-- tkz_elements_functions_triangles.lua -- date 2024/07/16 -- version 3.00 -- Copyright 2024 Alain Matthes -- This work may be distributed and/or modified under the -- conditions of the LaTeX Project Public License, either version 1.3 -- of this license or (at your option) any later version. -- The latest version of this license is in -- http://www.latex-project.org/lppl.txt -- and version 1.3 or later is part of all distributions of LaTeX -- version 2005/12/01 or later. -- This work has the LPPL maintenance status “maintained”. -- The Current Maintainer of this work is Alain Matthes. --------------------------------------------------------------------------- -- triangle center with circle --------------------------------------------------------------------------- ------------------------ -- Points -- ------------------------ function circum_center_ ( a,b,c ) local ka = math.sin (2 * get_angle_ ( a,b,c )) local kb = math.sin (2 * get_angle_ ( b,c,a )) local kc = math.sin (2 * get_angle_ ( c,a,b )) return barycenter_ ( {a,ka} , {b,kb} , {c,kc} ) end function in_center_ ( a,b,c ) local ka = point.abs (b-c) local kc = point.abs (b-a) local kb = point.abs (c-a) return barycenter_ ( {a,ka} , {b,kb} , {c,kc} ) end function ex_center_ ( a,b,c ) local ka = point.abs (b-c) local kc = point.abs (b-a) local kb = point.abs (c-a) return barycenter_ ( {a,-ka} , {b,kb} , {c,kc} ) end function centroid_ (a,b,c) return barycenter_ ( {a,1} , {b,1} , {c,1} ) end centroid_center_ = centroid_ function ortho_center_ (a,b,c) local ka = math.tan (get_angle_ ( a,b,c )) local kb = math.tan (get_angle_ ( b,c,a )) local kc = math.tan (get_angle_ ( c,a,b )) return barycenter_ ( {a,ka} , {b,kb} , {c,kc} ) end function euler_center_ (a,b,c) local ma,mb,mc = medial_tr_ ( a,b,c) return circum_center_ (ma,mb,mc) end function gergonne_point_ (a,b,c) local u,v,w u,v,w = intouch_tr_ (a,b,c) return intersection_ll_ ( a,u , b,v) end function lemoine_point_(a,b,c) local ma,mb,mc,ha,hb,hc,u,v,w u = point.abs(c-b) v = point.abs(a-c) w = point.abs(b-a) return barycenter_ ({a,u*u},{b,v*v},{c,w*w}) end function nagel_point_ (a,b,c) local u,v,w u,v,w = extouch_tr_ ( a,b,c ) return intersection_ll_ (a,u,b,v) end function feuerbach_point_ (a,b,c) local i,h,e,ma i,h = in_circle_ (a,b,c) e = euler_center_ (a,b,c) ma = (b+c)/2 return intersection_cc_ (i,h,e,ma) end function spieker_center_ (a,b,c) return in_center_ (medial_tr_ ( a,b,c)) end function euler_points_ (a,b,c) local H H = ortho_center_ ( a , b , c ) return midpoint_ ( H,a ), midpoint_ ( H,b ), midpoint_ ( H,c ) end -------------------- -- lines -- -------------------- -- N,G,H,O function euler_line_ (a,b,c) check_equilateral_ (a,b,c) local A = math.tan( get_angle_ ( a,b,c )) local B = math.tan( get_angle_ ( b,c,a )) local C = math.tan( get_angle_ ( c,a,b )) return euler_center_ (a,b,c), barycenter_ ( {a,1} , {b,1} , {c,1} ) , barycenter_ ( {a,A} , {b,B} , {c,C} ) , barycenter_ ( {a,B+C} , {b,A+C} , {c,A+B} ) end function bisector_ (a,b,c) -- possible intersection bisector with side return in_center_ (a,b,c) end function bisector_ext_ (a,b,c) local i i = in_center_ (a,b,c) return rotation_ (a,math.pi/2,i) end function mediators_ (a,b,c) local o = circum_center (a,b,c) return o , projection_ (b,c,o) , projection_ (a,c,o) , projection_ (a,b,o) end -------------------- -- circles -- -------------------- function circum_circle_ ( a,b,c ) local ka = math.sin (2 * get_angle_ ( a,b,c )) local kb = math.sin (2 * get_angle_ ( b,c,a )) local kc = math.sin (2 * get_angle_ ( c,a,b )) return barycenter_ ( {a,ka} , {b,kb} , {c,kc} ) end function in_circle_ ( a,b,c ) local ka,kb,kc,o ka = point.abs (b-c) kc = point.abs (b-a) kb = point.abs (c-a) o = barycenter_ ( {a,ka} , {b,kb} , {c,kc} ) return o , projection_ (b,c,o) , projection_ (a,c,o) , projection_ (a,b,o) end function ex_circle_ ( a,b,c ) local ka,kb,kc,o ka = point.abs (b-c) kc = point.abs (b-a) kb = point.abs (c-a) o = barycenter_ ( {a,-ka} , {b,kb} , {c,kc} ) return o , projection_ (b,c,o) , projection_ (a,c,o) , projection_ (b,a,o) end function euler_circle_ (a,b,c) local o,ma,mb,mc,H,ha,hb,hc o = euler_center_ (a,b,c) ma,mb,mc = medial_tr_ ( a,b,c) ha,hb,hc = orthic_tr_ ( a,b,c) local _,_,H,_ = euler_line_ (a,b,c) return o,ma,mb,mc,ha,hb,hc, midpoint_ ( H,a ), midpoint_ ( H,b ), midpoint_ ( H,c ) end -------------------- -- triangles -- -------------------- function orthic_tr_ (a,b,c) local o = ortho_center_ (a,b,c) return projection_ (b,c,o) , projection_ (a,c,o) , projection_ (b,a,o) end function medial_tr_ (a,b,c) return barycenter_ ( {a,0} , {b,1} , {c,1} ) , barycenter_ ( {a,1} , {b,0} , {c,1} ) , barycenter_ ( {a,1} , {b,1} , {c,0} ) end function anti_tr_(a,b,c) return barycenter_ ( {a,-1} , {b,1} , {c,1} ) , barycenter_ ( {a,1} , {b,-1} , {c,1} ) , barycenter_ ( {a,1} , {b,1} , {c,-1} ) end function incentral_tr_ (a,b,c) local i,r,s,t i = in_center_ (a , b , c) r = intersection_ll_ ( a,i , b,c) s = intersection_ll_ ( b,i , a,c) t = intersection_ll_ ( c,i , a,b) return r,s,t end function excentral_tr_ (a,b,c) local r,s,t,ka,kb,kc ka = point.abs (b-c) kc = point.abs (b-a) kb = point.abs (c-a) r = barycenter_ ( {a,-ka} , {b,kb} , {c,kc} ) s = barycenter_ ( {a,ka} , {b,-kb} , {c,kc} ) t = barycenter_ ( {a,ka} , {b,kb} , {c,-kc} ) return r,s,t end function intouch_tr_ (a,b,c) local i i = in_center_ (a , b , c) return projection_ (b,c,i), projection_ (a,c,i), projection_ (a,b,i) end function cevian_ (a,b,c,p) return intersection_ll_ (a,p,b,c), intersection_ll_ (b,p,a,c), intersection_ll_ (c,p,a,b) end function extouch_tr_ (a,b,c) local u,v,w u,v,w = excentral_tr_ (a,b,c) return projection_ (b,c,u) , projection_ (a,c,v) , projection_ (a,b,w) end function tangential_tr_ (a,b,c) local u,v,w,x,y,z,xx,yy,zz u,v,w = orthic_tr_ (a,b,c) x = ll_from_ ( a , v , w ) y = ll_from_ ( b , u , w ) z = ll_from_ ( c , u , v ) xx = intersection_ll_ (c,z,b,y) yy = intersection_ll_ (a,x,c,z) zz = intersection_ll_ (a,x,b,y) return xx,yy,zz end function feuerbach_tr_ (a,b,c) local e,m,ja,ha,jb,hb,jc,hc e = euler_center_ (a,b,c) m = midpoint_( b , c ) ja,ha = ex_circle_ ( a , b , c ) jb,hb = ex_circle_ ( b , c , a ) jc,hc = ex_circle_ ( c , a , b ) return intersection_cc_ (e,m,ja,ha), intersection_cc_ (e,m,jb,hb), intersection_cc_ (e,m,jc,hc) end function similar_ (a,b,c) local x,y,z,g g = centroid_ (a,b,c) x = homothety_ (g,-2,a) y = homothety_ (g,-2,b) z = homothety_ (g,-2,c) return x,y,z end -------------------- -- ellipse -- -------------------- function steiner_ (a,b,c) local g,fa,fb,delta,m,v g = centroid_ (a,b,c) delta = a*a+b*b+c*c -a*b-a*c-b*c fa = (a+b+c - point.sqrt(delta))/3 fb = (a+b+c + point.sqrt(delta))/3 m = midpoint_(b,c) r = (length(fa,m)+length(fb,m))/2 v = report_ (fb,fa,r,g) return ellipse: foci (fb,fa,v) end -------------------- -- miscellanous -- -------------------- function area_ (a,b,c) return point.mod(a - projection_(b,c,a))*point.mod (b - c)/2 end function check_equilateral_ (a,b,c) local A,B,C A = b - c B = a - c C = a - b if (point.abs(A)-point.abs(B) < tkz_epsilon) and (point.abs(B)-point.abs(C) < tkz_epsilon) then return true else return false end end function parallelogram_ (a,b,c) local x = c + a - b return x end function barycentric_coordinates_ (a,b,c,pt) local AT,AA,AB,AC,x,y,z AT = area_(a,b,c) AA = area_(pt,b,c) AB = area_(a,pt,c) AC = area_(a,b,pt) x = AA/AT y = AB/AT z = AC/AT return x,y,z end function in_out_ (a,b,c,pt) local cba,cbb,cbc,TT,AT,AA,AB,AC AT = area_(a,b,c) AA = area_(pt,b,c) AB = area_(a,pt,c) AC = area_(a,b,pt) cba = AA/AT cbb = AB/AT cbc = AC/AT if (cba >= 0 and cba <= 1) and (cbb >= 0 and cbb <= 1) and (cbc >= 0 and cbc <= 1) then return true else return false end end function soddy_center_ (a,b,c) local i,ha,hb,hc,e,f,g,x,y,z,xp,yp,zp i,e,f,g = in_circle_ (a,b,c) ha,hb,hc = orthic_tr_ (a,b,c) x,xp = intersection_lc_ (a,ha,a,g) if (point.mod(ha-x)