ROL
Public Member Functions | Private Attributes | List of all members
ROL::LinearConstraint< Real > Class Template Reference

Defines the general affine constraint with the form \(c(x)=Ax+b\). More...

#include <ROL_LinearConstraint.hpp>

+ Inheritance diagram for ROL::LinearConstraint< Real >:

Public Member Functions

 LinearConstraint (const Ptr< const LinearOperator< Real >> &A, const Ptr< const Vector< Real >> &b)
 
void update (const Vector< Real > &x, UpdateType type, int iter=-1) override
 Update constraint function. More...
 
void update (const Vector< Real > &x, bool flag=true, int iter=-1) override
 Update constraint functions.
x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count. More...
 
void value (Vector< Real > &c, const Vector< Real > &x, Real &tol) override
 Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\). More...
 
void applyJacobian (Vector< Real > &jv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) override
 Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\). More...
 
void applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, Real &tol) override
 Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More...
 
void applyAdjointJacobian (Vector< Real > &ajv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualv, Real &tol) override
 Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\). More...
 
void applyAdjointHessian (Vector< Real > &ahuv, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &x, Real &tol) override
 Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \). More...
 
Ptr< Vector< Real > > createRangeSpaceVector (void) const
 
- Public Member Functions inherited from ROL::Constraint< Real >
virtual ~Constraint (void)
 
 Constraint (void)
 
virtual std::vector< Real > solveAugmentedSystem (Vector< Real > &v1, Vector< Real > &v2, const Vector< Real > &b1, const Vector< Real > &b2, const Vector< Real > &x, Real &tol)
 Approximately solves the augmented system

\[ \begin{pmatrix} I & c'(x)^* \\ c'(x) & 0 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} = \begin{pmatrix} b_{1} \\ b_{2} \end{pmatrix} \]

where \(v_{1} \in \mathcal{X}\), \(v_{2} \in \mathcal{C}^*\), \(b_{1} \in \mathcal{X}^*\), \(b_{2} \in \mathcal{C}\), \(I : \mathcal{X} \rightarrow \mathcal{X}^*\) is an identity or Riesz operator, and \(0 : \mathcal{C}^* \rightarrow \mathcal{C}\) is a zero operator. More...

 
virtual void applyPreconditioner (Vector< Real > &pv, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &g, Real &tol)
 Apply a constraint preconditioner at \(x\), \(P(x) \in L(\mathcal{C}, \mathcal{C}^*)\), to vector \(v\). Ideally, this preconditioner satisfies the following relationship:

\[ \left[c'(x) \circ R \circ c'(x)^* \circ P(x)\right] v = v \,, \]

where R is the appropriate Riesz map in \(L(\mathcal{X}^*, \mathcal{X})\). It is used by the solveAugmentedSystem method. More...

 
void activate (void)
 Turn on constraints. More...
 
void deactivate (void)
 Turn off constraints. More...
 
bool isActivated (void)
 Check if constraints are on. More...
 
virtual std::vector< std::vector< Real > > checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const std::vector< Real > &steps, const bool printToStream=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference check for the constraint Jacobian application. More...
 
virtual std::vector< std::vector< Real > > checkApplyJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &jv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference check for the constraint Jacobian application. More...
 
virtual std::vector< std::vector< Real > > checkApplyAdjointJacobian (const Vector< Real > &x, const Vector< Real > &v, const Vector< Real > &c, const Vector< Real > &ajv, const bool printToStream=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS)
 Finite-difference check for the application of the adjoint of constraint Jacobian. More...
 
virtual Real checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const bool printToStream=true, std::ostream &outStream=std::cout)
 
virtual Real checkAdjointConsistencyJacobian (const Vector< Real > &w, const Vector< Real > &v, const Vector< Real > &x, const Vector< Real > &dualw, const Vector< Real > &dualv, const bool printToStream=true, std::ostream &outStream=std::cout)
 
virtual std::vector< std::vector< Real > > checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const std::vector< Real > &step, const bool printToScreen=true, std::ostream &outStream=std::cout, const int order=1)
 Finite-difference check for the application of the adjoint of constraint Hessian. More...
 
virtual std::vector< std::vector< Real > > checkApplyAdjointHessian (const Vector< Real > &x, const Vector< Real > &u, const Vector< Real > &v, const Vector< Real > &hv, const bool printToScreen=true, std::ostream &outStream=std::cout, const int numSteps=ROL_NUM_CHECKDERIV_STEPS, const int order=1)
 Finite-difference check for the application of the adjoint of constraint Hessian. More...
 
virtual void setParameter (const std::vector< Real > &param)
 

Private Attributes

const Ptr< const LinearOperator< Real > > A_
 
const Ptr< const Vector< Real > > b_
 

Additional Inherited Members

- Protected Member Functions inherited from ROL::Constraint< Real >
const std::vector< Real > getParameter (void) const
 

Detailed Description

template<typename Real>
class ROL::LinearConstraint< Real >

Defines the general affine constraint with the form \(c(x)=Ax+b\).


Definition at line 60 of file ROL_LinearConstraint.hpp.

Constructor & Destructor Documentation

◆ LinearConstraint()

template<typename Real >
ROL::LinearConstraint< Real >::LinearConstraint ( const Ptr< const LinearOperator< Real >> &  A,
const Ptr< const Vector< Real >> &  b 
)

Definition at line 50 of file ROL_LinearConstraint_Def.hpp.

Member Function Documentation

◆ update() [1/2]

template<typename Real >
void ROL::LinearConstraint< Real >::update ( const Vector< Real > &  x,
UpdateType  type,
int  iter = -1 
)
overridevirtual

Update constraint function.

This function updates the constraint function at new iterations.

Parameters
[in]xis the new iterate.
[in]typeis the type of update requested.
[in]iteris the outer algorithm iterations count.

Reimplemented from ROL::Constraint< Real >.

Definition at line 54 of file ROL_LinearConstraint_Def.hpp.

◆ update() [2/2]

template<typename Real >
void ROL::LinearConstraint< Real >::update ( const Vector< Real > &  x,
bool  flag = true,
int  iter = -1 
)
overridevirtual

Update constraint functions.
x is the optimization variable, flag = true if optimization variable is changed, iter is the outer algorithm iterations count.

Reimplemented from ROL::Constraint< Real >.

Definition at line 57 of file ROL_LinearConstraint_Def.hpp.

◆ value()

template<typename Real >
void ROL::LinearConstraint< Real >::value ( Vector< Real > &  c,
const Vector< Real > &  x,
Real &  tol 
)
overridevirtual

Evaluate the constraint operator \(c:\mathcal{X} \rightarrow \mathcal{C}\) at \(x\).

Parameters
[out]cis the result of evaluating the constraint operator at x; a constraint-space vector
[in]xis the constraint argument; an optimization-space vector
[in,out]tolis a tolerance for inexact evaluations; currently unused
   On return, \form#74,
   where \form#75, \form#76.

   ---

Implements ROL::Constraint< Real >.

Definition at line 60 of file ROL_LinearConstraint_Def.hpp.

References A_, and ROL::Vector< Real >::plus().

◆ applyJacobian()

template<typename Real >
void ROL::LinearConstraint< Real >::applyJacobian ( Vector< Real > &  jv,
const Vector< Real > &  v,
const Vector< Real > &  x,
Real &  tol 
)
overridevirtual

Apply the constraint Jacobian at \(x\), \(c'(x) \in L(\mathcal{X}, \mathcal{C})\), to vector \(v\).

Parameters
[out]jvis the result of applying the constraint Jacobian to v at x; a constraint-space vector
[in]vis an optimization-space vector
[in]xis the constraint argument; an optimization-space vector
[in,out]tolis a tolerance for inexact evaluations; currently unused
   On return, \form#79, where
\(v \in \mathcal{X}\), \(\mathsf{jv} \in \mathcal{C}\).

The default implementation is a finite-difference approximation.

Reimplemented from ROL::Constraint< Real >.

Definition at line 66 of file ROL_LinearConstraint_Def.hpp.

References A_.

◆ applyAdjointJacobian() [1/2]

template<typename Real >
void ROL::LinearConstraint< Real >::applyAdjointJacobian ( Vector< Real > &  ajv,
const Vector< Real > &  v,
const Vector< Real > &  x,
Real &  tol 
)
overridevirtual

Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\).

Parameters
[out]ajvis the result of applying the adjoint of the constraint Jacobian to v at x; a dual optimization-space vector
[in]vis a dual constraint-space vector
[in]xis the constraint argument; an optimization-space vector
[in,out]tolis a tolerance for inexact evaluations; currently unused
   On return, \form#83, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{X}^*\).

The default implementation is a finite-difference approximation.

Reimplemented from ROL::Constraint< Real >.

Definition at line 71 of file ROL_LinearConstraint_Def.hpp.

References A_.

◆ applyAdjointJacobian() [2/2]

template<typename Real >
void ROL::LinearConstraint< Real >::applyAdjointJacobian ( Vector< Real > &  ajv,
const Vector< Real > &  v,
const Vector< Real > &  x,
const Vector< Real > &  dualv,
Real &  tol 
)
overridevirtual

Apply the adjoint of the the constraint Jacobian at \(x\), \(c'(x)^* \in L(\mathcal{C}^*, \mathcal{X}^*)\), to vector \(v\).

Parameters
[out]ajvis the result of applying the adjoint of the constraint Jacobian to v at x; a dual optimization-space vector
[in]vis a dual constraint-space vector
[in]xis the constraint argument; an optimization-space vector
[in]dualvis a vector used for temporary variables; a constraint-space vector
[in,out]tolis a tolerance for inexact evaluations; currently unused
   On return, \form#83, where
\(v \in \mathcal{C}^*\), \(\mathsf{ajv} \in \mathcal{X}^*\).

The default implementation is a finite-difference approximation.

Reimplemented from ROL::Constraint< Real >.

Definition at line 76 of file ROL_LinearConstraint_Def.hpp.

References A_.

◆ applyAdjointHessian()

template<typename Real >
void ROL::LinearConstraint< Real >::applyAdjointHessian ( Vector< Real > &  ahuv,
const Vector< Real > &  u,
const Vector< Real > &  v,
const Vector< Real > &  x,
Real &  tol 
)
overridevirtual

Apply the derivative of the adjoint of the constraint Jacobian at \(x\) to vector \(u\) in direction \(v\), according to \( v \mapsto c''(x)(v,\cdot)^*u \).

Parameters
[out]ahuvis the result of applying the derivative of the adjoint of the constraint Jacobian at x to vector u in direction v; a dual optimization-space vector
[in]uis the direction vector; a dual constraint-space vector
[in]vis an optimization-space vector
[in]xis the constraint argument; an optimization-space vector
[in,out]tolis a tolerance for inexact evaluations; currently unused
   On return, \form#88, where
\(u \in \mathcal{C}^*\), \(v \in \mathcal{X}\), and \(\mathsf{ahuv} \in \mathcal{X}^*\).

The default implementation is a finite-difference approximation based on the adjoint Jacobian.

Reimplemented from ROL::Constraint< Real >.

Definition at line 81 of file ROL_LinearConstraint_Def.hpp.

References ROL::Vector< Real >::zero().

◆ createRangeSpaceVector()

template<typename Real >
Ptr< Vector< Real > > ROL::LinearConstraint< Real >::createRangeSpaceVector ( void  ) const

Definition at line 86 of file ROL_LinearConstraint_Def.hpp.

Member Data Documentation

◆ A_

template<typename Real >
const Ptr<const LinearOperator<Real> > ROL::LinearConstraint< Real >::A_
private

Definition at line 62 of file ROL_LinearConstraint.hpp.

◆ b_

template<typename Real >
const Ptr<const Vector<Real> > ROL::LinearConstraint< Real >::b_
private

Definition at line 63 of file ROL_LinearConstraint.hpp.


The documentation for this class was generated from the following files: