwidth can be achieved.

• pyMPI

– It rebuilds the Python interpreter providing a built-in module for message passing. It does permit interactive
parallel runs, which are useful for learning and debugging.

– It provides an interface suitable for basic parallel programing. There is not full support for defining new
communicators or process topologies.

– General (picklable) Python objects can be messaged between processors. There is not support for numeric
arrays.

• Scientific Python

– It provides a collection of Python modules that are useful for scientific computing.

– There is an interface to MPI and BSP (Bulk Synchronous Parallel programming).

– The interface is simple but incomplete and does not resemble the MPI specification. There is support for
numeric arrays.

Additionally, we would like to mention some available tools for scientific computing and software development with
Python.

4 Contents

http://www.osl.iu.edu/research/oompi/
http://datamining.anu.edu.au/~{}ole/pypar/
http://sourceforge.net/projects/pympi/
http://dirac.cnrs-orleans.fr/plone/software/scientificpython/

MPI For Python Documentation, Release 0.6.0

• NumPy is a package that provides array manipulation and computational capabilities similar to those found
in IDL, MATLAB, or Octave. Using NumPy, it is possible to write many efficient numerical data processing
applications directly in Python without using any C, C++ Fortran code.

• SciPy is an open source library of scientific tools for Python, gathering a variety of high level science and
engineering modules together as a single package. It includes modules for graphics and plotting, optimization,
integration, special functions, signal and image processing, genetic algorithms, ODE solvers, and others.

• SWIG is a software development tool that connects programs written in C and C++ with a variety of high-
level programming languages like Perl, Tcl/Tk, Ruby and Python. Issuing header files to SWIG is the simplest
approach to interfacing C/C++ libraries from a Python module.

1.2 Design and Interface Overview

MPI for Python provides an object oriented approach to message passing and is based in the MPI-2 C++ bindings.
However, some abstractions (like Port class) and functionalities (like sending and receiving streams in Port in-
stances) are added in order to emulate OOMPI library interface.

The design is simple but effective. The MPI module consists of Python code defining all constants, class hierarchies
and functions. This code calls simpler functions from extension modules written in C, which provide access to native
MPI-1/MPI-2 handles, constants and function in the C side.

Following pyMPI and Pypar approaches, any Python object to be transmitted is first serialized at sending processes
using the standard Python module cPickle. After that, string data is communicated (using MPI_CHAR datatype).
Finally, received strings are unpacked and the original objects are restored at the reciever processes.

The pickling/unpickling appoach can impose important overheads in memory as well as processor usage, specially
in the case of communication of objects containing big memory buffers, like long strings or NumPy arrays. In latest
releases, MPI for Python was improved to support direct communication of any object exporting single-segment buffer
interface. This new feature, and the posibility of constructing user-defined datatypes describing complicated memory
layouts, enables the implementation of many numerical applications directly in Python with negligible overhead,
almost as fast as compiled C/C++/Fortran codes.

The interface was designed with focus in translating MPI syntax and semantics of standard MPI-2 bindings for C++
to Python. Any user of the standard C/C++ MPI bindings should be able to use this module without need of learning
a new interface.

1.2.1 Communicators

Class Comm is a base class for Intracomm and Intercomm classes. Method Is_inter() (also Is_intra(),
nonstandard but provided for convenience) is defined for communicator objects and can be used to determine the
particular communicator class.

Two predefined intracommunicators instances are available: COMM_WORLD and COMM_SELF (or WORLD and SELF,
provided for convenience), which are in fact communicators obtained by duplication of MPI_COMM_WORLD and
MPI_COMM_SELF. The original predefined MPI communication domains can be accessed via __COMM_WORLD__
and __COMM_SELF__ instances, but this is discouraged in order to avoid any message conflicts with other modules
calling MPI functions.

Communicator size and process rank can be respectively obtained with Get_size() and Get_rank() methods.
Module constants WORLD_RANK and WORLD_SIZE are convenience shortcuts for COMM_WORLD.Get_rank()
and COMM_WORLD.Get_size().

Communicator comparisons can be done with (static) method Compare() of Comm class, which returns a value in
module constants IDENT, CONGRUENT, SIMILAR or UNEQUAL.

Contents 5

http://numpy.scipy.org/
http://www.scipy.org/
http://www.swig.org/

MPI For Python Documentation, Release 0.6.0

New communicator instances can be obtained with method Clone() of Comm objects, methods Dup() and
Split() of both Intracomm and Intercomm objects, and methods Create_intercomm() and Merge()
of Intracomm and Intercomm objects respectively. Set operations with Group objects like like Union(),
Intersect() and Difference() are fully supported, as well as the creation of new communicators from groups.

Virtual topologies (Cartcomm and Graphcomm classes, which are derived from Intracomm class) are fully
supported. New instances can be obtained from intracommunicators with factory methods Create_cart() and
Create_graph() of Intracomm class.

Point-to-Point Communications

Methods Send(), Recv() and Sendrecv() of Comm class provide support for blocking point-to-point communi-
cations.

Non-blocking communications are only supported for objects exporting the single-segment buffer interface. Request
instances are returned by Isend() and Irecv() methods of Comm class. Persistent communications are also
supported. Prequest instances are returned by Send_init() and Recv_init() methods of Comm class.

Collective Communications

Methods Bcast(), Scatter(), Gather(), Allgather() and Alltoall() of communicator objects pro-
vide support for collective communications. Global reduction operations Reduce(), Allreduce(), Scan() and
Exscan() are supported, but they are naively implemented for reductions of general Python objects.

1.2.2 One-Sided Communications

Class Win provides all the MPI-2 features for one-sided communications (also known as remote memory access
(RMA)). Methods Put(), Get(), and Accumulate() can be used for remote writes, reads, and reductions. All
synchronization calls (fence, active target, and lock) are fully supported.

1.2.3 I/O

Class File provides all the MPI-2 features for parallel input/output. All data access operations, for all kind of
positioning (explicit offsets, individual file pointers, and shared file pointers), synchronism (bloking, nonblocking, and
split collective), and coordination (noncollective and collective) are fully supported.

1.2.4 Environmental Management

• Initialization and Exit

Module functions Init() and Finalize() provide MPI initialization and exit respectively. Module func-
tions Is_initialized() and Is_finalized() provide the respective tests for initialization and final-
ization.

• Implementation Information

– The MPI version number can be retrieved from module function Get_version(). It returns the tuple
(version,subversion).

– Communicator attributes are not currently supported. However, MPI_COMM_WORLD standard attributes
can be accessed from module constants TAG_UB, HOST, IO and WTIME_IS_GLOBAL. Module func-
tion Get_processor_name() and module constant PROCESSOR_NAME can be used to access the
processor name.

6 Contents

MPI For Python Documentation, Release 0.6.0

• Timers

MPI timer functionality is available through module functions Wtime() and Wtick(). Module constant
WTIME_IS_GLOBAL indicates whether clocks at all processes in COMM_WORLD communicator are synchro-
nized.

• Error Handling

Error handling functionality is almost completely supported. Errors originated in native MPI calls will throw
an instance of the module exception class Exception, which derives from standard Python exception
RuntimeError.

In order facilitate communicator sharing with other Python modules interfacing MPI-based parallel libraries,
default MPI error handlers ERRORS_RETURN, ERRORS_ARE_FATAL can be assigned to and retrieved from
communicators, windows and files with methods Set_errhandler() and Get_errhandler().

Caution: Importing with from mpi4py.mpi import * will cause a name clashing with standard
Python Exception base class.

1.2.5 Extensions

MPI for Python adds some extensions to the standard MPI syntax. The rationale is simplified usage and conformance
with some Python idioms and facilities.

An elegant abstraction for message-passing borrowed from OOMPI is introduced: communicators can be seen as
containers of ports}. A port is a tiny object with references to a communication domain and a process id. This id is
used as source or destination process in point-to-point communications, or root process in collective communications.
Communicators can now be treated as container of Port instances and indexing/iteration can be defined for them.
Data streams can be messaged between Port instances using << and >> operators.

Accessors methods for different objects are mapped to properties, i.e., managed attributes. For example, communicator
rank and size of COMM_WORLD can be directly obtained with COMM_WORLD.rank and COMM_WORLD.size instead
of calling Get_rank() and Get_size() methods.

Some constants are added for convenience. Integers rank and size are shortcuts for the accessor methods
Get_rank() and Get_size() of COMM_WORLD instance. Booleans zero, last, even and odd have values
related to process rank in COMM_WORLD.

There is also support for transparently passing any MPI objects to other modules generated with SWIG.

1.2.6 Documentation

The standard Python on-line help mechanism will provide information about module constants, classes and functions
using their documentation strings.

1.3 Downloads

MPI For Python is available for download at the Python Package Index .

Contents 7

http://pypi.python.org/pypi?%3Aaction=search\&term=mpi4py\&submit=search

MPI For Python Documentation, Release 0.6.0

1.4 Installation

1.4.1 Requirements

You need to have the following software properly installed in order to build the MPI module and the companion
parallelized version of the Python interpreter:

• A Python 2.3/2.4/2.5 distribution, with Python library preferably compiled as a dynamic library.

Note: It is suggested to use a MPI-parallelized version of the Python interpreter supporting interactive parallel
sessions.

• A working MPI distribution for your architecture, compiled with dynamic libraries. For example, on a
GNU/Linux box this requirement can be accomplished by typing:

– MPICH 2

$ tar -zxf mpich2-X.X.X.tar.gz
$ cd mpich2-X.X.X
$./configure --enable-sharedlibs=gcc --prefix=/usr/local/mpich2
$ make
$ make install

– Open MPI

$ tar -zxf openmpi-X.X.X tar.gz
$ cd openmpi-X.X.X
$./configure --prefix=/usr/local/openmpi
$ make all
$ make install

– LAM

$ tar -zxf lam-X.X.X.tar.gz
$ cd lam-X.X.X
$./configure --enable-shared --prefix=/usr/local/lam
$ make
$ make install

– MPICH 1

$ tar -zxf mpich-X.X.X.tar.gz
$ cd mpich-X.X.X
$./configure --enable-sharedlib --prefix=/usr/local/mpich
$ make
$ make install

Note: Perhaps the user will have to set his LD_LIBRARY_PATH environmental variable (using export,
setenv or what applies to his system) pointing to the MPI library directory. In case of getting runtime linking
error when running MPI programs, the following lines can be added to the user login shell script (.profile,
.bashrc, etc.).

– MPICH 2

$ MPI_DIR=/usr/local/mpich2
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MPI_DIR/lib

– Open MPI

8 Contents

MPI For Python Documentation, Release 0.6.0

$ MPI_DIR=/usr/local/openmpi
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MPI_DIR/lib

– LAM

$ MPI_DIR=/usr/local/lam
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MPI_DIR/lib

– MPICH 1

$ MPI_DIR=/usr/local/mpich
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MPI_DIR/lib/shared
$ export MPICH_USE_SHLIB=yes

Warning: MPICH 1 support for dynamic libraries is not completely transparent. Users should set environ-
mental variable MPICH_USE_SHLIB to yes in order to avoid link problems when using mpicc.

1.4.2 Building

After downloading and unpacking the module distribution:

$ tar -zxf mpi4py-X.X.X.tar.gz
$ cd mpi4py-X.X.X

the distribution is ready for building.

• If you use a MPI implementation providing a mpicc compiler wrapper (e.g., MPICH, OpenMPI, LAM), it will
be used for compilation and linking. This is the preferred and easiest way of building MPI for Python.

If mpicc is located somewhere in your search path, simply run the build command:

$ python setup.py build

If mpicc is not in your search path or the compiler wrapper has a different name, you can run the build command
specifying its location:

$ python setup.py build --mpicc=/where/you/have/mpicc

• Alternatively, you can provide all the relevant information about your MPI distribution by editing the file
mpi.cfg. You can use the default section [mpi] or add a new, custom section, for example [my_mpi]
(see the examples provided in mpi.cfg):

[mpi]

include_dirs = /usr/local/mpi/include
libraries = mpi
library_dirs = /usr/local/mpi/lib
runtime_library_dirs = /usr/local/mpi/lib

[my_mpi]

include_dirs = /opt/mpi/include ...
libraries = mpi ...
library_dirs = /opt/mpi/lib ...
runtime_library_dirs = /op/mpi/lib ...

Contents 9

MPI For Python Documentation, Release 0.6.0

...

and run the build command, perhaps specifying you custom section:

$ python setup.py build --mpi=my_mpi

1.4.3 Installing

After building, the distribution is ready for install (perhaps you will need root privileges):

$ python setup.py install

The previous steps will install the mpi4py package at standard location
<prefix>/lib/python<version>/site-packages.

1.4.4 Testing

Issuing at the command line:

$ mpiexec -n 5 python tests/helloworld.py

or:

$ mpirun -np 5 python tests/helloworld.py

will launch a five-process run of the Python interpreter and run the test scripts tests/helloworld.py.

You can also try unittest scripts located at tests/unittest.

1.5 Tutorial (dated)

1.5.1 Invoking the interpreter

In the following examples, we assume that a parallelized version of the Python interpreter was launched using the
implementation-provided MPI startup mechanism. With the MPICH distribution on a cluster of five PC’s running
GNU/Linux and listed in file nodes.dat, this can be accomplished by typing:

$ mpirun -np 5 -machinefile nodes.dat <prefix>/bin/bwpython -i

from a command-line shell environment like bash. After that, the MPI module can be imported by typing:

>>> from mpi4py import MPI

1.5.2 Hello World!

By typing the following sentences in the Python prompt, output from all processes should be obtained.

10 Contents

MPI For Python Documentation, Release 0.6.0

>>> rank, size = MPI.COMM_WORLD.rank, MPI.COMM_WORLD.size
>>> print ’Hello World! I am process’, rank, ’of’, size
Hello World! I am process 0 of 5
Hello World! I am process 4 of 5
Hello World! I am process 2 of 5
Hello World! I am process 1 of 5
Hello World! I am process 3 of 5

1.5.3 Point-to-Point communications

First, we prepare some different data in each process.

>>> rank, size = MPI.COMM_WORLD.rank, MPI.COMM_WORLD.size
>>> sendbuf = 10 * size + rank
>>> print ’[%d]’ % rank, sendbuf
[0] 50
[4] 54
[2] 52
[1] 51
[3] 53

Next, we can try some point-to-point communications.

• using standard form ...

>>> MPI.COMM_WORLD.Send(sendbuf, dest=0, tag=7)
>>> recvbuf = []
>>> if MPI.COMM_WORLD.rank == 0:
... for i in xrange(MPI.COMM_WORLD.size):
... data = MPI.COMM_WORLD.Recv(source=i, tag=7)
... recvbuf.append(data)
...
>>> print ’[%d] %s’ % (MPI.COMM_WORLD.rank, recvbuf)
[0] [50, 51, 52, 53, 54]
[4] []
[2] []
[1] []
[3] []

• using ports ...

>>> MPI.COMM_WORLD[0].Send(sendbuf) # get port 0, send with default tag
>>> recvbuf = []
>>> if MPI.COMM_WORLD.rank == 0:
... for p in MPI.COMM_WORLD: # iterate over comm
... recvbuf += [p.Recv()] # recv with default tag
...
>>> print ’[%d] %s’ % (MPI.COMM_WORLD.rank, recvbuf)
[0] [50, 51, 52, 53, 54]
[4] []
[2] []
[1] []
[3] []

Contents 11

MPI For Python Documentation, Release 0.6.0

• using ports with stream syntax ...

>>> MPI.COMM_WORLD[0] << [sendbuf] # input stream must be list !!!
>>>
>>> recvbuf = [] # output stream must be list, too !!!
>>> if MPI.COMM_WORLD.rank == 0:
... for p in MPI.COMM_WORLD:
... p >> recvbuf
...
>>> print ’[%d] %s’ % (MPI.COMM_WORLD.rank, recvbuf)
[0] [50, 51, 52, 53, 54]
[4] []
[2] []
[1] []
[3] []

1.5.4 Collective communications

• broadcast using standard form ...

>>> sendbuf = MPI.COMM_WORLD.rank**2 # square of process rank
>>>
>>> root = MPI.COMM_WORLD.size-1 # last process
>>> recvbuf = MPI.COMM_WORLD.Bcast(sendbuf, root)
>>> print ’[%d] %s’ % (MPI.COMM_WORLD.rank, recvbuf)
[0] 16
[1] 16
[2] 16
[3] 16
[4] 16

• gather using ports ...

>>> rank, size = MPI.COMM_WORLD.rank, MPI.COMM_WORLD.size
>>> sendbuf = [rank**2 , rank%2!=0]
>>> print ’[%d] %s’ % (rank, sendbuf)
[0] [0, False]
[1] [1, True]
[2] [4, False]
[3] [9, True]
[4] [16, False]
>>>
>>> root = size//2 # middle process
>>> recvbuf = MPI.COMM_WORLD[root].Gather(sendbuf)
>>> print ’[%d] %s’ % (MPI.COMM_WORLD.rank, recvbuf)
[0] None
[1] None
[2] [[0, False], [1, True], [4, False], [9, True], [16, False]]
[3] None
[4] None

• scatter using ports ...

12 Contents

MPI For Python Documentation, Release 0.6.0

>>> rank, size = MPI.COMM_WORLD.rank, MPI.COMM_WORLD.size
>>> root = size//2 # middle process
>>>
>>> sendbuf = None
>>> if rank = root: # set data in root
... sendbuf = [(i, i**2, i**3) for i in range(size)]
>>> print ’[%d] %s’ % (rank, sendbuf)
[0] None
[1] None
[2] [(0, 0, 0), (1, 1, 1), (2, 4, 8), (3, 9, 27), (4, 16, 64)]
[3] None
[4] None
>>>
>>> p = MPI.COMM_WORLD[root]
>>> recvbuf = p.Scatter(sendbuf)
>>> print ’[%d] %s’ % (rank, recvbuf)
[0] (0, 0, 0)
[1] (1, 1, 1)
[2] (2, 4, 8)
[3] (3, 9, 27)
[4] (4, 16, 64)

1.5.5 Communicators

• duplication and comparison ...

>>> MPI.rprint([MPI.IDENT, MPI.CONGRUENT, MPI.SIMILAR, MPI.UNEQUAL])
[1, 2, 3, 4]
>>>
>>> comm = MPI.COMM_WORLD.Dup();
>>> rslt = MPI.Comm.Compare(comm, MPI.COMM_WORLD)
>>> congruent = (rslt==MPI.CONGRUENT)
>>> print ’[%d] congruent: %s’ % (MPI.COMM_WORLD.rank, congruent)
[0] congruent: True
[1] congruent: True
[2] congruent: True
[3] congruent: True
[4] congruent: True
>>>
>>> flag = (comm == MPI.COMM_WORLD)
>>> print ’[%d] %s’ % (MPI.COMM_WORLD.rank, flag)
[0] True
[1] True
[2] True
[3] True
[4] True

• splitting ...

>>> rank, size = MPI.COMM_WORLD.rank, MPI.COMM_WORLD.size
>>> color = int(rank < size//2)
>>> key = size-rank
>>> fmt = ’[%d] color: %s - key: %s’
>>> print fmt % (MPI.COMM_WORLD.rank, color, key)

Contents 13

MPI For Python Documentation, Release 0.6.0

[0] color: 1 - key: 5
[1] color: 1 - key: 4
[2] color: 0 - key: 3
[3] color: 0 - key: 2
[4] color: 0 - key: 1
>>>
>>> comm = MPI.COMM_WORLD.Split(color, key)
>>> rk = comm.Get_rank()
>>> sz = comm.Get_size()
>>>
>>> fmt = ’[%d] rank: %d - size: %d’
>>> pprint fmt % (rank, rk, sz)
[0] rank: 1 - size: 2
[1] rank: 0 - size: 2
[2] rank: 2 - size: 3
[3] rank: 1 - size: 3
[4] rank: 0 - size: 3

14 Contents

CHAPTER

TWO

Indices and tables

• Index

• Module Index

• Search Page

15

16

BIBLIOGRAPHY

[mpi.std1] MPI Forum. MPI: A Message Passing Interface Standard. International Journal of Supercomputer
Applications, volume 8, number 3-4, pages 159-416, 1994.

[mpi.std2] MPI Forum. MPI: A Message Passing Interface Standard. High Performance Computing Applications,
volume 12, number 1-2, pages 1-299, 1998.

[mpi.using] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: portable parallel programming with
the message-passing interface. MIT Press, 1994.

[mpi.ref] Mark Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra. MPI - The Com-
plete Reference, volume 1, The MPI Core. MIT Press, 2nd. edition, 1998.

[mpi.mpich] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation of the
MPI message passing interface standard. Parallel Computing, 22(6):789-828, September 1996.

[mpi.openmpi] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra, Jeffrey M.
Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine, Ralph H. Castain,
David J. Daniel, Richard L. Graham, and Timothy S. Woodall. Open MPI: Goals, Concept, and Design
of a Next Generation MPI Implementation. In Proceedings, 11th European PVM/MPI Users’ Group
Meeting, Budapest, Hungary, September 2004.

[mpi.lam] Greg Burns, Raja Daoud, and James Vaigl. LAM: An Open Cluster Environment for MPI. In Proceed-
ings of Supercomputing Symposium, pages 379-386, 1994.

[SPaSM] Parallel Molecular Dynamics Code, http://bifrost.lanl.gov/MD/MD.html, 1994-2001.

[Hinsen97] Konrad Hinsen. The Molecular Modelling Toolkit: a case study of a large scientific application in
Python. In Proceedings of the 6th International Python Conference, pages 29-35, San Jose, Ca., Octo-
ber 1997.

[Beazley97] David M. Beazley and Peter S. Lomdahl. Feeding a large-scale physics application to Python. In
Proceedings of the 6th International Python Conference, pages 21-29, San Jose, Ca., October 1997.

17

http://bifrost.lanl.gov/MD/MD.html

	Contents
	Introduction
	Design and Interface Overview
	Downloads
	Installation
	Tutorial (dated)

	Indices and tables

