-- tkz_elements_functions_lines.lua -- date 2024/07/16 -- version 3.00 -- Copyright 2024 Alain Matthes -- This work may be distributed and/or modified under the -- conditions of the LaTeX Project Public License, either version 1.3 -- of this license or (at your option) any later version. -- The latest version of this license is in -- http://www.latex-project.org/lppl.txt -- and version 1.3 or later is part of all distributions of LaTeX -- version 2005/12/01 or later. -- This work has the LPPL maintenance status “maintained”. -- The Current Maintainer of this work is Alain Matthes. --------------------------------------------------------------------------- -- Lines --------------------------------------------------------------------------- function normalize_ (a,b) return a+(b-a)/point.mod(b-a) end function ortho_from_ ( p , a , b ) return p+(b-a)*point(0,1) end function ll_from_ ( p , a , b ) return p+b-a end function slope_ (a,b) return angle_normalize_ (point.arg(b-a)) end function gold_segment_ (a,b) return a + (b-a)*tkzinvphi end function online_ (a,b,t) return barycenter_({a,(1-t)},{b,t}) end function mediator_ (a,b) local m = midpoint_ (a,b) return m , rotation_ (m,math.pi/2,b) end function midpoint_ (z1 , z2) return (z1+z2)/2 end -- triangle specific function equilateral_tr_ (a,b) return rotation_ (a,math.pi/3,b) end function isosceles_right_tr (a,b) local pt pt = rotation_ (a,math.pi/4,b) return a + (pt-a) * math.sin(math.pi/4) end function gold_tr (a,b) local pt pt = rotation_ (a,math.pi/2,b) return a + (pt-a) * tkzinvphi end function euclide_tr (a,b) return rotation_ (a,math.pi/5,b) end function golden_tr (a,b) local pt pt = rotation_ (a,2*math.pi/5,b) return a + (pt-a) * tkzphi end function div_harmonic_int_(a,b,n) local k = point.abs(a-n)/point.abs(b-n) return barycenter_ ( {a,1} , {b,k} ) end function div_harmonic_ext_(a,b,n) local k = point.abs(a-n)/point.abs(b-n) return barycenter_ ( {a,1} , {b,-k} ) end function div_harmonic_both_(a,b,k) return barycenter_ ( {a,1} , {b,k} ) , barycenter_ ( {a,1} , {b,-k} ) end function golden_ratio_(a,b) local invphi = ( math.sqrt(5) - 1 )/2 return a + (b-a) * invphi end -- projection function projection ( Dt,pt ) return projection_ ( Dt.pa,Dt.pb,pt ) end function projection_ ( pa,pb,pt ) local v local z if aligned ( pa,pb,pt ) then return pt else v = pb - pa z = ((pt - pa)..v)/(point.norm(v)) -- .. dot product return pa + z * v end end function symmetry_axial_(pa,pb,pt) local p p = projection_ (pa,pb,pt) return symmetry_(p,pt) end function set_symmetry_axial_ (u,v,...) local tp = table.pack(...) local i local t = {} for i=1,tp.n do table.insert( t , symmetry_axial_ (u,v , tp[i]) ) end return table.unpack ( t ) end function square_ (a,b) return rotation_ (b,-math.pi/2,a), rotation_ (a,math.pi/2,b) end function in_segment_ (a,b,pt) local sc sc = point.mod (pt-a) + point.mod (pt-b) - point.mod(b-a) if sc <= tkz_epsilon then return true else return false end end function report_ (za,zb,d,pt) local t,len len = point.mod(zb-za) t = d/len if pt == nil then return barycenter_({za,1-t},{zb,(t)}) else return barycenter_({za,1-t},{zb,(t)}) +pt-za end end function colinear_at_ (za,zb,pt,k) if k == nil then return pt+zb-za else return pt+k*(zb-za) end end